2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023)

Vancouver, British Columbia, Canada 18-22 June 2023

Pages 1-371

IEEE Catalog Number: CFP23003-POD **ISBN:**

979-8-3503-0130-4

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP23003-POD
979-8-3503-0130-4
979-8-3503-0129-8
1063-6919

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) CVPR 2023

Table of Contents

Message from the 2023 General and Program Chairs	ccci
2023 Organizing Committee	cccii
2023 Outstanding Reviewers	ccciv
Sponsors	cccv

Poster-Tue-AM

Megahertz Light Steering Without Moving Parts Adithya Pediredla (Dartmouth College; Dartmouth College), Srinivasa G. Narasimhan (Carnegie Mellon University), Maysamreza Chamanzar (Carnegie Mellon University), and Ioannis Gkioulekas (Carnegie Mellon University)	. 1
Robust Dynamic Radiance Fields Yu-Lun Liu (National Taiwan University), Chen Gao (Meta), Andréas Meuleman (KAIST), Hung-Yu Tseng (Meta), Ayush Saraf (Meta), Changil Kim (Meta), Yung-Yu Chuang (National Taiwan University), Johannes Kopf (Meta), and Jia-Bin Huang (Meta; University of Maryland, College Park)	13
DBARF: Deep Bundle-Adjusting Generalizable Neural Radiance Fields	24
VDN-NeRF: Resolving Shape-Radiance Ambiguity via View-Dependence Normalization Bingfan Zhu (Zhejiang University), Yanchao Yang (The University of Hong Kong; Stanford University), Xulong Wang (Zhejiang University), Youyi Zheng (Zhejiang University), and Leonidas Guibas (Stanford University)	35
AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware Training	16

 SeaThru-NeRF: Neural Radiance Fields in Scattering Media	6
 Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields	6
Neural Residual Radiance Fields for Streamably Free-Viewpoint Videos	6
PlenVDB: Memory Efficient VDB-Based Radiance Fields for Fast Training and Rendering	8
Local Implicit Ray Function for Generalizable Radiance Field Representation	7
SurfelNeRF: Neural Surfel Radiance Fields for Online Photorealistic Reconstruction of Indoor Scenes	18
Frequency-Modulated Point Cloud Rendering With Easy Editing	9
HexPlane: A Fast Representation for Dynamic Scenes	0
Differentiable Shadow Mapping for Efficient Inverse Graphics	2
Hybrid Neural Rendering for Large-Scale Scenes With Motion Blur	4

 TensolR: Tensorial Inverse Rendering	55
ShadowNeuS: Neural SDF Reconstruction by Shadow Ray Supervision	75
Realistic Saliency Guided Image Enhancement	36
LightPainter: Interactive Portrait Relighting With Freehand Scribble	€
A Unified Spatial-Angular Structured Light for Single-View Acquisition of Shape and Reflectance)6
Learning Visibility Field for Detailed 3D Human Reconstruction and Relighting	16
Unsupervised Contour Tracking of Live Cells by Mechanical and Cycle Consistency Losses 22 Junbong Jang (KAIST), Kwonmoo Lee (Boston Children's Hospital Harvard Medical School), and Tae-Kyun Kim (KAIST)	27
 NeUDF: Leaning Neural Unsigned Distance Fields With Volume Rendering	37
NeAT: Learning Neural Implicit Surfaces With Arbitrary Topologies From Multi-View Images 24 Xiaoxu Meng (Digital Content Technology Center), Weikai Chen (Digital Content Technology Center), and Bo Yang (Digital Content Technology Center)	18

 ALTO: Alternating Latent Topologies for Implicit 3D Reconstruction	
Controllable Mesh Generation Through Sparse Latent Point Diffusion Models	
Power Bundle Adjustment for Large-Scale 3D Reconstruction	
Neural Pixel Composition for 3D-4D View Synthesis From Multi-Views	
Magic3D: High-Resolution Text-to-3D Content Creation	
3D Video Loops From Asynchronous Input	
High-Fidelity 3D GAN Inversion by Pseudo-Multi-View Optimization	
Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative Radiance Field	
3D GAN Inversion With Facial Symmetry Prior	

StyleIPSB: Identity-Preserving Semantic Basis of StyleGAN for High Fidelity Face Swapping 352 Diqiong Jiang (Zhejiang University, China), Dan Song (Tianjin University, China), Ruofeng Tong (Zhejiang University, China), and Min Tang (Zhejiang University, China)
FFHQ-UV: Normalized Facial UV-Texture Dataset for 3D Face Reconstruction
Robust Model-Based Face Reconstruction Through Weakly-Supervised Outlier Segmentation .372 <i>Chunlu Li (Southeast University; University of Basel), Andreas</i> <i>Morel-Forster (University of Basel), Thomas Vetter (University of</i> <i>Basel), Bernhard Egger (Friedrich-Alexander-Universitat</i> <i>Erlangen-Nürnberg), and Adam Kortylewski (University of Freiburg; Max</i> <i>Planck Institute for Informatics)</i>
Learning Neural Proto-Face Field for Disentangled 3D Face Modeling in the Wild
A Hierarchical Representation Network for Accurate and Detailed Face Reconstruction From In-the-Wild Images
 BlendFields: Few-Shot Example-Driven Facial Modeling
Implicit Neural Head Synthesis via Controllable Local Deformation Fields
DPE: Disentanglement of Pose and Expression for General Video Portrait Editing

 GANHead: Towards Generative Animatable Neural Head Avatars
EDGE: Editable Dance Generation From Music
Blowing in the Wind: CycleNet for Human Cinemagraphs From Still Images
Generating Holistic 3D Human Motion From Speech
Avatars Grow Legs: Generating Smooth Human Motion From Sparse Tracking Inputs With Diffusion Model
Learning Anchor Transformations for 3D Garment Animation
CloSET: Modeling Clothed Humans on Continuous Surface With Explicit Template Decomposition. 501
Hongwen Zhang (Tsinghua University), Siyou Lin (Tsinghua University), Ruizhi Shao (Tsinghua University), Yuxiang Zhang (Tsinghua University), Zerong Zheng (Tsinghua University), Han Huang (OPPO Research Institute), Yandong Guo (OPPO Research Institute), and Yebin Liu (Tsinghua University)
ECON: Explicit Clothed Humans Optimized via Normal Integration

PersonNeRF: Personalized Reconstruction From Photo Collections
3D Human Mesh Estimation From Virtual Markers
Overcoming the Trade-Off Between Accuracy and Plausibility in 3D Hand Shape Reconstruction 544 Ziwei Yu (National University of Singapore), Chen Li (National University of Singapore), Linlin Yang (National University of Singapore), Xiaoxu Zheng (National University of Singapore), Michael Bi Mi (National University of Singapore), Gim Hee Lee (National University of Singapore), and Angela Yao (National University of Singapore)
Recovering 3D Hand Mesh Sequence From a Single Blurry Image: A New Dataset and Temporal Unfolding
MeMaHand: Exploiting Mesh-Mano Interaction for Single Image Two-Hand Reconstruction 564 Congyi Wang (ByteDance), Feida Zhu (ByteDance), and Shilei Wen (ByteDance)
 PLIKS: A Pseudo-Linear Inverse Kinematic Solver for 3D Human Body Estimation
CAMS: CAnonicalized Manipulation Spaces for Category-Level Functional Hand-Object Manipulation Synthesis
Instant-NVR: Instant Neural Volumetric Rendering for Human-Object Interactions From Monocular RGBD Stream

BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
 Human-Art: A Versatile Human-Centric Dataset Bridging Natural and Artificial Scenes
Omnimatte3D: Associating Objects and Their Effects in Unconstrained Monocular Video630 Mohammed Suhail (University of British Columbia; Vector Institute for Al), Erika Lu (Google), Zhengqi Li (Google), Noah Snavely (Google), Leonid Sigal (University of British Columbia; Vector Institute for Al; Canada CIFAR AI Chair), and Forrester Cole (Google)
On the Benefits of 3D Pose and Tracking for Human Action Recognition
Towards Stable Human Pose Estimation via Cross-View Fusion and Foot Stabilization
 Human Pose As Compositional Tokens
PoseExaminer: Automated Testing of Out-of-Distribution Robustness in Human Pose and Shape Estimation
SLOPER4D: A Scene-Aware Dataset for Global 4D Human Pose Estimation in Urban Environments
Yudi Dai (Xiamen University; Xiamen University), Yitai Lin (Xiamen University; Xiamen University), Xiping Lin (Xiamen University; Xiamen University), Chenglu Wen (Xiamen University; Xiamen University), Lan Xu (ShanghaiTech University, China), Hongwei Yi (Max Planck Institute for Intelligent Systems, Germany), Siqi Shen (Xiamen University; Xiamen University), Yuexin Ma (ShanghaiTech University, China), and

Cheng Wang (Xiamen University; Xiamen University)

 Semi-Supervised 2D Human Pose Estimation Driven by Position Inconsistency Pseudo Label Correction Module	3
Human Pose Estimation in Extremely Low-Light Conditions	1
 Flexible-Cm GAN: Towards Precise 3D Dose Prediction in Radiotherapy	5
 DualRefine: Self-Supervised Depth and Pose Estimation Through Iterative Epipolar Sampling and Refinement Toward Equilibrium	ō
A Rotation-Translation-Decoupled Solution for Robust and Efficient Visual-Inertial Initialization	Э
Semidefinite Relaxations for Robust Multiview Triangulation	Э
A Probabilistic Attention Model With Occlusion-Aware Texture Regression for 3D Hand Reconstruction From a Single RGB Image	3
Instant Multi-View Head Capture Through Learnable Registration	3

On the Importance of Accurate Geometry Data for Dense 3D Vision Tasks)
Learning 3D Scene Priors With 2D Supervision	2
 OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic Perception, Reconstruction and Generation	3
OpenScene: 3D Scene Understanding With Open Vocabularies	5
Multi-View Azimuth Stereo via Tangent Space Consistency	5
Progressive Transformation Learning for Leveraging Virtual Images in Training	5
Connecting the Dots: Floorplan Reconstruction Using Two-Level Queries	5

NeRF-Supervised Deep Stereo
Semantic Scene Completion With Cleaner Self
PanelNet: Understanding 360 Indoor Environment via Panel Representation
Implicit View-Time Interpolation of Stereo Videos Using Multi-Plane Disparities and Non-Uniform Coordinates
Depth Estimation From Indoor Panoramas With Neural Scene Representation
NeuralPCI: Spatio-Temporal Neural Field for 3D Point Cloud Multi-Frame Non-Linear Interpolation
RIAV-MVS: Recurrent-Indexing an Asymmetric Volume for Multi-View Stereo
NeuMap: Neural Coordinate Mapping by Auto-Transdecoder for Camera Localization
MACARONS: Mapping and Coverage Anticipation With RGB Online Self-Supervision
vMAP: Vectorised Object Mapping for Neural Field SLAM

Seeing a Rose in Five Thousand Ways
Propagate and Calibrate: Real-Time Passive Non-Line-of-Sight Tracking
Seeing With Sound: Long-range Acoustic Beamforming for Multimodal Scene Understanding . 982 Praneeth Chakravarthula (Princeton University), Jim Aldon D'Souza (Algolux), Ethan Tseng (Princeton University), Joe Bartusek (Princeton University), and Felix Heide (Princeton University; Algolux)
Distilling Focal Knowledge From Imperfect Expert for 3D Object Detection
 BEV-LaneDet: An Efficient 3D Lane Detection Based on Virtual Camera via Key-Points
AShapeFormer: Semantics-Guided Object-Level Active Shape Encoding for 3D Object Detection via Transformers
 Benchmarking Robustness of 3D Object Detection to Common Corruptions

Gaussian Label Distribution Learning for Spherical Image Object Detection	033
Deep Depth Estimation From Thermal Image	043
LidarGait: Benchmarking 3D Gait Recognition With Point Clouds	054
 Generalized UAV Object Detection via Frequency Domain Disentanglement	064
Learning Compact Representations for LiDAR Completion and Generation	074
CXTrack: Improving 3D Point Cloud Tracking With Contextual Information	084
Multispectral Video Semantic Segmentation: A Benchmark Dataset and Baseline	094
LinK: Linear Kernel for LiDAR-Based 3D Perception	105
Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting	116

Curricular Object Manipulation in LiDAR-Based Object Detection
Delivering Arbitrary-Modal Semantic Segmentation
Robust Outlier Rejection for 3D Registration With Variational Bayes
3D Human Keypoints Estimation From Point Clouds in the Wild Without Human Labels 1158 Zhenzhen Weng (Stanford University), Alexander S. Gorban (Waymo), Jingwei Ji (Waymo), Mahyar Najibi (Waymo), Yin Zhou (Waymo), and Dragomir Anguelov (Waymo)
Self-Supervised Pre-Training With Masked Shape Prediction for 3D Scene Understanding 1168 Li Jiang (Max Planck Institute for Informatics, Saarland Informatics Campus), Zetong Yang (CUHK), Shaoshuai Shi (Max Planck Institute for Informatics, Saarland Informatics Campus), Vladislav Golyanik (Max Planck Institute for Informatics, Saarland Informatics Campus), Dengxin Dai (Max Planck Institute for Informatics, Saarland Informatics Campus), and Bernt Schiele (Max Planck Institute for Informatics, Saarland Informatics Campus)
ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding
Open-Vocabulary Point-Cloud Object Detection Without 3D Annotation
FlatFormer: Flattened Window Attention for Efficient Point Cloud Transformer

PointCMP: Contrastive Mask Prediction for Self-Supervised Learning on Point Cloud Videos . 1212 Zhiqiang Shen (Shanghai Jiao Tong University; CloudWa!k), Xiaoxiao Sheng (Shanghai Jiao Tong University), Longguang Wang (Aviation University of Air Force), Yulan Guo (Sun Yat-sen University), Qiong Liu (CloudWa!k), and Xi Zhou (CloudWa!k)
E2PN: Efficient SE(3)-Equivariant Point Network
Poly-PC: A Polyhedral Network for Multiple Point Cloud Tasks at Once
Improving Graph Representation for Point Cloud Segmentation via Attentive Filtering
BUFFER: Balancing Accuracy, Efficiency, and Generalizability in Point Cloud Registration 1255 Sheng Ao (Sun Yat-sen University), Qingyong Hu (University of Oxford), Hanyun Wang (Information Engineering University), Kai Xu (National University of Defense Technology), and Yulan Guo (Sun Yat-sen University)
TopDiG: Class-Agnostic Topological Directional Graph Extraction From Remote Sensing Images
Bingnan Yang (Wuhan University, China), Mi Zhang (Wuhan University, China), Zhan Zhang (Wuhan University, China), Zhili Zhang (Wuhan University, China), and Xiangyun Hu (Wuhan University, China)
Recognizing Rigid Patterns of Unlabeled Point Clouds by Complete and Continuous Isometry Invariants With No False Negatives and No False Positives
Both Style and Distortion Matter: Dual-Path Unsupervised Domain Adaptation for PanoramicSemantic Segmentation1285Xu Zheng (Northeastern University), Jinjing Zhu (AI Thrust, HKUST(GZ)), Yexin Liu (AI Thrust, HKUST(GZ)), Zidong Cao (AI Thrust, HKUST(GZ)), Chong Fu (Northeastern University; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, China), and Lin Wang (AI Thrust, HKUST(GZ); Dept. of CSE, HKUST)
CCuantuMM: Cycle-Consistent Quantum-Hybrid Matching of Multiple Shapes

