2023 53rd Annual IEEE/IFIP **International Conference on Dependable Systems and** Networks (DSN 2023)

Porto, Portugal 27 – 30 June 2023

IEEE Catalog Number: CFP23048-POD ISBN:

979-8-3503-4794-4

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP23048-POD

 ISBN (Print-On-Demand):
 979-8-3503-4794-4

 ISBN (Online):
 979-8-3503-4793-7

ISSN: 1530-0889

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

DSN 2023

Table of Contents

xiii
xv
xvii
xix
xx
xxiii
xxv
xxvii
xxviii
xxx
Home Systems 1
14
on
28

RT-2: Vehicles

Breaking Geographic Routing Among Connected Vehicles
NPTSN: RL-Based Network Planning with Guaranteed Reliability for In-Vehicle TSSDN
Get Your Cyber-Physical Tests Done! Data-Driven Vulnerability Assessment of Robotic Aerial Vehicles
RT-3: Memory 1
Compiler-Implemented Differential Checksums: Effective Detection and Correction of Transient and Permanent Memory Errors
PT-Guard: Integrity-Protected Page Tables to Defend Against Breakthrough Rowhammer Attacks 95 Anish Saxena (Georgia Institute of Technology), Gururaj Saileshwar (NVIDIA and University of Toronto), Jonas Juffinger (Graz University of Technology), Andreas Kogler (Graz University of Technology), Daniel Gruss (Graz University of Technology), and Moinuddin Qureshi (Georgia Institute of Technology)
Don't Knock! Rowhammer at the Backdoor of DNN Models
RT-4: Blockchain & Replication
Micro Replication
Heron: Scalable State Machine Replication on Shared Memory

Analyzing the Performance of the Inter-Blockchain Communication Protocol João Otávio Chervinski (Monash University, Australia; CSIRO's Data61, Australia), Diego Kreutz (Monash University, Australia; Federal University of Pampa, Brazil), Xiwei Xu (CSIRO's Data61, Australia), and Jiangshan Yu (Monash University, Australia)	151
RT-5: Software Security	
MalAder: Decision-Based Black-Box Attack Against API Sequence Based Malware Detectors	165
Tabby: Automated Gadget Chain Detection for Java Deserialization Vulnerabilities Xingchen Chen (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Baizhu Wang (MYbank AntGroup, China), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Yun Feng (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Xianglong Li (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Xincheng Feng (FG Security Lab AntGroup, China), and Qixu Liu (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China)	179
TagClass: A Tool for Extracting Class-Determined Tags from Massive Malware Labels via Incremental Parsing	193
RT-6: Memory 2	
Āpta: Fault-Tolerant Object-Granular CXL Disaggregated Memory for Accelerating FaaS	201

HiMFP: Hierarchical Intelligent Memory Failure Prediction for Cloud Service Reliability Qiao Yu (Huawei Munich Research Center, Germany; Technical University of Berlin, Germany), Wengui Zhang (Huawei Technologies Co., Ltd, China), Paolo Notaro (Huawei Munich Research Center, Germany; Technical University of Munich, Germany), Soroush Haeri (Huawei Munich Research Center, Germany), Jorge Cardoso (Huawei Munich Research Center, Germany; University of Coimbra, Portugal), and Odej Kao (Technical University of Berlin, Germany)	216
SGX Switchless Calls Made Configless	229
RT-7: Network Security & Privacy	
Poisoning Online Learning Filters by Shifting on the Move	239
YODA: Covert Communication Channel over Public DNS Resolvers	252
Targeted Privacy Attacks by Fingerprinting Mobile Apps in LTE Radio Layer Jaejong Baek (Arizona State University, USA), Pradeep Kumar Duraisamy Soundrapandian (Vellore Institute of Technology, India), Sukwha Kyung (Arizona State University, USA), Ruoyu Wang (Arizona State University, USA), Yan Shoshitaishvili (Arizona State University, USA), Adam Doupé (Arizona State University, USA), and Gail-Joon Ahn (Arizona State University, USA)	261
RT-8: Machine Learning	
Fabricated Flips: Poisoning Federated Learning without Data Jiyue Huang (TU Delft, The Netherlandsy), Zilong Zhao (TU Delft, The Netherlands), Lydia Y. Chen (TU Delft, The Netherlands), and Stefanie Roos (TU Delft, The Netherlands)	274
Fortifying Federated Learning against Membership Inference Attacks via Client-Level Input Perturbation	288

