2023 IEEE 9th International Conference on Space Mission Challenges for Information Technology (SMC-IT 2023)

Pasadena, California, USA 18-21 July 2023

IEEE Catalog Number: ISBN:

CFP23840-POD 979-8-3503-4138-6

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP23840-POD

 ISBN (Print-On-Demand):
 979-8-3503-4138-6

 ISBN (Online):
 979-8-3503-4137-9

ISSN: 2836-4163

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE 9th International Conference on Space Mission Challenges for Information Technology (SMC-IT) SMC-IT 2023

Table of Contents

Preface vi	iii
Conference Organization	хi
Reviewersx	aii
Sub-Reviewers xi	iii
Regular papers	
A Data Pre-Processing Module for Improved-Accuracy Machine-Learning-based Micro-Single-Event-Latchup Detection	. 1
Availability Vs. Lifetime Trade-Space In Spacecraft Computers Marcel Schoppers (NASA Jet Propulsion Laboratory), Leila Meshkat (NASA Jet Propulsion Laboratory), and Josefine Graebener (California Institute of Technology)	7
Early Design Exploration of Space System Scenarios Using Assume-Guarantee Contracts	15
Modeling Data of Planetary Instrument for X-ray Lithochemistry (PIXL) for Mars 2020	25
Web-based 3D Visualization for Flight Mission Network Cybersecurity Analysis Emily Newman (Jet Propulsion Laboratory), Jenette Sellin (Jet Propulsion Laboratory), Janine Huang (Jet Propulsion Laboratory), Calvin Huang (Jet Propulsion Laboratory), Marc Pomerantz (Jet Propulsion Laboratory), and Deniz Celik (Jet Propulsion Laboratory)	35

Ablation Study of How Run Time Assurance Impacts the Training and Performance of	
Reinforcement Learning Agents	45
Nathaniel Hamilton (Parallax Advanced Research, USA), Kyle Dunlap	
(Parallax Advanced Research, USA), Taylor Johnson (Vanderbilt	
University, USA), and Kerianne Hobbs (Air Force Research Laboratory,	
USA)	
How to Scrub a Launch: Spaceport Cybersecurity	56
Gregory Falco (Cornell University), Luke Korth (Johns Hopkins	
University), Patrick Custer (Johns Hopkins University), Rembert N	
Schofield (Johns Hopkins University), and Caleb Pocock (Johns Hopkins	
University)	
	70
A Research Agenda for Space Flight Software Security	68
James Curbo (Johns Hopkins University, USA) and Gregory Falco (Johns	
Hopkins University, USA)	
Intelligent requirement-to-test-case traceability system via Natural Language Processing	
and Machine Learning	78
Kae Sawada (Jet Propulsion Laboratory, California Institute of	
Technology), Marc Pomerantz (Jet Propulsion Laboratory, California	
Institute of Technology), Gus Razo (Jet Propulsion Laboratory,	
California Institute of Technology), and Michael W. Clark (Natural	
Science Division Pasadena City College)	
WannaFly: An Approach to Satellite Ransomware	84
Gregory Falco (Cornell University), Rajiv Thummala (The Pennsylvania	
State University), and Arpit Kubadia (Johns Hopkins University)	
	0.4
MUSTANG: A Workhorse for NASA Spaceflight Avionics	94
Christopher Green (NASA Goddard Space Flight Center, USA), Noosha	
Haghani (NASA Goddard Space Flight Center, USA), Amri	
Hernandez-Pellerano (NASA Goddard Space Flight Center, USA), Bobby	
Gheen (NASA Goddard Space Flight Center, USA), Austin Lanham (NASA	
Goddard Space Flight Center, USA), and James Fraction (NASA Goddard Space Flight Center, USA)	
,	
The DART Autonomy System	104
B. Teresa Tropf (Johns Hopkins University Applied Physics Laboratory),	
Musad Haque (Johns Hopkins University Applied Physics Laboratory),	
Neda Behrooz (Johns Hopkins University Applied Physics Laboratory),	
and Christopher Krupiarz (Johns Hopkins University Applied Physics	
Laboratory)	
A Hybrid Space Architecture for Robust and Resilient Satellite Services	114
Nicolo Boschetti (Johns Hopkins University), Johan Sigholm (Swedish	
Defense University), Mattias Wallen (Swedish Space Corporation), and	
Gregory Falco (Johns Hopkins University)	

Poster abstracts

Development of a Nanosatellite System Modeling Architecture for EIRSAT-1
Sai Krishna Reddy Akarapu (School of Physics, University College
Dublin), Bas Stijnen (School of Mechanical and Materials Engineering,
University College Dubiln), Caimin McKenna (School of Physics,
University College Dublin), David McKeown (School of Mechnical and
Materials Engineering, University College Dublin), David Murphy
(School of Physics, University College Dublin), Jack Reilly (School of
Physics, University College Dublin), Joseph Thompson (School of
Mechanical and Materials Engineering, University College Dublin),
Maeve Doyle (School of Physics, University College Dublin), Ronan Wall
(School of Physics, University College Dublin), Sheila McBreen (School
of Physics, University College Dublin), and Lorraine Hanlon (School of
Physics, University College Dublin)
Coverage-guided State Space Exploration of Autonomous Cyber-Physical Systems
Sanaz Sheikhi (CS department, Stony Brook University) and Stanley Bak
(CS department, Stony Brook University)
(Co department, stony brook anteerstry)
Author Index