Enhancing Deformable Local Features by Jointly Learning To Detect and Describe Keypoints 1306 <i>Guilherme Potje (Universidade Federal de Minas Gerais), Felipe Cadar</i> <i>(Universidade Federal de Minas Gerais), André Araujo (Google</i> <i>Research), Renato Martins (Universite de Bourgogne; Universite de</i> <i>Lorraine, LORIA, Inria), and Erickson R. Nascimento (Universidade</i> <i>Federal de Minas Gerais; Microsoft)</i>
Understanding and Improving Features Learned in Deep Functional Maps
 High-Frequency Stereo Matching Network Haoliang Zhao (Guizhou University, China; Ghost-Valley Al Technology, China), Huizhou Zhou (Guangdong University of Technology, China; Ghost-Valley Al Technology, China), Yongjun Zhang (Guizhou University, China), Jie Chen (Peking University, China), Yitong Yang (Guizhou University, China), and Yong Zhao (Peking University, China; Ghost-Valley Al Technology, China)
Rethinking Optical Flow From Geometric Matching Consistent Perspective
Efficient Robust Principal Component Analysis via Block Krylov Iteration and CUR Decomposition
VectorFloorSeg: Two-Stream Graph Attention Network for Vectorized Roughcast Floorplan Segmentation
TBP-Former: Learning Temporal Bird's-Eye-View Pyramid for Joint Perception and Prediction in Vision-Centric Autonomous Driving
Implicit Occupancy Flow Fields for Perception and Prediction in Self-Driving

 UniSim: A Neural Closed-Loop Sensor Simulator
 FEND: A Future Enhanced Distribution-Aware Contrastive Learning Framework for Long-Tail Trajectory Prediction
EqMotion: Equivariant Multi-Agent Motion Prediction With Invariant Interaction Reasoning 1410 Chenxin Xu (Shanghai Jiao Tong University; National University of Singapore), Robby T. Tan (National University of Singapore), Yuhong Tan (Shanghai Jiao Tong University), Siheng Chen (Shanghai Jiao Tong University; Shanghai Al Laboratory), Yu Guang Wang (Shanghai Jiao Tong University), Xinchao Wang (National University of Singapore), and Yanfeng Wang (Shanghai Al Laboratory; Shanghai Jiao Tong University)
Lookahead Diffusion Probabilistic Models for Refining Mean Estimation
Neural Volumetric Memory for Visual Locomotion Control
Gazeformer: Scalable, Effective and Fast Prediction of Goal-Directed Human Attention 1441 Sounak Mondal (Stony Brook University), Zhibo Yang (Stony Brook University; Waymo LLC), Seoyoung Ahn (Stony Brook University), Dimitris Samaras (Stony Brook University), Gregory Zelinsky (Stony Brook University), and Minh Hoai (Stony Brook University; VinAl Research)
DrapeNet: Garment Generation and Self-Supervised Draping
Tracking Multiple Deformable Objects in Egocentric Videos

Good Is Bad: Causality Inspired Cloth-Debiasing for Cloth-Changing Person Re-Identification	472
Zhengwei Yang (National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence; Wuhan University;	
Hubei Key Laboratory of Multimedia and Network Communication	
Multimedia Software. Institute of Artificial Intelligence: Wuhan	
University; Hubei Key Laboratory of Multimedia and Network	
Communication Engineering), Xian Zhong (Wuhan University of	
Technology), Yu Wu (National Engineering Research Center for Multimedia Cofficients, Institute of Artificial Intelligences With an	
Multimedia Software, institute of Artificial Intelligence; wunan University) and Zheng Wang (National Engineering Research Center for	
Multimedia Software, Institute of Artificial Intelligence; Wuhan	
University; Hubei Key Laboratory of Multimedia and Network	
Communication Engineering)	
Micron-BERT: BERT-Based Facial Micro-Expression Recognition	482
Xuan-Bac Nguyen (University of Arkansas, USA), Chi Nhan Duong	
(Concordia University, Canada), Xin Li (West Virginia University, USA), Susan Cauch (University of Arkansas, USA), Han Sook See	
(University of Arkansas, USA), and Khoa Luu (University of Arkansas	
USA)	
MARLIN: Masked Autoencoder for Facial Video Representation LearnINg	493
 StyleSync: High-Fidelity Generalized and Personalized Lip Sync in Style-Based Generator 19 Jiazhi Guan (Department of Computer Vision Technology (VIS), Baidu Inc.; Tsinghua University), Zhanwang Zhang (Department of Computer Vision Technology (VIS), Baidu Inc.), Hang Zhou (Department of Computer Vision Technology (VIS), Baidu Inc.), Tianshu Hu (Department of Computer Vision Technology (VIS), Baidu Inc.), Kaisiyuan Wang (The University of Sydney), Dongliang He (Department of Computer Vision Technology (VIS), Baidu Inc.), Haocheng Feng (Department of Computer Vision Technology (VIS), Baidu Inc.), Jingtuo Liu (Department of Computer Vision Technology (VIS), Baidu Inc.), Errui Ding (Department of Computer Vision Technology (VIS), Baidu Inc.), Ziwei Liu (Nanyang Technological University), and Jingdong Wang (Department of Computer Vision Technology (VIS), Baidu Inc.) 	505
Realimpact: A Dataset of Impact Sound Fields for Real Objects	516
STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition	526

Progressive Spatio-Temporal Alignment for Efficient Event-Based Motion Estimation	537
Event-Based Shape From Polarization	547
Learning Spatial-Temporal Implicit Neural Representations for Event-Guided Video Super-Resolution	557
BiFormer: Learning Bilateral Motion Estimation via Bilateral Transformer for 4K Video Frame Interpolation	568
 A Unified Pyramid Recurrent Network for Video Frame Interpolation	578
Event-Based Blurry Frame Interpolation Under Blind Exposure	588
FlowFormer++: Masked Cost Volume Autoencoding for Pretraining Optical Flow Estimation . 1 Xiaoyu Shi (CUHK MMLab; NVIDIA AI Technology Center), Zhaoyang Huang (CUHK MMLab; NVIDIA AI Technology Center), Dasong Li (CUHK MMLab), Manyuan Zhang (CUHK MMLab), Ka Chun Cheung (NVIDIA AI Technology Center), Simon See (NVIDIA AI Technology Center), Hongwei Qin (SenseTime Research), Jifeng Dai (Tsinghua University), and Hongsheng Li (CUHK MMLab; CPII under InnoHK)	599
POTTER: Pooling Attention Transformer for Efficient Human Mesh Recovery	611
 Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo	621

On the Difficulty of Unpaired Infrared-to-Visible Video Translation: Fine-Grained Content-Rich Patches Transfer Zhenjie Yu (Beijing Institute of Technology), Shuang Li (Beijing Institute of Technology), Yirui Shen (Beijing Institute of Technology), Chi Harold Liu (Beijing Institute of Technology), and Shuigen Wang (Yantai IRay Technologies Lt. Co.)	1631
Thermal Spread Functions (TSF): Physics-Guided Material Classification Aniket Dashpute (Electrical and Computer Engineering; Rice University), Vishwanath Saragadam (Rice University), Emma Alexander (Northwestern University), Florian Willomitzer (University of Arizona), Aggelos Katsaggelos (Electrical and Computer Engineering), Ashok Veeraraghavan (Rice University), and Oliver Cossairt (Electrical and Computer Engineering; Northwestern University)	1641
Better "CMOS" Produces Clearer Images: Learning Space-Variant Blur Estimation for Blind Image Super-Resolution Xuhai Chen (Zhejiang University), Jiangning Zhang (Youtu Lab, Tencent), Chao Xu (Zhejiang University), Yabiao Wang (Youtu Lab, Tencent), Chengjie Wang (Youtu Lab, Tencent), and Yong Liu (Zhejiang University)	1651
Learning Semantic-Aware Knowledge Guidance for Low-Light Image Enhancement Yuhui Wu (University of Electronic Science and Technology of China, China), Chen Pan (University of Electronic Science and Technology of China, China), Guoqing Wang (University of Electronic Science and Technology of China, China), Yang Yang (University of Electronic Science and Technology of China, China), Jiwei Wei (University of Electronic Science and Technology of China, China), China), Chongyi Li (Nanyang Technological University, Singapore), and Heng Tao Shen (University of Electronic Science and Technology of China, China)	1662
CutMIB: Boosting Light Field Super-Resolution via Multi-View Image Blending Zeyu Xiao (University of Science and Technology of China), Yutong Liu (University of Science and Technology of China), Ruisheng Gao (University of Science and Technology of China), and Zhiwei Xiong (University of Science and Technology of China)	1672
sRGB Real Noise Synthesizing With Neighboring Correlation-Aware Noise Model Zixuan Fu (Nanyang Technological University, Singapore), Lanqing Guo (Nanyang Technological University, Singapore), and Bihan Wen (Nanyang Technological University, Singapore)	1683
Masked Image Training for Generalizable Deep Image Denoising Haoyu Chen (The Hong Kong University of Science and Technology, Guangzhou), Jinjin Gu (Shanghai Al Lab; The University of Sydney), Yihao Liu (Shanghai Al Lab; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Salma Abdel Magid (The Hong Kong University of Science and Technology), Chao Dong (Shanghai Al Lab; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Qiong Wang (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Hanspeter Pfister (Harvard University), and Lei Zhu (Shanghai Al Lab; The Hong Kong University of Science and Technology)	1692

DR2: Diffusion-Based Robust Degradation Remover for Blind Face Restoration
Learning Distortion Invariant Representation for Image Restoration From a Causality Perspective
Perception-Oriented Single Image Super-Resolution Using Optimal Objective Estimation 1725 Seung Ho Park (Seoul National University, Korea; Samsung Electronics, Korea), Young Su Moon (Samsung Electronics, Korea), and Nam Ik Cho (Seoul National University, Korea)
Catch Missing Details: Image Reconstruction With Frequency Augmented Variational Autoencoder
MD-VQA: Multi-Dimensional Quality Assessment for UGC Live Videos
 CABM: Content-Aware Bit Mapping for Single Image Super-Resolution Network With Large Input 1756 Senmao Tian (Beijing Jiaotong University; OPPO Research Institute), Ming Lu (Intel Labs China), Jiaming Liu (OPPO Research Institute; Peking University), Yandong Guo (Beijing University of Posts and
Telecommunications), Yurong Chen (Intel Labs China), and Shunli Zhang (Beijing Jiaotong University)
Ann-Christin Woerl (Johannes Gutenberg University Mainz, Germany), Jan Disselhoff (Johannes Gutenberg University Mainz, Germany), and Michael Wand (Johannes Gutenberg University Mainz, Germany)
Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution

Deep Arbitrary-Scale Image Super-Resolution via Scale-Equivariance Pursuit
CiaoSR: Continuous Implicit Attention-in-Attention Network for Arbitrary-Scale Image Super-Resolution
Multiplicative Fourier Level of Detail
Document Image Shadow Removal Guided by Color-Aware Background
StyleRes: Transforming the Residuals for Real Image Editing With StyleGAN
TopNet: Transformer-Based Object Placement Network for Image Compositing
VecFontSDF: Learning To Reconstruct and Synthesize High-Quality Vector Fonts via Signed
Zeqing Xia (Peking University, China; Baidu Inc.), Bojun Xiong (Peking University, China), and Zhouhui Lian (Peking University, China)
CF-Font: Content Fusion for Few-Shot Font Generation
SIEDOB: Semantic Image Editing by Disentangling Object and Background
MaskSketch: Unpaired Structure-Guided Masked Image Generation

Text2Scene: Text-Driven Indoor Scene Stylization With Part-Aware Details	1890
Uncovering the Disentanglement Capability in Text-to-Image Diffusion Models	1900
VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models	1911
Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation	1921
Multi-Concept Customization of Text-to-Image Diffusion	1931
Unifying Layout Generation With a Decoupled Diffusion Model	1942
BBDM: Image-to-Image Translation With Brownian Bridge Diffusion Models	1952
Towards Practical Plug-and-Play Diffusion Models	1962
Post-Training Quantization on Diffusion Models	1972
DiffTalk: Crafting Diffusion Models for Generalized Audio-Driven Portraits Animation	1982
Mask-Guided Matting in the Wild	1992

Not All Image Regions Matter: Masked Vector Quantization for Autoregressive Image Generation 2002
Mengqi Huang (University of Science and Technology of China, China), Zhendong Mao (University of Science and Technology of China, China; Institute of Artificial intelligence, Hefei Comprehensive National Science Center, China), Quan Wang (Beijing University of Posts and Telecommunications, China), and Yongdong Zhang (University of Science and Technology of China, China; Institute of Artificial intelligence, Hefei Comprehensive National Science Center, China)
Compression-Aware Video Super-Resolution
Neural Rate Estimator and Unsupervised Learning for Efficient Distributed Image Analytics in Split-DNN Models
DNeRV: Modeling Inherent Dynamics via Difference Neural Representation for Videos 2031 Qi Zhao (Nanjing University), M. Salman Asif (Nanjing University), and Zhan Ma (Nanjing University)
Polynomial Implicit Neural Representations for Large Diverse Datasets
Learning Decorrelated Representations Efficiently Using Fast Fourier Transform
SparseViT: Revisiting Activation Sparsity for Efficient High-Resolution Vision Transformer 2061 Xuanyao Chen (Shanghai Qi Zhi Institute; Fudan University), Zhijian Liu (MIT), Haotian Tang (MIT), Li Yi (Shanghai Qi Zhi Institute; Tsinghua University), Hang Zhao (Shanghai Qi Zhi Institute; Tsinghua University), and Song Han (MIT)
N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution
Slide-Transformer: Hierarchical Vision Transformer With Local Self-Attention