ReFace: Adversarial Transformation Networks for Real-Time Attacks on Face Recognition Systems	302
Systems	302
(Peraton Labs), Chris Mesterharm (Peraton Labs), Paarth Neekhara	
(University of California San Diego), and Farinaz Koushanfar	
(University of California San Diego)	
RT-9: Obfuscation	
No Free Lunch: On the Increased Code Reuse Attack Surface of Obfuscated Programs	313
of New Hampshire), Dongpeng Xu (University of New Hampshire), Shuai Wang (Hong Kong University of Science and Technology), Trent Jaeger (The Pennsylvania State University), and Wheeler Ruml (University of	
New Hampshire)	
TransAST: A Machine Translation-Based Approach for Obfuscated Malicious JavaScript	
Detection	327
Yan Qin (Central South University, China), Weiping Wang (Central South University, China), Zixian Chen (Central South University, China),	
Hong Song (Central South University, China), and Shigeng Zhang	
(Central South University, China)	
JSRevealer: A Robust Malicious JavaScript Detector against Obfuscation	339
Kunlun Ren (Huazhong University of Science and Technology, China),	337
Weizhong Qiang (Huazhong University of Science and Technology, China;	
Jinyinhu Laboratory, China), Yueming Wu (Nanyang Technological	
University, Singapore), Yi Zhou (Huazhong University of Science and	
Technology, China), Deqing Zou (Huazhong University of Science and	
Technology, China; Jinyinhu Laboratory, China), and Jin Hai (Huazhong	
University of Science and Technology, China; Jinyinhu Laboratory,	
China)	
DT 40 C 1 1 ' 1C 4	
RT-10: Cyberphysical Systems	
Detection of e-Mobility-based Attacks on the Power Grid	352
Dustin Kern (Darmstadt University of Applied Sciences, Germany) and	
Christoph Krauß (Darmstadt University of Applied Sciences, Germany)	
SwarmFuzz: Discovering GPS Spoofing Attacks in Drone Swarms	366
Yingao Yao (The University of British Columbia), Pritam Dash (The	
University of British Columbia), and Karthik Pattabiraman (The University of British Columbia)	
DNAttest: Digital-Twin-based Non-Intrusive Attestation under Transient Uncertainty	376
Wei Lin (Singapore University of Technology and Design, Singapore),	
Heng Chuan Tan (Advanced Digital Sciences Center, Singapore), Binbin	
Chen (Singapore University of Technology and Design, Singapore), and	
Fan Zhang (Zhejiang University, China)	

RT-11: Virtualization

IRIS: a Record and Replay Framework to Enable Hardware-Assisted Virtualization Fuzzing
Rewind & Discard: Improving Software Resilience using Isolated Domains
Intrusion Injection for Virtualized Systems: Concepts and Approach
RT-12: Web Security
vWitness: Certifying Web Page Interactions with Computer Vision
Adaptive Webpage Fingerprinting from TLS Traces
IDTracker: Discovering Illicit Website Communities via Third-Party Service IDs
RT-13: Mobile Systems & IoT
Creating a Large-Scale Memory Error IoT Botnet Using NS3DockerEmulator

DARPA: Combating Asymmetric Dark UI Patterns on Android with Run-Time View Decorator Zhaoxin Cai (Sun Yat-sen University, China), Yuhong Nan (Sun Yat-sen University, China), Xueqiang Wang (University of Central Florida, USA), Mengyi Long (Sun Yat-sen University, China), Qihua Ou (Sun Yat-sen University, China), Min Yang (Fudan University, China), and Zibin Zheng (Sun Yat-sen University, China)	480
IoT Anomaly Detection Via Device Interaction Graph	494
RT-14: Potpourri	
Time Machine: Generative Real-Time Model For Failure (and Lead Time) Prediction in HPC Systems Khalid Ayed Alharthi (University of Warwick, UK; University of Bisha, KSA; The Alan Turing Institute, UK), Arshad Jhumka (University of Warwick, UK), Sheng Di (The University of Chicago, USA), Lin Gui (King's College London), Franck Cappello (The University of Chicago, USA; University of Illinois at Urbana-Champaign, USA), and Simon McIntosh-Smith (Bristol University, UK)	. 508
How Different are The Cloud Workloads? Characterizing Large-Scale Private and Public Cloud Workloads Xiaoting Qin (Microsoft), Minghua Ma (Microsoft), Yuheng Zhao (Microsoft), Jue Zhang (Microsoft), Chao Du (Microsoft), Yudong Liu (Microsoft), Anjaly Parayil (Microsoft), Chetan Bansal (Microsoft), Saravan Rajmohan (Microsoft), Íñigo Goiri (Microsoft), Eli Cortez (Microsoft), Si Qin (Microsoft), Qingwei Lin (Microsoft), and Dongmei Zhang (Microsoft)	. 522
On Adversarial Robustness of Point Cloud Semantic Segmentation Jiacen Xu (University of California, Irvine), Zhe Zhou (Fudan University), Boyuan Feng (University of California, Santa Barbara), Yufei Ding (University of California, Santa Barbara), and Zhou Li (University of California, Irvine)	. 531
RT-15: System Analysis & Modelling	
Cost-Damage Analysis of Attack Trees	545
PASTA: Pragmatic Automated System-Theoretic Process Analysis	. 559

Practical Asynchronous Distributed Key Generation: Improved Efficiency, Weaker Assumption, and Standard Model	58
Haibin Zhang (Beijing Institute of Technology), Sisi Duan (Tsinghua	
University; Zhongguancun Laboratory), Chao Liu (Shandong University),	
Boxin Zhao (Zhongguancun Laboratory), Xuanji Meng (Tsinghua	
Unviersity), Shengli Liu (Shanghai Jiao Tong University), Yong Yu	
(Shaanxi Normal University), Fangguo Zhang (Sun Yat-sen University),	
and Liehuang Zhu (Beijing Institute of Technology)	
RT-16: Smart Home	
VoiceGuard: An Effective and Practical Approach for Detecting and Blocking Unauthorized Voice Commands to Smart Speakers	32
Speaker Orientation-Aware Privacy Control to Thwart Misactivation of Voice Assistants	∂ 7
Author Index 61	11