Joint Token Pruning and Squeezing Towards More Aggressive Compression of Vision Transformers	2092
Siyuan Wei (MEGVII Technology), Tianzhu Ye (Tsinghua University), Shen Zhang (MEGVII Technology), Yao Tang (MEGVII Technology), and Jiajun Liang (MEGVII Technology)	
Top-Down Visual Attention From Analysis by Synthesis Baifeng Shi (UC Berkeley), Trevor Darrell (UC Berkeley), and Xin Wang (Microsoft Research)	2102
Probing Neural Representations of Scene Perception in a Hippocampally Dependent Task Us Artificial Neural Networks	ing 2113
Markus Frey (NTNU, Norway; Max-Planck-Insitute for Human Cognitive and Brain Sciences, Germany), Christian F. Doeller (NTNU, Norway; Max-Planck-Insitute for Human Cognitive and Brain Sciences, Germany), and Caswell Barry (UCL, United Kingdom)	
Masked Image Modeling With Local Multi-Scale Reconstruction Haoqing Wang (Peking University), Yehui Tang (Peking University; Huawei Noah's Ark Lab), Yunhe Wang (Huawei Noah's Ark Lab), Jianyuan Guo (Huawei Noah's Ark Lab), Zhi-Hong Deng (Peking University), and Kai Han (Huawei Noah's Ark Lab)	2122
Siamese Image Modeling for Self-Supervised Vision Representation Learning Chenxin Tao (Tsinghua University), Xizhou Zhu (SenseTime Research; Shanghai Artificial Intelligence Laboratory), Weijie Su (University of Science and Technology of China), Gao Huang (Tsinghua University), Bin Li (University of Science and Technology of China), Jie Zhou (Tsinghua University), Yu Qiao (Shanghai Artificial Intelligence Laboratory), Xiaogang Wang (The Chinese University of Hong Kong), and Jifeng Dai (Tsinghua University; Shanghai Artificial Intelligence Laboratory)	2132
MAGE: MAsked Generative Encoder To Unify Representation Learning and Image Synthesis . <i>Tianhong Li (MIT CSAIL), Huiwen Chang (Google Research), Shlok Mishra</i> <i>(University of Maryland), Han Zhang (Google Research), Dina Katabi</i> <i>(MIT CSAIL), and Dilip Krishnan (Google Research)</i>	2142
Diverse Embedding Expansion Network and Low-Light Cross-Modality Benchmark for Visible-Infrared Person Re-Identification Yukang Zhang (Xiamen University, China) and Hanzi Wang (Xiamen University, China; Shanghai Artificial Intelligence Laboratory, China)	2153
DistilPose: Tokenized Pose Regression With Heatmap Distillation Suhang Ye (Xiamen University), Yingyi Zhang (Tencent Youtu Lab), Jie Hu (Xiamen University), Liujuan Cao (Xiamen University), Shengchuan Zhang (Xiamen University), Lei Shen (Tencent Youtu Lab), Jun Wang (Tencent Youtu Lab), Shouhong Ding (Tencent WeChat Pay Lab), and Rongrong Ji (Xiamen University)	2163
Graph Transformer GANs for Graph-Constrained House Generation Hao Tang (CVL, ETH Zurich), Zhenyu Zhang (Tencent Youtu Lab), Humphrey Shi (U of Oregon & UIUC & Picsart Al Research), Bo Li (Tencent Youtu Lab), Ling Shao (UCAS-Terminus Al Lab, UCAS), Nicu Sebe (University of Trento), Radu Timofte (CVL, ETH Zurich; University of Wurzburg), and Luc Van Gool (CVL, ETH Zurich; KU Leuven)	2173

Automatic High Resolution Wire Segmentation and Removal	3
Tree Instance Segmentation With Temporal Contour Graph	13
Dual-Path Adaptation From Image to Video Transformers	13
Rethinking Video ViTs: Sparse Video Tubes for Joint Image and Video Learning	4
Modeling Video As Stochastic Processes for Fine-Grained Video Representation Learning 222 Heng Zhang (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods), Daqing Liu (JD.com), Qi Zheng (The University of Sydney), and Bing Su (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods)	25
Masked Motion Encoding for Self-Supervised Video Representation Learning	:5
Boosting Video Object Segmentation via Space-Time Correspondence Learning	-6
Two-Shot Video Object Segmentation	57

Look Before You Match: Instance Understanding Matters in Video Object Segmentation 2268 Junke Wang (Fudan University), Dongdong Chen (Microsoft Cloud + AI), Zuxuan Wu (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing), Chong Luo (Microsoft Research Asia), Chuanxin Tang (Microsoft Research Asia), Xiyang Dai (Microsoft Cloud + AI), Yucheng Zhao (Microsoft Research Asia), Yujia Xie (Microsoft Cloud + AI), Lu Yuan (Microsoft Cloud + AI), and Yu-Gang Jiang (Fudan University; Shanghai Collaborative Innovation Center of Intelligent Visual Computing)
Spatial-Then-Temporal Self-Supervised Learning for Video Correspondence
Few-Shot Referring Relationships in Videos
Vision Transformers Are Parameter-Efficient Audio-Visual Learners
Egocentric Video Task Translation
 QPGesture: Quantization-Based and Phase-Guided Motion Matching for Natural Speech-Driven Gesture Generation
Co-Speech Gesture Synthesis by Reinforcement Learning With Contrastive Pre-Trained Rewards 2331 Mingyang Sun (Dalian University of Technology, China), Mengchen Zhao (Noah's Ark Lab, China), Yaqing Hou (Dalian University of Technology, China), Minglei Li (Huawei Cloud Computing Technologies Co., Ltd, China), Huang Xu (Huawei Cloud Computing Technologies Co., Ltd, China), Songcen Xu (Noah's Ark Lab, China), and Jianye Hao (Noah's Ark Lab, China; Tianjin University, China)
TimeBalance: Temporally-Invariant and Temporally-Distinctive Video Representations for Semi-Supervised Action Recognition
How Can Objects Help Action Recognition?

Actionlet-Dependent Contrastive Learning for Unsupervised Skeleton-Based Action Recognition	363
Lilang Lin (Wangxuan Institute of Computer Technology, Peking University, China), Jiahang Zhang (Wangxuan Institute of Computer Technology, Peking University, China), and Jiaying Liu (Wangxuan Institute of Computer Technology, Peking University, China)	
Decomposed Cross-Modal Distillation for RGB-Based Temporal Action Detection	373
ASPnet: Action Segmentation With Shared-Private Representation of Multiple Data Sources . 23 Beatrice van Amsterdam (Wellcome/EPSRC Centre for Interventional and Surgical Sciences; Medtronic plc), Abdolrahim Kadkhodamohammadi (Medtronic plc), Imanol Luengo (Medtronic plc), and Danail Stoyanov (Wellcome/EPSRC Centre for InteMedtronic plcrventional and Surgical Sciences; Medtronic plc)	384
 Proposal-Based Multiple Instance Learning for Weakly-Supervised Temporal Action Localization	394
LOGO: A Long-Form Video Dataset for Group Action Quality Assessment	105
Use Your Head: Improving Long-Tail Video Recognition	115
Conditional Generation of Audio From Video via Foley Analogies	126

Weakly Supervised Video Representation Learning With Unaligned Text for Sequential Videos 2437

Sixun Dong (ShanghaiTech University), Huazhang Hu (ShanghaiTech University), Dongze Lian (ShanghaiTech University; National University of Singapore), Weixin Luo (Meituan), Yicheng Qian (ShanghaiTech University), and Shenghua Gao (ShanghaiTech University; Shanghai Engineering Research Center of Intelligent Vision and Imaging; Shanghai Engineering Research Center of Energy Efficient and Custom AllC)	
You Can Ground Earlier Than See: An Effective and Efficient Pipeline for Temporal Sentence Grounding in Compressed Videos Xiang Fang (Huazhong University of Science and Technology), Daizong Liu (Peking University), Pan Zhou (Huazhong University of Science and Technology), and Guoshun Nan (Beijing University of Posts and Telecommunications)	2448
Connecting Vision and Language With Video Localized Narratives Paul Voigtlaender (Google Research), Soravit Changpinyo (Google Research), Jordi Pont-Tuset (Google Research), Radu Soricut (Google Research), and Vittorio Ferrari (Google Research)	2461
 Video-Text As Game Players: Hierarchical Banzhaf Interaction for Cross-Modal Representation Learning Peng Jin (Peking University, China), Jinfa Huang (Peking University, China), Pengfei Xiong (Shopee, China), Shangxuan Tian (Shopee, China), Chang Liu (Tsinghua University), Xiangyang Ji (Tsinghua University), Li Yuan (Peking University, China; Peng Cheng Laboratory), and Jie Chen (Peking University, China; Peng Cheng Laboratory, China) 	2472
Aligning Step-by-Step Instructional Diagrams to Video Demonstrations Jiahao Zhang (The Australian National University), Anoop Cherian (Mitsubishi Electric Research Labs), Yanbin Liu (The Australian National University), Yizhak Ben-Shabat (The Australian National University; Technion Israel Institute of Technology), Cristian Rodriguez (The Australian Institute for Machine Learning), and Stephen Gould (The Australian National University)	2483
Make-a-Story: Visual Memory Conditioned Consistent Story Generation Tanzila Rahman (University of British Columbia; Vector Institute for AI), Hsin-Ying Lee (Snap Inc.), Jian Ren (Snap Inc.), Sergey Tulyakov (Snap Inc.), Shweta Mahajan (University of British Columbia; Vector Institute for AI), and Leonid Sigal (University of British Columbia; Vector Institute for AI; Canada CIFAR AI Chair)	2493
Test of Time: Instilling Video-Language Models With a Sense of Time Piyush Bagad (University of Amsterdam), Makarand Tapaswi (University of Amsterdam), and Cees G. M. Snoek (University of Amsterdam)	2503
How You Feelin'? Learning Emotions and Mental States in Movie Scenes Dhruv Srivastava (CVIT, IIIT Hyderabad, India), Aditya Kumar Singh (CVIT, IIIT Hyderabad, India), and Makarand Tapaswi (CVIT, IIIT Hyderabad, India)	2517

Continuous Sign Language Recognition With Correlation Network	2529
DIP: Dual Incongruity Perceiving Network for Sarcasm Detection	2540
Gloss Attention for Gloss-Free Sign Language Translation	2551
Object-Goal Visual Navigation via Effective Exploration of Relations Among Historical Navigation States	2563
Behavioral Analysis of Vision-and-Language Navigation Agents	2574
 KERM: Knowledge Enhanced Reasoning for Vision-and-Language Navigation	2583
Where Is My Wallet? Modeling Object Proposal Sets for Egocentric Visual Query Localization. 2 Mengmeng Xu (Meta AI; KAUST, Saudi Arabia), Yanghao Li (Meta AI), Cheng-Yang Fu (Meta AI), Bernard Ghanem (KAUST, Saudi Arabia), Tao Xiang (Meta AI), and Juan-Manuel Pérez-Rúa (Meta AI)	2593
Efficient Multimodal Fusion via Interactive Prompting	2604
NS3D: Neuro-Symbolic Grounding of 3D Objects and Relations	2614

Dynamic Inference With Grounding Based Vision and Language Models
Improving Commonsense in Vision-Language Models via Knowledge Graph Riddles
 S3C: Semi-Supervised VQA Natural Language Explanation via Self-Critical Learning
 Teaching Structured Vision & Language Concepts to Vision & Language Models
 FAME-ViL: Multi-Tasking Vision-Language Model for Heterogeneous Fashion Tasks
RefCLIP: A Universal Teacher for Weakly Supervised Referring Expression Comprehension 2681 Lei Jin (Xiamen University, P.R. China.; Xiamen University, P.R. China.), Gen Luo (Xiamen University, P.R. China.), Yiyi Zhou (Xiamen University, P.R. China.; Xiamen University, P.R. China.), Xiaoshuai Sun (Xiamen University, P.R. China.; Xiamen University, P.R. China.), Guannan Jiang (Intelligent Manufacturing Department, Contemporary Amperex Technology Co. Limited (CATL)), Annan Shu (Intelligent Manufacturing Department, Contemporary Amperex Technology Co. Limited (CATL)), and Rongrong Ji (Xiamen University, P.R. China.; Xiamen University, P.R. China.)

Uni-Perceiver v2: A Generalist Model for Large-Scale Vision and Vision-Language Tasks 2691 Hao Li (The Chinese University of Hong Kong), Jinguo Zhu (Xi'an Jiaotong University), Xiaohu Jiang (Tsinghua University), Xizhou Zhu (Tsinghua University; Shanghai Artificial Intelligence Laboratory), Hongsheng Li (The Chinese University of Hong Kong), Chun Yuan (Xi'an Jiaotong University), Xiaohua Wang (SenseTime Research), Yu Qiao (Shanghai Artificial Intelligence Laboratory), Xiaogang Wang (The Chinese University of Hong Kong), Wenhai Wang (Shanghai Artificial Intelligence Laboratory), and Jifeng Dai (Tsinghua University; Shanghai Artificial Intelligence Laboratory)
Learning From Unique Perspectives: User-Aware Saliency Modeling
CRAFT: Concept Recursive Activation FacTorization for Explainability
Doubly Right Object Recognition: A Why Prompt for Visual Rationales
 Sketch2Saliency: Learning To Detect Salient Objects From Human Drawings
PIP-Net: Patch-Based Intuitive Prototypes for Interpretable Image Classification

Photo Pre-Training, but for Sketch	754
 CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained or Not	765
iCLIP: Bridging Image Classification and Contrastive Language-Image Pre-Training for Visual Recognition	776
(Microsoft Research Asia), Zheng Zhang (Microsoft Research Asia), Houwen Peng (Microsoft Research Asia), Zhuliang Yao (Tsinghua University; Microsoft Research Asia), Zhenda Xie (Tsinghua University; Microsoft Research Asia), Han Hu (Microsoft Research Asia), and Baining Guo (Microsoft Research Asia)	
Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval 27 Ding Jiang (Wuhan University, China) and Mang Ye (Wuhan University, China; Hubei Luojia Laboratory, China)	787
Multi-Modal Representation Learning With Text-Driven Soft Masks	798
Texts as Images in Prompt Tuning for Multi-Label Image Recognition	808
 Reproducible Scaling Laws for Contrastive Language-Image Learning	818

Multilateral Semantic Relations Modeling for Image Text Retrieval
SmallCap: Lightweight Image Captioning Prompted With Retrieval Augmentation
Probing Sentiment-Oriented Pre-Training Inspired by Human Sentiment Perception Mechanism 2850
Tinglei Feng (Nankai University, China), Jiaxuan Liu (Nankai University, China), and Jufeng Yang (Nankai University, China)
Prefix Conditioning Unifies Language and Label Supervision
Crossing the Gap: Domain Generalization for Image Captioning
A Bag-of-Prototypes Representation for Dataset-Level Applications
CrowdCLIP: Unsupervised Crowd Counting via Vision-Language Model
D2Former: Jointly Learning Hierarchical Detectors and Contextual Descriptors via Agent-Based Transformers

Learning To Generate Language-Supervised and Open-Vocabulary Scene Graph Using Pre-Trained Visual-Semantic Space
Relational Context Learning for Human-Object Interaction Detection
Learning Open-Vocabulary Semantic Segmentation Models From Natural Language Supervision 2935
Jilan Xu (Fudan University; Shanghai Al Laboratory), Junlin Hou (Fudan University), Yuejie Zhang (Fudan University), Rui Feng (Fudan University), Yi Wang (Shanghai Al Laboratory), Yu Qiao (Shanghai Al Laboratory), and Weidi Xie (Shanghai Al Laboratory; Shanghai Jiao Tong University)
Side Adapter Network for Open-Vocabulary Semantic Segmentation
Open-Vocabulary Panoptic Segmentation With Text-to-Image Diffusion Models
IFSeg: Image-Free Semantic Segmentation via Vision-Language Model
PartManip: Learning Cross-Category Generalizable Part Manipulation Policy From Point Cloud Observations

OneFormer: One Transformer To Rule Universal Image Segmentation	989
 Delving Into Shape-Aware Zero-Shot Semantic Segmentation	999
CoMFormer: Continual Learning in Semantic and Panoptic Segmentation	010
Learning To Segment Every Referring Object Point by Point	021
Unsupervised Continual Semantic Adaptation Through Neural Rendering	031
Mask DINO: Towards a Unified Transformer-Based Framework for Object Detection and Segmentation	041
Transformer Scale Gate for Semantic Segmentation	051

Style Projected Clustering for Domain Generalized Semantic Segmentation
Rethinking Few-Shot Medical Segmentation: A Vector Quantization View
Continual Semantic Segmentation With Automatic Memory Sample Selection
Token Contrast for Weakly-Supervised Semantic Segmentation
Multi-Granularity Archaeological Dating of Chinese Bronze Dings Based on a Knowledge-Guided Relation Graph
Hunting Sparsity: Density-Guided Contrastive Learning for Semi-Supervised Semantic Segmentation
Cut and Learn for Unsupervised Object Detection and Instance Segmentation
Extracting Class Activation Maps From Non-Discriminative Features As Well
BoxTeacher: Exploring High-Quality Pseudo Labels for Weakly Supervised Instance Segmentation

 Hierarchical Fine-Grained Image Forgery Detection and Localization	55
Towards Professional Level Crowd Annotation of Expert Domain Data	66
Unsupervised Object Localization: Observing the Background To Discover Objects	76
Semi-Supervised Learning Made Simple With Self-Supervised Clustering	87
Unbalanced Optimal Transport: A Unified Framework for Object Detection	98
DiGeo: Discriminative Geometry-Aware Learning for Generalized Few-Shot Object Detection 3208 Jiawei Ma (Columbia University), Yulei Niu (Columbia University), Jincheng Xu (Columbia University), Shiyuan Huang (Columbia University), Guangxing Han (Columbia University), and Shih-Fu Chang (Columbia University)	
CLIP the Gap: A Single Domain Generalization Approach for Object Detection	219
Unknown Sniffer for Object Detection: Don't Turn a Blind Eye to Unknown Objects	230
Consistent-Teacher: Towards Reducing Inconsistent Pseudo-Targets in Semi-Supervised Object Detection	240

Optimal Proposal Learning for Deployable End-to-End Pedestrian Detection
 AsyFOD: An Asymmetric Adaptation Paradigm for Few-Shot Domain Adaptive Object Detection 3261 Yipeng Gao (Sun Yat-sen University, China; Ministry of Education, China), Kun-Yu Lin (Sun Yat-sen University, China; Ministry of Education, China), Junkai Yan (Sun Yat-sen University, China; Ministry of Education, China), Yaowei Wang (Pengcheng Lab.), and Wei-Shi Zheng (Sun Yat-sen University, China; Pengcheng Lab.; Ministry of Education, China)
 Where Is My Spot? Few-Shot Image Generation via Latent Subspace Optimization
Uncertainty-Aware Optimal Transport for Semantically Coherent Out-of-DistributionDetectionStan Lu (University of Science and Technology of China), Kai Zhu(University of Science and Technology of China), Wei Zhai (Universityof Science and Technology of China), Kecheng Zheng (Ant Group), andYang Cao (University of Science and Technology of China; Institute ofArtificial Intelligence, Hefei Comprehensive National Science Center)
MAESTER: Masked Autoencoder Guided Segmentation at Pixel Resolution for Accurate, Self-Supervised Subcellular Structure Recognition
Orthogonal Annotation Benefits Barely-Supervised Medical Image Segmentation

RepMode: Learning to Re-Parameterize Diverse Experts for Subcellular Structure Prediction 3312 Donghao Zhou (Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences; The Chinese University of Hong Kong), Chunbin Gu (The Chinese University of Hong Kong), Junde Xu (Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences; The Chinese University of Hong Kong), Furui Liu (Zhejiang Lab), Qiong Wang (Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Guangyong Chen (Zhejiang Lab), and Pheng-Ann Heng (Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences)
Topology-Guided Multi-Class Cell Context Generation for Digital Pathology
Dynamic Graph Enhanced Contrastive Learning for Chest X-Ray Report Generation
Benchmarking Self-Supervised Learning on Diverse Pathology Datasets
Multiple Instance Learning via Iterative Self-Paced Supervised Contrastive Learning
Learning Expressive Prompting With Residuals for Vision Transformers

Detection of Out-of-Distribution Samples Using Binary Neuron Activation Patterns
Decoupling MaxLogit for Out-of-Distribution Detection
 Exploring Structured Semantic Prior for Multi Label Recognition With Incomplete Labels 3398 Zixuan Ding (Xidian University; Hangzhou Zhuoxi Institute of Brain and Intelligence), Ao Wang (Tsinghua University; BNRist; Hangzhou Zhuoxi Institute of Brain and Intelligence), Hui Chen (Tsinghua University; BNRist), Qiang Zhang (Xidian University), Pengzhang Liu (JD.com), Yongjun Bao (JD.com), Weipeng Yan (JD.com), and Jungong Han (Department of Computer Science, the University of Sheffield, UK; Centre for Machine Intelligence, the University of Sheffield, UK)
Bridging the Gap Between Model Explanations in Partially Annotated Multi-Label Classification
DivClust: Controlling Diversity in Deep Clustering
Deep Semi-Supervised Metric Learning With Mixed Label Propagation
Leveraging Inter-Rater Agreement for Classification in the Presence of Noisy Labels
Modeling Inter-Class and Intra-Class Constraints in Novel Class Discovery
Bootstrap Your Own Prior: Towards Distribution-Agnostic Novel Class Discovery

Towards Realistic Long-Tailed Semi-Supervised Learning: Consistency Is All You Need
PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for Generalized Novel Category Discovery
Probabilistic Knowledge Distillation of Face Ensembles
Class-Conditional Sharpness-Aware Minimization for Deep Long-Tailed Recognition
Promoting Semantic Connectivity: Dual Nearest Neighbors Contrastive Learning for Unsupervised Domain Generalization
Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection
MOT: Masked Optimal Transport for Partial Domain Adaptation
TOPLight: Lightweight Neural Networks With Task-Oriented Pretraining for Visible-Infrared Recognition 3541
Hao Yu (Nanjing University of Information Science and Technology, China), Xu Cheng (Nanjing University of Information Science and Technology, China), and Wei Peng (Stanford University)
OSAN: A One-Stage Alignment Network To Unify Multimodal Alignment and Unsupervised Domain Adaptation
Ye Liu (Tencent Youtu Lab), Lingfeng Qiao (Tencent Youtu Lab), Changchong Lu (Tencent Youtu Lab), Di Yin (Tencent Youtu Lab), Chen Lin (Tencent Youtu Lab), Haoyuan Peng (Tencent Youtu Lab), and Bo Ren (Tencent Youtu Lab)

Patch-Mix Transformer for Unsupervised Domain Adaptation: A Game Perspective	I
ARO-Net: Learning Implicit Fields From Anchored Radial Observations	2
A Probabilistic Framework for Lifelong Test-Time Adaptation	2
Distribution Shift Inversion for Out-of-Distribution Prediction	2
Learning Joint Latent Space EBM Prior Model for Multi-Layer Generator	3
A Data-Based Perspective on Transfer Learning	3
A Meta-Learning Approach to Predicting Performance and Data Requirements	3
Guided Recommendation for Model Fine-Tuning	3
EMT-NAS:Transferring Architectural Knowledge Between Tasks From Different Datasets 3643 Peng Liao (Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, ECUST, China), Yaochu Jin (Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, ECUST, China; Bielefeld University, Germany), and Wenli Du (Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, ECUST, China)	3

 AttriCLIP: A Non-Incremental Learner for Incremental Knowledge Learning
Batch Model Consolidation: A Multi-Task Model Consolidation Framework
SmartAssign: Learning a Smart Knowledge Assignment Strategy for Deraining and Desnowing 3677
Yinglong Wang (Huawei Noah's Ark Lab), Chao Ma (Al Institute, Shanghai Jiao Tong University), and Jianzhuang Liu (Huawei Noah's Ark Lab)
TinyMIM: An Empirical Study of Distilling MIM Pre-Trained Models
Computationally Budgeted Continual Learning: What Does Matter?
GradMA: A Gradient-Memory-Based Accelerated Federated Learning With Alleviated Catastrophic Forgetting
Rethinking Gradient Projection Continual Learning: Stability / Plasticity Feature Space
Zhen Zhao (East China Normal University, China), Zhizhong Zhang (East China Normal University, China), Xin Tan (East China Normal University, China), Jun Liu (Tencent Youtu Lab), Yanyun Qu (Xiamen University, China), Yuan Xie (East China Normal University, China), and Lizhuang Ma (East China Normal University, China)

 Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation
Generalizing Dataset Distillation via Deep Generative Prior
Minimizing the Accumulated Trajectory Error To Improve Dataset Distillation
Slimmable Dataset Condensation
 Sharpness-Aware Gradient Matching for Domain Generalization
Dynamic Neural Network for Multi-Task Learning Searching Across Diverse Network Topologies 3779 Wonhyeok Choi (Department of Electrical Engineering & Computer Science, DGIST, Korea) and Sunghoon Im (Department of Electrical Engineering & Computer Science, DGIST, Korea)
SplineCam: Exact Visualization and Characterization of Deep Network Geometry and Decision Boundaries

 VNE: An Effective Method for Improving Deep Representation by Manipulating Eigenvalue Distribution Jaeill Kim (Seoul National University), Suhyun Kang (Seoul National University), Duhun Hwang (Seoul National University), Jungwook Shin (Seoul National University), and Wonjong Rhee (Seoul National University; Seoul National University; Seoul National University) 	3799
Efficient On-Device Training via Gradient Filtering Yuedong Yang (The University of Texas at Austin), Guihong Li (The University of Texas at Austin), and Radu Marculescu (The University of Texas at Austin)	3811
Are Data-Driven Explanations Robust Against Out-of-Distribution Data? Tang Li (University of Delaware), Fengchun Qiao (University of Delaware), Mengmeng Ma (University of Delaware), and Xi Peng (University of Delaware)	3821
BiasAdv: Bias-Adversarial Augmentation for Model Debiasing Jongin Lim (Samsung Advanced Institute of Technology (SAIT)), Youngdong Kim (Samsung Advanced Institute of Technology (SAIT)), Byungjai Kim (Samsung Advanced Institute of Technology (SAIT)), Chanho Ahn (Samsung Advanced Institute of Technology (SAIT)), Jinwoo Shin (Korea Advanced Institute of Science and Technology (KAIST)), Eunho Yang (Korea Advanced Institute of Science and Technology (KAIST)), and Seungju Han (Samsung Advanced Institute of Technology (SAIT))	3832
Q-DETR: An Efficient Low-Bit Quantized Detection Transformer Sheng Xu (Beihang University), Yanjing Li (Beihang University), Mingbao Lin (Tencent), Peng Gao (Shanghai Al Laboratory), Guodong Guo (UNIUBI Research, Universal Ubiquitous Co.), Jinhu Lü (Beihang University; Zhongguancun Laboratory), and Baochang Zhang (Beihang University; Zhongguancun Laboratory)	3842
NIPQ: Noise Proxy-Based Integrated Pseudo-Quantization Juncheol Shin (Graduate School of Artificial Intelligence, POSTECH), Junhyuk So (Department of Computer Science and Engineering, POSTECH), Sein Park (Graduate School of Artificial Intelligence, POSTECH), Seungyeop Kang (Seoul National University), Sungjoo Yoo (Seoul National University), and Eunhyeok Park (Department of Computer Science and Engineering, POSTECH; Graduate School of Artificial Intelligence, POSTECH)	3852
CUDA: Convolution-Based Unlearnable Datasets Vinu Sankar Sadasivan (University of Maryland), Mahdi Soltanolkotabi (University of Southern California), and Soheil Feizi (University of Maryland)	3862
KD-DLGAN: Data Limited Image Generation via Knowledge Distillation Kaiwen Cui (Nanyang Technological University), Yingchen Yu (Nanyang Technological University), Fangneng Zhan (Max Planck Institute for Informatics), Shengcai Liao (Inception Institute of Artificial Intelligence), Shijian Lu (Nanyang Technological University), and Eric P. Xing (Mohamed bin Zayed University of Artificial Intelligence)	3872

Spider GAN: Leveraging Friendly Neighbors To Accelerate GAN Training	883
Efficient Verification of Neural Networks Against LVM-Based Specifications	894
 Bi-Directional Feature Fusion Generative Adversarial Network for Ultra-High Resolution Pathological Image Virtual Re-Staining	904
DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection	914
OmniAL: A Unified CNN Framework for Unsupervised Anomaly Localization	924
 Federated Incremental Semantic Segmentation	934
Re-Thinking Federated Active Learning Based on Inter-Class Diversity	944
 Federated Domain Generalization With Generalization Adjustment	954

On the Effectiveness of Partial Variance Reduction in Federated Learning With Heterogeneous Data	964
University of Denmark), Tommy S. Alstrøm (Technical University of Denmark), and Sebastian U. Stich (CISPA)	
The Resource Problem of Using Linear Layer Leakage Attack in Federated Learning	974
Unlearnable Clusters: Towards Label-Agnostic Unlearnable Examples	984
Implicit Identity Leakage: The Stumbling Block to Improving Deepfake Detection 39 Generalization 39 Shichao Dong (MEGVII Technology), Jin Wang (MEGVII Technology), Renhe 39 Ji (MEGVII Technology), Jiajun Liang (MEGVII Technology), Haoqiang Fan (MEGVII Technology), and Zheng Ge (MEGVII Technology)	994
Backdoor Defense via Adaptively Splitting Poisoned Dataset)05
How to Backdoor Diffusion Models?)15
TrojViT: Trojan Insertion in Vision Transformers)25
TrojDiff: Trojan Attacks on Diffusion Models With Diverse Targets)35
Ensemble-Based Blackbox Attacks on Dense Prediction)45
Efficient Loss Function by Minimizing the Detrimental Effect of Floating-Point Errors on Gradient-Based Attacks)56
The Best Defense Is a Good Offense: Adversarial Augmentation Against Adversarial Attacks . 40 Iuri Frosio (NVIDIA) and Jan Kautz (NVIDIA))67
Adversarial Robustness via Random Projection Filters	377

Jedi: Entropy-Based Localization and Removal of Adversarial Patches	4087
Exploring the Relationship Between Architectural Design and Adversarially Robust Generalization	4096
Aishan Liu (Beihang University), Shiyu Tang (Beihang University), Siyuan Liang (Chinese Academy of Sciences), Ruihao Gong (Beihang University; SenseTime), Boxi Wu (Zhejiang University), Xianglong Liu (Beihang University; Zhongguancun Laboratory; Hefei Comprehensive National Science Center), and Dacheng Tao (JD Explore Academy)	
Improving Robustness of Vision Transformers by Reducing Sensitivity To Patch Corruptions . 4 Yong Guo (Max Planck Institute for Informatics, Saarland Informatics Campus), David Stutz (Max Planck Institute for Informatics, Saarland Informatics Campus), and Bernt Schiele (Max Planck Institute for Informatics, Saarland Informatics Campus)	4108
 Towards Effective Adversarial Textured 3D Meshes on Physical Face Recognition	4119

AltFreezing for More General Video Face Forgery Detection
Poster-Tue-PM
Passive Micron-Scale Time-of-Flight With Sunlight Interferometry
F2-NeRF: Fast Neural Radiance Field Training With Free Camera Trajectories
NoPe-NeRF: Optimising Neural Radiance Field With No Pose Prior
BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields
DiffusioNeRF: Regularizing Neural Radiance Fields With Denoising Diffusion Models
SPARF: Neural Radiance Fields From Sparse and Noisy Poses
Interactive Segmentation of Radiance Fields

Temporal Interpolation Is All You Need for Dynamic Neural Radiance Fields
Compressing Volumetric Radiance Fields to 1 MB
Multiscale Tensor Decomposition and Rendering Equation Encoding for View Synthesis 4232 Kang Han (James Cook University) and Wei Xiang (La Trobe University)
Ref-NPR: Reference-Based Non-Photorealistic Radiance Fields for Controllable Scene Stylization
Representing Volumetric Videos As Dynamic MLP Maps
Fast Monocular Scene Reconstruction With Global-Sparse Local-Dense Grids
DynIBaR: Neural Dynamic Image-Based Rendering
Plateau-Reduced Differentiable Path Tracing
NeFII: Inverse Rendering for Reflectance Decomposition With Near-Field Indirect Illumination
WildLight: In-the-Wild Inverse Rendering With a Flashlight

Relightable Neural Human Assets From Multi-View Gradient Illuminations
DiffRF: Rendering-Guided 3D Radiance Field Diffusion
 Analyzing Physical Impacts Using Transient Surface Wave Imaging
Neural Kaleidoscopic Space Sculpting
Towards Unbiased Volume Rendering of Neural Implicit Surfaces With Geometry Priors 4359 Yongqiang Zhang (NetEase Fuxi Al Lab), Zhipeng Hu (NetEase Fuxi Al Lab), Haoqian Wu (NetEase Fuxi Al Lab), Minda Zhao (NetEase Fuxi Al Lab), Lincheng Li (NetEase Fuxi Al Lab), Zhengxia Zou (Beihang University), and Changjie Fan (NetEase Fuxi Al Lab)
Neural Kernel Surface Reconstruction
 MM-3DScene: 3D Scene Understanding by Customizing Masked Modeling With Informative-Preserved Reconstruction and Self-Distilled Consistency
Shape, Pose, and Appearance From a Single Image via Bootstrapped Radiance Field Inversion 4391 Dario Payllo (FTH Zurich), David Joseph Tan (FTH Zurich: Google)

Dario Pavilo (ETH Zurich), David Joseph Tan (ETH Zurich; Google), Marie-Julie Rakotosaona (Google), and Federico Tombari (Google; TU Munich)

DisCoScene: Spatially Disentangled Generative Radiance Fields for Controllable 3D-Aware Scene Synthesis
Heat Diffusion Based Multi-Scale and Geometric Structure-Aware Transformer for Mesh Segmentation
Learning Detailed Radiance Manifolds for High-Fidelity and 3D-Consistent Portrait Synthesis From Monocular Image
3D-Aware Conditional Image Synthesis
VIVE3D: Viewpoint-Independent Video Editing Using 3D-Aware GANs
SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation
Generating Part-Aware Editable 3D Shapes Without 3D Supervision
NeuralLift-360: Lifting an In-the-Wild 2D Photo to a 3D Object With 360° Views
Implicit Identity Driven Deepfake Face Swapping Detection

Canonical Fields: Self-Supervised Learning of Pose-Canonicalized Neural Fields
Improving Fairness in Facial Albedo Estimation via Visual-Textual Cues
 High-Fidelity 3D Face Generation From Natural Language Descriptions
DSFNet: Dual Space Fusion Network for Occlusion-Robust 3D Dense Face Alignment
 High-Fidelity Facial Avatar Reconstruction From Monocular Video With Generative Priors 4541 Yunpeng Bai (Tsinghua Shenzhen International Graduate School), Yanbo Fan (Tencent Al Lab), Xuan Wang (Ant Group), Yong Zhang (Tencent Al Lab), Jingxiang Sun (Tsinghua University), Chun Yuan (Tsinghua Shenzhen International Graduate School; Peng Cheng Laboratory), and Ying Shan (Tencent Al Lab)
3DAvatarGAN: Bridging Domains for Personalized Editable Avatars
 RODIN: A Generative Model for Sculpting 3D Digital Avatars Using Diffusion
Instant Volumetric Head Avatars
Synthesizing Photorealistic Virtual Humans Through Cross-Modal Disentanglement

3D Cinemagraphy From a Single Image
TryOnDiffusion: A Tale of Two UNets
Diverse 3D Hand Gesture Prediction From Body Dynamics by Bilateral Hand Disentanglement 4616 <i>Xingqun Qi (University of Technology Sydney; Netease Fuxi AI Lab),</i> <i>Chen Liu (The University of Queensland), Muyi Sun (CRIPAC, NLPR,</i> <i>Institute of Automation, Chinese Academy of Sciences), Lincheng Li</i> <i>(Netease Fuxi AI Lab), Changjie Fan (Netease Fuxi AI Lab), and Xin Yu</i> <i>(University of Technology Sydney; The University of Queensland)</i>
Normal-Guided Garment UV Prediction for Human Re-Texturing
REC-MV: REconstructing 3D Dynamic Cloth From Monocular Videos
SeSDF: Self-Evolved Signed Distance Field for Implicit 3D Clothed Human Reconstruction 4647 Yukang Cao (The University of Hong Kong), Kai Han (The University of Hong Kong), and Kwan-Yee K. Wong (The University of Hong Kong)
Unsupervised Volumetric Animation
Handy: Towards a High Fidelity 3D Hand Shape and Appearance Model
 Fantastic Breaks: A Dataset of Paired 3D Scans of Real-World Broken Objects and Their Complete Counterparts

Distilling Neural Fields for Real-Time Articulated Shape Reconstruction
GANmouflage: 3D Object Nondetection With Texture Fields
3D Human Pose Estimation via Intuitive Physics
Object Pop-Up: Can We Infer 3D Objects and Their Poses From Human Interactions Alone?4726 Ilya A. Petrov (University of Tubingen, Germany), Riccardo Marin (University of Tubingen, Germany), Julian Chibane (University of Tubingen, Germany), and Gerard Pons-Moll (University of Tubingen, Germany; Max Planck Institute for Informatics, Saarland Informatics Campus, Germany; Tubingen Al Center, Germany)
 UniDexGrasp: Universal Robotic Dexterous Grasping via Learning Diverse Proposal Generation and Goal-Conditioned Policy
Constrained Evolutionary Diffusion Filter for Monocular Endoscope Tracking
Visibility Aware Human-Object Interaction Tracking From Single RGB Camera

Transformer-Based Unified Recognition of Two Hands Manipulating Objects
HuManiFlow: Ancestor-Conditioned Normalising Flows on SO(3) Manifolds for Human Pose and Shape Distribution Estimation
3D Human Pose Estimation With Spatio-Temporal Criss-Cross Attention
 GFPose: Learning 3D Human Pose Prior With Gradient Fields
JRDB-Pose: A Large-Scale Dataset for Multi-Person Pose Estimation and Tracking
Analyzing and Diagnosing Pose Estimation With Attributions
Shape-Constraint Recurrent Flow for 6D Object Pose Estimation
TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose Estimation
 Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery From Sparse Image Ensemble

Revisiting Rolling Shutter Bundle Adjustment: Toward Accurate and Fast Solution	3
Revisiting the P3P Problem	2
Common Pets in 3D: Dynamic New-View Synthesis of Real-Life Deformable Categories 4881 Samarth Sinha (University of Toronto), Roman Shapovalov (Meta AI), Jeremy Reizenstein (Meta AI), Ignacio Rocco (Meta AI), Natalia Neverova (Meta AI), Andrea Vedaldi (Meta AI), and David Novotny (Meta AI)	
MobileBrick: Building LEGO for 3D Reconstruction on Mobile Devices	2
 EFEM: Equivariant Neural Field Expectation Maximization for 3D Object Segmentation Without Scene Supervision	2
GINA-3D: Learning To Generate Implicit Neural Assets in the Wild	3
 Habitat-Matterport 3D Semantics Dataset	7
 BUOL: A Bottom-Up Framework With Occupancy-Aware Lifting for Panoptic 3D Scene Reconstruction From a Single Image	7
Panoptic Compositional Feature Field for Editable Scene Rendering With Network-Inferred Labels via Metric Learning	7

A Light Touch Approach to Teaching Transformers Multi-View Geometry Yash Bhalgat (Visual Geometry Group, University of Oxford), João F. Henriques (Visual Geometry Group, University of Oxford), and Andrew Zisserman (Visual Geometry Group, University of Oxford)	4958
Learning To Render Novel Views From Wide-Baseline Stereo Pairs Yilun Du (MIT CSAIL), Cameron Smith (MIT CSAIL), Ayush Tewari (MIT CSAIL), and Vincent Sitzmann (MIT CSAIL)	4970
Spring: A High-Resolution High-Detail Dataset and Benchmark for Scene Flow, Optical Flow and Stereo Lukas Mehl (University of Stuttgart), Jenny Schmalfuss (University of Stuttgart), Azin Jahedi (University of Stuttgart), Yaroslava Nalivayko (University of Stuttgart), and Andrés Bruhn (University of Stuttgart)	4981
EventNeRF: Neural Radiance Fields From a Single Colour Event Camera	4992
LightedDepth: Video Depth Estimation in Light of Limited Inference View Angles Shengjie Zhu (Department of Computer Science and Engineering, Michigan State University) and Xiaoming Liu (Department of Computer Science and Engineering, Michigan State University)	5003
Generating Aligned Pseudo-Supervision From Non-Aligned Data for Image Restoration in Under-Display Camera	5013
Spatio-Focal Bidirectional Disparity Estimation From a Dual-Pixel Image Donggun Kim (KAIST), Hyeonjoong Jang (KAIST), Inchul Kim (KAIST), and Min H. Kim (KAIST)	5023
Trap Attention: Monocular Depth Estimation With Manual Traps Chao Ning (Northwestern Polytechnical University, China) and Hongping Gan (Northwestern Polytechnical University, China)	5033
Accelerated Coordinate Encoding: Learning to Relocalize in Minutes Using RGB and Poses Eric Brachmann (University of Oxford), Tommaso Cavallari (University of Oxford), and Victor Adrian Prisacariu (University of Oxford)	5044
Energy-Efficient Adaptive 3D Sensing Brevin Tilmon (University of Florida), Zhanghao Sun (Stanford University), Sanjeev J. Koppal (University of Florida), Yicheng Wu (Snaplnc.), Georgios Evangelidis (Snaplnc.), Ramzi Zahreddine (Snaplnc.), Gurunandan Krishnan (Snaplnc.), Sizhuo Ma (Snaplnc.), and Jian Wang (Snaplnc.)	5054
Incremental 3D Semantic Scene Graph Prediction From RGB Sequences Shun-Cheng Wu (Technische Universität München), Keisuke Tateno (Google), Nassir Navab (Technische Universität München), and Federico Tombari (Technische Universität München; Google)	5064

Consistent Direct Time-of-Flight Video Depth Super-Resolution	5075
Learning To Zoom and Unzoom Chittesh Thavamani (Carnegie Mellon University), Mengtian Li (Carnegie Mellon University), Francesco Ferroni (Argo AI), and Deva Ramanan (Carnegie Mellon University)	5086
FrustumFormer: Adaptive Instance-Aware Resampling for Multi-View 3D Detection	5096
3D Video Object Detection With Learnable Object-Centric Global Optimization Jiawei He (CRIPAC, Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences (UCAS)), Yuntao Chen (Centre for Artificial Intelligence and Robotics, HKISLCAS), Naiyan Wang (TuSimple), and Zhaoxiang Zhang (CRIPAC, Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences (UCAS); Centre for Artificial Intelligence and Robotics, HKISLCAS)	5106
UniDistill: A Universal Cross-Modality Knowledge Distillation Framework for 3D Object Detection in Bird's-Eye View	5116
ARKitTrack: A New Diverse Dataset for Tracking Using Mobile RGB-D Data Haojie Zhao (Dalian University of Technology, China), Junsong Chen (Dalian University of Technology, China), Lijun Wang (Dalian University of Technology, China), and Huchuan Lu (Dalian University of Technology, China; Peng Cheng Laboratory, China)	5126
 Deep Dive Into Gradients: Better Optimization for 3D Object Detection With Gradient-Corrected IoU Supervision	5136

SlowLiDAR: Increasing the Latency of LiDAR-Based Detection Using Adversarial Examples 5146 Han Liu (Washington University in St. Louis), Yuhao Wu (Washington University in St. Louis), Zhiyuan Yu (Washington University in St. Louis), Yevgeniy Vorobeychik (Washington University in St. Louis), and Ning Zhang (Washington University in St. Louis)
Normalizing Flow Based Feature Synthesis for Outlier-Aware Object Detection
OcTr: Octree-Based Transformer for 3D Object Detection
 HypLiLoc: Towards Effective LiDAR Pose Regression With Hyperbolic Fusion
LiDAR2Map: In Defense of LiDAR-Based Semantic Map Construction Using Online Camera Distillation
MSF: Motion-Guided Sequential Fusion for Efficient 3D Object Detection From Point Cloud Sequences
SFD2: Semantic-Guided Feature Detection and Description
Temporal Consistent 3D LiDAR Representation Learning for Semantic Perception in Autonomous Driving
Unsupervised 3D Point Cloud Representation Learning by Triangle Constrained Contrast for Autonomous Driving

RangeViT: Towards Vision Transformers for 3D Semantic Segmentation in Autonomous Driving 5240
Angelika Ando (Valeo.ai, France; Université PSL, France), Spyros Gidaris (Valeo.ai, France), Andrei Bursuc (Valeo.ai, France), Gilles Puy (Valeo.ai, France), Alexandre Boulch (Valeo.ai, France), and Renaud Marlet (Valeo.ai, France; Univ. Gustave Eiffel, CNRS, France)
Spatiotemporal Self-Supervised Learning for Point Clouds in the Wild
Change-Aware Sampling and Contrastive Learning for Satellite Images
Self-Supervised 3D Scene Flow Estimation Guided by Superpoints
SCOOP: Self-Supervised Correspondence and Optimization-Based Scene Flow
PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D Object Detection 5291 Anthony Chen (Peking University), Kevin Zhang (Peking University), Renrui Zhang (The Chinese University of Hong Kong), Zihan Wang (Peking University), Yuheng Lu (Peking University; Wukong Lab, iKingtec), Yandong Guo (Beijing University of Posts and Telecommunications), and Shanghang Zhang (Peking University)
CP3: Channel Pruning Plug-In for Point-Based Networks
Binarizing Sparse Convolutional Networks for Efficient Point Cloud Analysis

 Hyperspherical Embedding for Point Cloud Completion	23
 Attention-Based Point Cloud Edge Sampling	33
 Starting From Non-Parametric Networks for 3D Point Cloud Analysis	44
 Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent With Learned Distance Functions	54
SE-ORNet: Self-Ensembling Orientation-Aware Network for Unsupervised Point Cloud Shape Correspondence	64
Robust 3D Shape Classification via Non-Local Graph Attention Network	74
Rotation-Invariant Transformer for Point Cloud Matching	84
Deep Graph-Based Spatial Consistency for Robust Non-Rigid Point Cloud Registration 53 Zheng Qin (National University of Defense Technology), Hao Yu (Technical University of Munich), Changjian Wang (National University of Defense Technology), Yuxing Peng (National University of Defense Technology), and Kai Xu (National University of Defense Technology)	94

Efficient RGB-T Tracking via Cross-Modality Distillation	1
Finding Geometric Models by Clustering in the Consensus Space	1
Adaptive Assignment for Geometry Aware Local Feature Matching	5
Masked Representation Learning for Domain Generalized Stereo Matching	5
Learning Optical Expansion From Scale Matching	5
 AnyFlow: Arbitrary Scale Optical Flow With Implicit Neural Representation	5
HouseDiffusion: Vector Floorplan Generation via a Diffusion Model With Discrete and Continuous Denoising	5

Localized Semantic Feature Mixers for Efficient Pedestrian Detection in Autonomous Driving....... 5476

Abdul Hannan Khan (Department of Computer Science, RPTU Kaiserslautern-Landau, Germany; German Research Center for Artificial Intelligence (DFKI GmbH), Germany), Mohammed Shariq Nawaz (Department of Computer Science, RPTU Kaiserslautern-Landau, Germany), and Andreas Dengel (Department of Computer Science, RPTU Kaiserslautern-Landau, Germany; German Research Center for Artificial Intelligence (DFKI GmbH), Germany)	
 V2X-Seq: A Large-Scale Sequential Dataset for Vehicle-Infrastructure Cooperative Perception and Forecasting	6
 ViP3D: End-to-End Visual Trajectory Prediction via 3D Agent Queries	6
 IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint Multi-Agent Trajectory Prediction	7
Leapfrog Diffusion Model for Stochastic Trajectory Prediction	7
DeFeeNet: Consecutive 3D Human Motion Prediction With Deviation Feedback	7

Self-Correctable and Adaptable Inference for Generalizable Human Pose Estimation	5537
ReDirTrans: Latent-to-Latent Translation for Gaze and Head Redirection Shiwei Jin (ECE Dept. UC San Diego), Zhen Wang (Qualcomm Technologies, Inc.), Lei Wang (Qualcomm Technologies, Inc.), Ning Bi (Qualcomm Technologies, Inc.), and Truong Nguyen (ECE Dept. UC San Diego)	5547
Feature Shrinkage Pyramid for Camouflaged Object Detection With Transformers Zhou Huang (Sichuan Changhong Electric Co., Ltd.; UESTC), Hang Dai (University of Glasgow), Tian-Zhu Xiang (G42), Shuo Wang (ETH Zurich), Huai-Xin Chen (UESTC), Jie Qin (CCST, NUAA), and Huan Xiong (MBZUAI)	5557
OVTrack: Open-Vocabulary Multiple Object Tracking Siyuan Li (ETH Zurich), Tobias Fischer (ETH Zurich), Lei Ke (ETH Zurich), Henghui Ding (ETH Zurich), Martin Danelljan (ETH Zurich), and Fisher Yu (ETH Zurich)	5567
GaitGCI: Generative Counterfactual Intervention for Gait Recognition Huanzhang Dou (Zhejiang University), Pengyi Zhang (Zhejiang University), Wei Su (Zhejiang University), Yunlong Yu (Zhejiang University), Yining Lin (SupreMind), and Xi Li (Zhejiang University; Shanghai Al Laboratory; Singapore Innovation and Al Joint Research Lab)	5578
Multi-Label Compound Expression Recognition: C-EXPR Database & Network	5589
Blemish-Aware and Progressive Face Retouching With Limited Paired Data Lianxin Xie (South China University of Technology), Wen Xue (South China University of Technology), Zhen Xu (South China University of Technology), Si Wu (South China University of Technology; Peng Cheng Laboratory; City University of Hong Kong), Zhiwen Yu (South China University of Technology), and Hau San Wong (PAZHOU LAB)	5599
High-Fidelity and Freely Controllable Talking Head Video Generation Yue Gao (Microsoft Research), Yuan Zhou (Microsoft Research), Jinglu Wang (Microsoft Research), Xiao Li (Microsoft Research), Xiang Ming (Microsoft Research), and Yan Lu (Microsoft Research)	5609
3Mformer: Multi-Order Multi-Mode Transformer for Skeletal Action Recognition Lei Wang (Australian National University) and Piotr Koniusz (Australian National University)	5620
UDE: A Unified Driving Engine for Human Motion Generation Zixiang Zhou (n/a) and Baoyuan Wang (n/a)	5632
Data-Driven Feature Tracking for Event Cameras Nico Messikommer (University of Zurich, Switzerland), Carter Fang (University of Zurich, Switzerland), Mathias Gehrig (University of Zurich, Switzerland), and Davide Scaramuzza (University of Zurich, Switzerland)	5642

MoStGAN-V: Video Generation With Temporal Motion Styles Xiaoqian Shen (King Abdullah University of Science and Technology (KAUST)), Xiang Li (King Abdullah University of Science and Technology (KAUST)), and Mohamed Elhoseiny (King Abdullah University of Science and Technology (KAUST))	5652
Two-Stage Co-Segmentation Network Based on Discriminative Representation for Recovering Human Mesh From Videos Boyang Zhang (Ningxia University, China), Kehua Ma (Ningxia University, China), Suping Wu (Ningxia University, China), and Zhixiang Yuan (Ningxia University, China)	रु 5662
Joint Appearance and Motion Learning for Efficient Rolling Shutter Correction Bin Fan (Northwestern Polytechnical University, China), Yuxin Mao (Northwestern Polytechnical University, China), Yuchao Dai (Northwestern Polytechnical University, China), Zhexiong Wan (Northwestern Polytechnical University, China), and Qi Liu (Northwestern Polytechnical University, China)	5671
Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation <i>Guozhen Zhang (Nanjing University, China), Yuhan Zhu (Nanjing</i> <i>University, China), Haonan Wang (Nanjing University, China), Youxin</i> <i>Chen (Samsung Electronics (China) R&D Centre, China), Gangshan Wu</i> <i>(Nanjing University, China), and Limin Wang (Nanjing University,</i> <i>China; Shanghai Al Lab, China)</i>	5682
Deep Stereo Video Inpainting Zhiliang Wu (Nanjing University of Science and Technology, China), Changchang Sun (Illinois Institute of Technology, USA), Hanyu Xuan (Anhui University, China), and Yan Yan (Illinois Institute of Technology, USA)	5693
Burstormer: Burst Image Restoration and Enhancement Transformer Akshay Dudhane (Mohamed bin Zayed University of AI), Syed Waqas Zamir (Inception Institute of AI), Salman Khan (Australian National University), Fahad Shahbaz Khan (Mohamed bin Zayed University of AI; Linkoping University), and Ming-Hsuan Yang (University of California, Merced; Yonsei University; Google Research)	5703
Blur Interpolation Transformer for Real-World Motion From Blur Zhihang Zhong (The University of Tokyo, Japan; National Institute of Informatics, Japan), Mingdeng Cao (The University of Tokyo, Japan), Xiang Ji (The University of Tokyo, Japan), Yinqiang Zheng (The University of Tokyo, Japan), and Imari Sato (The University of Tokyo, Japan; National Institute of Informatics, Japan)	5713
HDR Imaging With Spatially Varying Signal-to-Noise Ratios Yiheng Chi (Purdue University), Xingguang Zhang (Purdue University), and Stanley H. Chan (Purdue University)	5724
Light Source Separation and Intrinsic Image Decomposition Under AC Illumination Yusaku Yoshida (Department of Artificial Intelligence, Kyushu Institute of Technology, Japan), Ryo Kawahara (Department of Artificial Intelligence, Kyushu Institute of Technology, Japan), and Takahiro Okabe (Department of Artificial Intelligence, Kyushu Institute of Technology, Japan)	5735

 Physics-Guided ISO-Dependent Sensor Noise Modeling for Extreme Low-Light Photography 5744 Yue Cao (School of Computer Science and Technology, Harbin Institute of Technology, China), Ming Liu (School of Computer Science and Technology, Harbin Institute of Technology, China), Shuai Liu (School of Computer Science and Technology, Harbin Institute of Technology, China), Xiaotao Wang (School of Computer Science and Technology, Harbin Institute of Technology, China), Lei Lei (School of Computer Science and Technology, Harbin Institute of Technology, Mangmeng Zuo (School of Computer Science and Technology, Harbin Institute of Technology, China; Peng Cheng Laboratory, China)
Neumann Network With Recursive Kernels for Single Image Defocus Deblurring
UMat: Uncertainty-Aware Single Image High Resolution Material Capture
 SMAE: Few-Shot Learning for HDR Deghosting With Saturation-Aware Masked Autoencoders 5775 Qingsen Yan (Northwestern Polytechnical University), Song Zhang (Xidian University), Weiye Chen (Xidian University), Hao Tang (CVL), Yu Zhu (Northwestern Polytechnical University), Jinqiu Sun (Northwestern Polytechnical University), Luc Van Gool (CVL), and Yanning Zhang (Northwestern Polytechnical University)
Curricular Contrastive Regularization for Physics-Aware Single Image Dehazing
Patch-Craft Self-Supervised Training for Correlated Image Denoising
Spectral Enhanced Rectangle Transformer for Hyperspectral Image Denoising
 All-in-One Image Restoration for Unknown Degradations Using Adaptive Discriminative Filters for Specific Degradations

Ingredient-Oriented Multi-Degradation Learning for Image Restoration	5
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability	6
Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild	6
Toward Accurate Post-Training Quantization for Image Super Resolution	6
Learning Steerable Function for Efficient Image Resampling	6
ABCD: Arbitrary Bitwise Coefficient for De-Quantization	6
Efficient Frequency Domain-Based Transformers for High-Quality Image Deblurring	6

Learning a Sparse Transformer Network for Effective Image Deraining
CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion
Zixiang Zhao (Xi'an Jiaotong University; ETH Zurich), Haowen Bai (Xi'an Jiaotong University), Jiangshe Zhang (Xi'an Jiaotong University), Yulun Zhang (ETH Zurich), Shuang Xu (Research and Development Institute of Northwestern Polytechnical University in Shenzhen; Northwestern Polytechnical University), Zudi Lin (Harvard University), Radu Timofte (ETH Zurich; University of Wurzburg), and Luc Van Gool (ETH Zurich)
PCT-Net: Full Resolution Image Harmonization Using Pixel-Wise Color Transformations 5917 Julian Jorge Andrade Guerreiro (The University of Tokyo), Mitsuru Nakazawa (Rakuten Institute of Technology, Rakuten Group, Inc.), and Björn Stenger (Rakuten Institute of Technology, Rakuten Group, Inc.)
Semi-Supervised Parametric Real-World Image Harmonization
Towards Robust Tampered Text Detection in Document Image: New Dataset and New Solution 5937
Chenfan Qu (South China University of Technology), Chongyu Liu (South China University of Technology), Yuliang Liu (Huazhong University of Science and Technology), Xinhong Chen (South China University of Technology), Dezhi Peng (South China University of Technology), Fengjun Guo (IntSig Information Co., Ltd), and Lianwen Jin (South China University of Technology)
QuantArt: Quantizing Image Style Transfer Towards High Visual Fidelity
Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation for Pretrained Deep Generative Model
 Person Image Synthesis via Denoising Diffusion Model
Gang Dai (South China University of Technology), Yifan Zhang (National University of Singapore), Qingfeng Wang (South China University of Technology), Qing Du (South China University of Technology), Zhuliang Yu (South China University of Technology), Zhuoman Liu (The Hong Kong Polytechnic University), and Shuangping Huang (South China University of Technology; Pazhou Laboratory)
--
NoisyTwins: Class-Consistent and Diverse Image Generation Through StyleGANs
High-Fidelity Guided Image Synthesis With Latent Diffusion Models
 Imagic: Text-Based Real Image Editing With Diffusion Models
PosterLayout: A New Benchmark and Approach for Content-Aware Visual-Textual Presentation
, Hsiao Yuan Hsu (Peking University; Peking University), Xiangteng He (Peking University; Peking University), Yuxin Peng (Peking University; Peking University), Hao Kong (Meituan), and Qing Zhang (Meituan)
 Hsiao Yuan Hsu (Peking University; Peking University), Xiangteng He (Peking University; Peking University), Yuxin Peng (Peking University; Peking University), Hao Kong (Meituan), and Qing Zhang (Meituan) SINE: SINgle Image Editing With Text-to-Image Diffusion Models
 Hsiao Yuan Hsu (Peking University; Peking University), Xiangteng He (Peking University; Peking University), Yuxin Peng (Peking University; Peking University), Hao Kong (Meituan), and Qing Zhang (Meituan) SINE: SINgle Image Editing With Text-to-Image Diffusion Models
 Hsiao Yuan Hsu (Peking University; Peking University), Xiangteng He (Peking University; Peking University), Yuxin Peng (Peking University; Peking University), Hao Kong (Meituan), and Qing Zhang (Meituan) SINE: SINgle Image Editing With Text-to-Image Diffusion Models

Unite and Conquer: Plug & Play Multi-Modal Synthesis Using Diffusion Models	5070
Collaborative Diffusion for Multi-Modal Face Generation and Editing	5080
Diffusion Video Autoencoders: Toward Temporally Consistent Face Video Editing via Disentangled Video Encoding	5091
NVTC: Nonlinear Vector Transform Coding	5101
Motion Information Propagation for Neural Video Compression	5111
A Dynamic Multi-Scale Voxel Flow Network for Video Prediction	5121
Towards Scalable Neural Representation for Diverse Videos	5132
DINER: Disorder-Invariant Implicit Neural Representation	5143
SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy	5153

DeepMAD: Mathematical Architecture Design for Deep Convolutional Neural Network 6163 Xuan Shen (Northeastern University), Yaohua Wang (Alibaba Group), Ming Lin (Amazon), Yilun Huang (Alibaba Group), Hao Tang (ETH Zurich), Xiuyu Sun (Alibaba Group), and Yanzhi Wang (Northeastern University)
Optimization-Inspired Cross-Attention Transformer for Compressive Sensing
Neighborhood Attention Transformer
Making Vision Transformers Efficient From a Token Sparsification View
Towards Efficient Use of Multi-Scale Features in Transformer-Based Object Detectors
Neuralizer: General Neuroimage Analysis Without Re-Training
Learning Partial Correlation Based Deep Visual Representation for Image Classification 6231 Saimunur Rahman (Data61vCSIRO; University of Wollongong), Piotr Koniusz (Data61vCSIRO; Australian National University), Lei Wang (University of Wollongong), Luping Zhou (University of Sydney), Peyman Moghadam (Data61vCSIRO; Queensland University of Technology), and Changming Sun (Data61vCSIRO)
Understanding Masked Image Modeling via Learning Occlusion Invariant Feature
MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of Hierarchical Vision Transformers

Adaptive Graph Convolutional Subspace Clustering Lai Wei (Shanghai Maritime University, China), Zhengwei Chen (Shanghai Maritime University, China), Jun Yin (Shanghai Maritime University, China), Changming Zhu (Shanghai Maritime University, China), Rigui Zhou (Shanghai Maritime University, China), and Jin Liu (Shanghai Maritime University, China)	6262
Deep Learning of Partial Graph Matching via Differentiable Top-K Runzhong Wang (Shanghai Jiao Tong University), Ziao Guo (Shanghai Jiao Tong University), Shaofei Jiang (Shanghai Jiao Tong University), Xiaokang Yang (Shanghai Jiao Tong University), and Junchi Yan (Shanghai Jiao Tong University)	6272
DynamicDet: A Unified Dynamic Architecture for Object Detection Zhihao Lin (Peking University), Yongtao Wang (Peking University), Jinhe Zhang (Peking University), and Xiaojie Chu (Peking University)	6282
IS-GGT: Iterative Scene Graph Generation With Generative Transformers Sanjoy Kundu (Oklahoma State University) and Sathyanarayanan N. Aakur (Oklahoma State University)	6292
 Fast Contextual Scene Graph Generation With Unbiased Context Augmentation Tianlei Jin (Research Center for Intelligent Robotics, Zhejiang Lab), Fangtai Guo (Research Center for Intelligent Robotics, Zhejiang Lab), Qiwei Meng (Research Center for Intelligent Robotics, Zhejiang Lab), Shiqiang Zhu (Research Center for Intelligent Robotics, Zhejiang Lab), Xiangming Xi (Research Center for Intelligent Robotics, Zhejiang Lab), Wen Wang (Research Center for Intelligent Robotics, Zhejiang Lab), Zonghao Mu (Research Center for Intelligent Robotics, Zhejiang Lab), and Wei Song (Research Center for Intelligent Robotics, Zhejiang Lab), 	6302
Masked Video Distillation: Rethinking Masked Feature Modeling for Self-Supervised Video Representation Learning <i>Rui Wang (Fudan University; Shanghai Collaborative Innovation Center</i> <i>of Intelligent Visual Computing), Dongdong Chen (Microsoft Cloud +</i> <i>AI), Zuxuan Wu (Fudan University: Shanghai Collaborative Innovation</i> <i>Center of Intelligent Visual Computing), Yinpeng Chen (Microsoft Cloud</i> <i>+ AI), Xiyang Dai (Microsoft Cloud + AI), Mengchen Liu (Microsoft Cloud + AI), Lu Yuan (Microsoft Cloud + AI), and Yu-Gang Jiang (Fudan</i> <i>University; Shanghai Collaborative Innovation Center of Intelligent</i> <i>Visual Computing)</i>	6312
MED-VT: Multiscale Encoder-Decoder Video Transformer With Application To Object Segmentation Rezaul Karim (York University), He Zhao (York University), Richard P. Wildes (York University), and Mennatullah Siam (York University)	6323
MOVES: Manipulated Objects in Video Enable Segmentation Richard E. L. Higgins (University of Michigan) and David F. Fouhey (University of Michigan)	6334
InstMove: Instance Motion for Object-Centric Video Segmentation Qihao Liu (Johns Hopkins University), Junfeng Wu (Huazhong University of Science and Technology), Yi Jiang (ByteDance), Xiang Bai (Huazhong University of Science and Technology), Alan L. Yuille (Johns Hopkins University), and Song Bai (ByteDance)	6344

ZBS: Zero-Shot Background Subtraction via Instance-Level Background Modeling and Foreground Selection 6355
Yongqi An (National Laboratory of Pattern Recognition, Institute of Automation, CAS, China; University of Chinese Academy of Sciences, China), Xu Zhao (National Laboratory of Pattern Recognition, Institute of Automation, CAS, China), Tao Yu (National Laboratory of Pattern Recognition, Institute of Automation, CAS, China; University of Chinese Academy of Sciences, China), Haiyun Guo (National Laboratory of Pattern Recognition, Institute of Automation, CAS, China; University of Chinese Academy of Sciences, China), Chaoyang Zhao (National Laboratory of Pattern Recognition, Institute of Automation, CAS, China), Ming Tang (National Laboratory of Pattern Recognition, Institute of Automation, CAS, China; University of Chinese Academy of Sciences, China), and Jinqiao Wang (National Laboratory of Pattern Recognition, Institute of Automation, CAS, China; University of Chinese Academy of Sciences, China) (National Laboratory of Sciences, China), and Jinqiao Wang (National Laboratory of Pattern Recognition, Institute of Automation, CAS, China; University of Chinese Academy of Sciences, China)
Feature Aggregated Queries for Transformer-Based Video Object Detectors
Context-Aware Relative Object Queries To Unify Video Instance and Panoptic Segmentation 6377 Anwesa Choudhuri (University of Illinois at Urbana-Champaign), Girish Chowdhary (University of Illinois at Urbana-Champaign), and Alexander G. Schwing (University of Illinois at Urbana-Champaign)
Selective Structured State-Spaces for Long-Form Video Understanding
Relational Space-Time Query in Long-Form Videos
Novel-View Acoustic Synthesis
Learning Audio-Visual Source Localization via False Negative Aware Contrastive Learning 6420 Weixuan Sun (Australian National University; OPPO Research Institute), Jiayi Zhang (Beihang University), Jianyuan Wang (The University of Oxford), Zheyuan Liu (Australian National University), Yiran Zhong (Shanghai Al Lab), Tianpeng Feng (OPPO Research Institute), Yandong Guo (OPPO Research Institute), Yanhao Zhang (OPPO Research Institute),

and Nick Barnes (Australian National University)

Sound to Visual Scene Generation by Audio-to-Visual Latent Alignment	430
CASP-Net: Rethinking Video Saliency Prediction From an Audio-Visual Consistency Perceptual Perspective	.441
for Human Motion Prediction	11ng 451
 TempSAL – Uncovering Temporal Information for Deep Saliency Prediction	461
Prompt-Guided Zero-Shot Anomaly Action Recognition Using Pretrained Deep Skeleton Featur 6471 <i>Fumiaki Sato (Konica Minolta, Inc.), Ryo Hachiuma (Konica Minolta, Inc.), and Taiki Sekii (Konica Minolta, Inc.)</i>	res
 MMG-Ego4D: Multimodal Generalization in Egocentric Action Recognition	481
Active Exploration of Multimodal Complementarity for Few-Shot Action Recognition	492

Reducing the Label Bias for Timestamp Supervised Temporal Action Segmentation
Soft-Landing Strategy for Alleviating the Task Discrepancy Problem in Temporal Action Localization Tasks
Iterative Proposal Refinement for Weakly-Supervised Video Grounding
Movies2Scenes: Using Movie Metadata To Learn Scene Representation
Fine-Tuned CLIP Models Are Efficient Video Learners
Revisiting Temporal Modeling for CLIP-Based Image-to-Video Knowledge Transferring 6555 Ruyang Liu (Peking University; Peng Cheng Laboratory), Jingjia Huang (ByteDance Inc), Ge Li (Peking University), Jiashi Feng (ByteDance Inc), Xinglong Wu (ByteDance Inc), and Thomas H. Li (Peking University)
VoP: Text-Video Co-Operative Prompt Tuning for Cross-Modal Retrieval
ProTéGé: Untrimmed Pretraining for Video Temporal Grounding by Video Temporal Grounding 6575 Lan Wang (Michigan State University), Gaurav Mittal (Michigan State University), Sandra Sajeev (Microsoft), Ye Yu (Microsoft), Matthew Hall (Microsoft), Vishnu Naresh Boddeti (Microsoft), and Mei Chen (Microsoft)
Learning Video Representations From Large Language Models

All in One: Exploring Unified Video-Language Pre-Training
High-Fidelity Generalized Emotional Talking Face Generation With Multi-Modal Emotion Space Learning
Chao Xu (Zhejiang University), Junwei Zhu (Youtu Lab, Tencent), Jiangning Zhang (Youtu Lab, Tencent), Yue Han (Zhejiang University), Wenqing Chu (Youtu Lab, Tencent), Ying Tai (Youtu Lab, Tencent), Chengjie Wang (Youtu Lab, Tencent; Shanghai Jiao Tong University), Zhifeng Xie (Shanghai University), and Yong Liu (Zhejiang University)
Bidirectional Cross-Modal Knowledge Exploration for Video Recognition With Pre-Trained Vision-Language Models
Decoupled Multimodal Distilling for Emotion Recognition
Affection: Learning Affective Explanations for Real-World Visual Data
An Actor-Centric Causality Graph for Asynchronous Temporal Inference in Group Activity 6652 Zhao Xie (Hefei University of Technology), Tian Gao (Hefei University of Technology), Kewei Wu (Hefei University of Technology), and Jiao Chang (Hefei University of Technology)
VLPD: Context-Aware Pedestrian Detection via Vision-Language Semantic Self-Supervision 6662 Mengyin Liu (University of Science and Technology Beijing, China), Jie Jiang (Data Platform Department, China), Chao Zhu (University of Science and Technology Beijing, China), and Xu-Cheng Yin (University of Science and Technology Beijing, China)
3D-Aware Object Goal Navigation via Simultaneous Exploration and Identification
 Meta-Explore: Exploratory Hierarchical Vision-and-Language Navigation Using Scene Object Spectrum Grounding

NaQ: Leveraging Narrations As Queries To Supervise Episodic Memory	694
 EC2: Emergent Communication for Embodied Control	704
Abstract Visual Reasoning: An Algebraic Approach for Solving Raven's Progressive Matrices6 Jingyi Xu (Singapore University of Technology and Design), Tushar Vaidya (Nanyang Technological University), Yufei Wu (Nanyang Technological University), Saket Chandra (Singapore University of Technology and Design), Zhangsheng Lai (Singapore Polytechnic), and Kai Fong Ernest Chong (Singapore University of Technology and Design)	715
Logical Implications for Visual Question Answering Consistency	725
Divide and Conquer: Answering Questions With Object Factorization and Compositional	726
Shi Chen (University of Minnesota) and Qi Zhao (University of Minnesota)	750
The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training	746
Visual-Language Prompt Tuning With Knowledge-Guided Context Optimization	757
Probabilistic Prompt Learning for Dense Prediction	768
Is BERT Blind? Exploring the Effect of Vision-and-Language Pretraining on Visual Language Understanding	778
Seeing What You Miss: Vision-Language Pre-Training With Semantic Completion Learning 6 Yatai Ji (Tsinghua University), Rongcheng Tu (Tencent), Jie Jiang (Tencent), Weijie Kong (Tencent), Chengfei Cai (Tencent), Wenzhe Zhao (Tencent), Hongfa Wang (Tencent), Yujiu Yang (Tsinghua University), and Wei Liu (Tencent)	789

Affordance Grounding From Demonstration Video To Target Image
Leverage Interactive Affinity for Affordance Learning
DeAR: Debiasing Vision-Language Models With Additive Residuals
 Images Speak in Images: A Generalist Painter for In-Context Visual Learning
Hyperbolic Contrastive Learning for Visual Representations Beyond Objects
Picture That Sketch: Photorealistic Image Generation From Abstract Sketches
GeneCIS: A Benchmark for General Conditional Image Similarity

Exploiting Unlabelled Photos for Stronger Fine-Grained SBIR
Parts2Words: Learning Joint Embedding of Point Clouds and Texts by Bidirectional Matching Between Parts and Words
DeltaEdit: Exploring Text-Free Training for Text-Driven Image Manipulation
Detecting and Grounding Multi-Modal Media Manipulation
Positive-Augmented Contrastive Learning for Image and Video Captioning Evaluation
Similarity Maps for Self-Training Weakly-Supervised Phrase Grounding
Cross-Domain Image Captioning With Discriminative Finetuning
EXIF As Language: Learning Cross-Modal Associations Between Images and Camera Metadata 6945 <i>Chenhao Zheng (University of Michigan), Ayush Shrivastava (University</i>

of Michigan), and Andrew Owens (University of Michigan)

Uncurated Image-Text Datasets: Shedding Light on Demographic Bias	6957
Filtering, Distillation, and Hard Negatives for Vision-Language Pre-Training Filip Radenovic (Meta AI), Abhimanyu Dubey (Meta AI), Abhishek Kadian (Meta AI), Todor Mihaylov (Meta AI), Simon Vandenhende (Meta AI), Yash Patel (CTU in Prague), Yi Wen (Meta AI), Vignesh Ramanathan (Meta AI), and Dhruv Mahajan (Meta AI)	6967
Turning a CLIP Model Into a Scene Text Detector	6978
ScanDMM: A Deep Markov Model of Scanpath Prediction for 360° Images	6989
CrOC: Cross-View Online Clustering for Dense Visual Representation Learning Thomas Stegmüller (EPFL), Tim Lebailly (KU Leuven), Behzad Bozorgtabar (EPFL; CHUV), Tinne Tuytelaars (KU Leuven), and Jean-Philippe Thiran (EPFL; CHUV)	7000
PLA: Language-Driven Open-Vocabulary 3D Scene Understanding Runyu Ding (The University of Hong Kong), Jihan Yang (The University of Hong Kong), Chuhui Xue (ByteDance), Wenqing Zhang (ByteDance), Song Bai (ByteDance), and Xiaojuan Qi (The University of Hong Kong)	7010
CLIP2Scene: Towards Label-Efficient 3D Scene Understanding by CLIP Runnan Chen (The University of Hong Kong; Shanghai Al Laboratory), Youquan Liu (Shanghai Al Laboratory; Hochschule Bremerhaven), Lingdong Kong (Shanghai Al Laboratory; National University of Singapore), Xinge Zhu (The Chinese University of Hong Kong), Yuexin Ma (ShanghaiTech University), Yikang Li (Shanghai Al Laboratory), Yuenan Hou (Shanghai Al Laboratory), Yu Qiao (Shanghai Al Laboratory), and Wenping Wang (Texas A&M University)	7020
CORA: Adapting CLIP for Open-Vocabulary Detection With Region Prompting and Anchor Pre-Matching Xiaoshi Wu (The Chinese University of Hong Kong), Feng Zhu (SenseTime Research), Rui Zhao (SenseTime Research; SenseTime Research), and Hongsheng Li (The Chinese University of Hong Kong; Centre for Perceptual and Interactive Intelligence (CPII))	7031
Open-Vocabulary Attribute Detection María A. Bravo (University of Freiburg, Germany), Sudhanshu Mittal (University of Freiburg, Germany), Simon Ging (University of Freiburg, Germany), and Thomas Brox (University of Freiburg, Germany)	7041
Learning To Detect and Segment for Open Vocabulary Object Detection Tao Wang (Sichuan University)	7051

Open-Vocabulary Semantic Segmentation With Mask-Adapted CLIP Feng Liang (The University of Texas, Austin), Bichen Wu (Meta Reality Labs), Xiaoliang Dai (Meta Reality Labs), Kunpeng Li (Meta Reality Labs), Yinan Zhao (Meta Reality Labs), Hang Zhang (Cruise), Peizhao Zhang (Meta Reality Labs), Peter Vajda (Meta Reality Labs), and Diana Marculescu (The University of Texas, Austin)	. 7061
A Simple Framework for Text-Supervised Semantic Segmentation Muyang Yi (Shanghai Jiao Tong University), Quan Cui (Waseda University; ByteDance Inc.), Hao Wu (ByteDance Inc.), Cheng Yang (ByteDance Inc.), Osamu Yoshie (Waseda University), and Hongtao Lu (Shanghai Jiao Tong University)	7071
GAPartNet: Cross-Category Domain-Generalizable Object Perception and Manipulation via Generalizable and Actionable Parts Haoran Geng (Peking University; Beijing Institute for General Artificial Intelligence), Helin Xu (Tsinghua University), Chengyang Zhao (Peking University), Chao Xu (University of California, Los Angeles), Li Yi (Tsinghua University), Siyuan Huang (Beijing Institute for General Artificial Intelligence), and He Wang (Peking University)	7081
GeoLayoutLM: Geometric Pre-Training for Visual Information Extraction Chuwei Luo (DAMO Academy, Alibaba Group), Changxu Cheng (DAMO Academy, Alibaba Group), Qi Zheng (DAMO Academy, Alibaba Group), and Cong Yao (DAMO Academy, Alibaba Group)	. 7092
Self-Supervised Image-to-Point Distillation via Semantically Tolerant Contrastive Loss Anas Mahmoud (University of Toronto Robotics Institute), Jordan S. K. Hu (University of Toronto Robotics Institute), Tianshu Kuai (University of Toronto Robotics Institute), Ali Harakeh (Mila, Universite de Montreal), Liam Paull (Mila, Universite de Montreal), and Steven L. Waslander (University of Toronto Robotics Institute)	7102
Generative Semantic Segmentation Jiaqi Chen (Fudan University), Jiachen Lu (Fudan University), Xiatian Zhu (University of Surrey), and Li Zhang (University of Surrey)	7111
MISC210K: A Large-Scale Dataset for Multi-Instance Semantic Correspondence Yixuan Sun (Academy of Engineering & Technology, Fudan University, China), Yiwen Huang (Fudan University, China), Haijing Guo (Fudan University, China), Yuzhou Zhao (Fudan University, China), Runmin Wu (The University of Hong Kong, China), Yizhou Yu (The University of Hong Kong, China), Weifeng Ge (Fudan University, China), and Wenqiang Zhang (Academy of Engineering & Technology, Fudan University, China; Fudan University, China)	.7121
MIANet: Aggregating Unbiased Instance and General Information for Few-Shot Semantic Segmentation Yong Yang (South China University of Technology), Qiong Chen (South China University of Technology), Yuan Feng (South China University of Technology; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application), and Tianlin Huang (South China University of Technology)	. 7131

PACO: Parts and Attributes of Common Objects Vignesh Ramanathan (Meta AI), Anmol Kalia (Meta AI), Vladan Petrovic (Meta AI), Yi Wen (Meta AI), Baixue Zheng (Meta AI), Baishan Guo (Meta AI), Rui Wang (Meta AI), Aaron Marquez (Meta AI), Rama Kovvuri (Meta AI), Abhishek Kadian (Meta AI), Amir Mousavi (Simon Fraser University), Yiwen Song (Meta AI), Abhimanyu Dubey (Meta AI), and Dhruv Mahajan (Meta AI)	7141
PartDistillation: Learning Parts From Instance Segmentation Jang Hyun Cho (UT Austin), Philipp Krähenbühl (UT Austin), and Vignesh Ramanathan (Meta Al)	. 7152
ACSeg: Adaptive Conceptualization for Unsupervised Semantic Segmentation Kehan Li (Peking University, China; Peking University Shenzhen Graduate School, Shenzhen, China), Zhennan Wang (Peng Cheng Laboratory, Shenzhen, China), Zesen Cheng (Peking University, China; Peking University Shenzhen Graduate School, Shenzhen, China), Runyi Yu (Peking University, China; Peking University Shenzhen Graduate School, Shenzhen, China), Yian Zhao (Dalian University of Technology), Guoli Song (Peng Cheng Laboratory, Shenzhen, China), Chang Liu (Tsinghua University, Beijing, China), Li Yuan (Peking University, China; Peng Cheng Laboratory, China; Peking University Shenzhen Graduate School, Shenzhen, China), and Jie Chen (Peking University, China; Peng Laboratory, China; Peking University Shenzhen Graduate School, Shenzhen, China), and Jie Chen (Peking University, China; Peng Laboratory, China; Peking University Shenzhen Graduate School, Shenzhen, China)	7162
Reliability in Semantic Segmentation: Are We on the Right Track? Pau de Jorge (University of Oxford NAVER LABS Europe, NAVER LABS Europe*), Riccardo Volpi (NAVER LABS Europe), Philip H.S. Torr (University of Oxford), and Grégory Rogez (NAVER LABS Europe)	. 7173
Rethinking the Correlation in Few-Shot Segmentation: A Buoys View Yuan Wang (University of Science and Technology of China), Rui Sun (University of Science and Technology of China), and Tianzhu Zhang (University of Science and Technology of China)	7183
SIM: Semantic-Aware Instance Mask Generation for Box-Supervised Instance Segmentation Ruihuang Li (The Hong Kong Polytechnic University), Chenhang He (The Hong Kong Polytechnic University), Yabin Zhang (The Hong Kong Polytechnic University), Shuai Li (The Hong Kong Polytechnic University), Liyi Chen (The Hong Kong Polytechnic University), and Lei Zhang (The Hong Kong Polytechnic University)	7193
Endpoints Weight Fusion for Class Incremental Semantic Segmentation Jia-Wen Xiao (Nankai University), Chang-Bin Zhang (Nankai University), Jiekang Feng (Tianjin University), Xialei Liu (Nankai University), Joost van de Weijer (Universitat Autonoma de Barcelona), and Ming-Ming Cheng (Nankai University)	. 7204

Incrementer: Transformer for Class-Incremental Semantic Segmentation With Knowledge Distillation Focusing on Old Class Chao Shang (University of Electronic Science and Technology of China), Hongliang Li (University of Electronic Science and Technology of China), Fanman Meng (University of Electronic Science and Technology of China), Qingbo Wu (University of Electronic Science and Technology of China), Heqian Qiu (University of Electronic Science and Technology of China), Heqian Qiu (University of Electronic Science and Technology of China), and Lanxiao Wang (University of Electronic Science and Technology of China)	7214
Continuous Pseudo-Label Rectified Domain Adaptive Semantic Segmentation With Implicit Neural Representations Rui Gong (CVL, ETH Zürich), Qin Wang (CVL, ETH Zürich), Martin Danelljan (CVL, ETH Zürich), Dengxin Dai (Max Planck Institute for Informatics, Saarland Informatics Campus), and Luc Van Gool (CVL, ETH Zürich)	7225
Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation Lihe Yang (Nanjing University), Lei Qi (Southeast University), Litong Feng (SenseTime Research), Wayne Zhang (SenseTime Research), and Yinghuan Shi (Nanjing University)	7236
Discriminative Co-Saliency and Background Mining Transformer for Co-Salient Object Detection Long Li (Northwestern Polytechnical University), Junwei Han (Northwestern Polytechnical University), Ni Zhang (Northwestern Polytechnical University), Nian Liu (Mohamed bin Zayed University of Artificial Intelligence), Salman Khan (Mohamed bin Zayed University of Artificial Intelligence; Australian National University 4CVL, Linköping University), Hisham Cholakkal (Mohamed bin Zayed University of Artificial Intelligence), Rao Muhammad Anwer (Mohamed bin Zayed University of Artificial Intelligence), and Fahad Shahbaz Khan (Mohamed bin Zayed University 4CVL, Linköping University 4CVL, Linköping University 4CVL, Linköping University 4CVL, Linköping University)	7247
Texture-Guided Saliency Distilling for Unsupervised Salient Object Detection Huajun Zhou (Sun Yat-sen University, China), Bo Qiao (Sun Yat-sen University, China), Lingxiao Yang (Sun Yat-sen University, China), Jianhuang Lai (Sun Yat-sen University, China; Guangdong Province Key Laboratory of Information Security Technology, China; Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China), and Xiaohua Xie (Sun Yat-sen University, China; Guangdong Province Key Laboratory of Information Security Technology, China; Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China)	7257
An Erudite Fine-Grained Visual Classification Model Dongliang Chang (Beijing University of Posts and Telecommunications, China), Yujun Tong (Beijing University of Posts and Telecommunications, China), Ruoyi Du (Beijing University of Posts and Telecommunications, China), Timothy Hospedales (University of Edinburgh, UK), Yi-Zhe Song (SketchX, CVSSP, University of Surrey, UK), and Zhanyu Ma (Beijing University of Posts and Telecommunications, China)	7268

Dynamic Graph Learning With Content-Guided Spatial-Frequency Relation Reasoning for Deepfake Detection	7278
Yuan Wang (Institute of Automation, Chinese Academy of Sciences; Alibaba Group; University of Chinese Academy of Sciences), Kun Yu (Alibaba Group), Chen Chen (Institute of Automation, Chinese Academy of Sciences), Xiyuan Hu (Nanjing University of Science and Technology), and Silong Peng (Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Beijing Visystem Co.Ltd)	
ScaleDet: A Scalable Multi-Dataset Object Detector Yanbei Chen (AWS AI Labs), Manchen Wang (AWS AI Labs), Abhay Mittal (AWS AI Labs), Zhenlin Xu (AWS AI Labs), Paolo Favaro (AWS AI Labs), Joseph Tighe (AWS AI Labs), and Davide Modolo (AWS AI Labs)	7288
Multi-Centroid Task Descriptor for Dynamic Class Incremental Inference Tenghao Cai (East China Normal University, Shanghai, China), Zhizhong Zhang (East China Normal University, Shanghai, China), Xin Tan (East China Normal University, Shanghai, China), Yanyun Qu (Xiamen University, Fujian, China), Guannan Jiang (CATL, China), Chengjie Wang (Tencent Youtu Lab), and Yuan Xie (East China Normal University, Shanghai, China)	7298
Matching Is Not Enough: A Two-Stage Framework for Category-Agnostic Pose Estimation Min Shi (Huazhong University of Science and Technology; Shanghai Al Laboratory), Zihao Huang (Huazhong University of Science and Technology), Xianzheng Ma (Shanghai Al Laboratory), Xiaowei Hu (Shanghai Al Laboratory), and Zhiguo Cao (Huazhong University of Science and Technology; Shanghai Al Laboratory)	7308
Dynamic Coarse-To-Fine Learning for Oriented Tiny Object Detection Chang Xu (Wuhan University), Jian Ding (Wuhan University), Jinwang Wang (Wuhan University), Wen Yang (Wuhan University), Huai Yu (Wuhan University), Lei Yu (Wuhan University), and Gui-Song Xia (Wuhan University)	7318
Dense Distinct Query for End-to-End Object Detection Shilong Zhang (Shanghai Al Laboratory; The University of Hong Kong), Xinjiang Wang (SenseTime Research), Jiaqi Wang (Shanghai Al Laboratory), Jiangmiao Pang (Shanghai Al Laboratory), Chengqi Lyu (Shanghai Al Laboratory), Wenwei Zhang (Nanyang Technological University), Ping Luo (Shanghai Al Laboratory; The University of Hong Kong), and Kai Chen (Shanghai Al Laboratory)	7329
Meta-Tuning Loss Functions and Data Augmentation for Few-Shot Object Detection Berkan Demirel (Middle East Technical University; HAVELSAN Inc.), Orhun Buğra Baran (Middle East Technical University), and Ramazan Gokberk Cinbis (Middle East Technical University)	7339
One-to-Few Label Assignment for End-to-End Dense Detection Shuai Li (The Hong Kong Polytechnic University; OPPO Research Institute), Minghan Li (The Hong Kong Polytechnic University), Ruihuang Li (The Hong Kong Polytechnic University), Chenhang He (The Hong Kong Polytechnic University; OPPO Research Institute), and Lei Zhang (OPPO Research Institute)	7350

Test Time Adaptation With Regularized Loss for Weakly Supervised Salient Object Detection 7 Olga Veksler (University of Waterloo, Canada)	7360
MixTeacher: Mining Promising Labels With Mixed Scale Teacher for Semi-Supervised Object	7370
Liang Liu (Youtu Lab, Tencent), Boshen Zhang (Youtu Lab, Tencent), Jiangning Zhang (Youtu Lab, Tencent), Wuhao Zhang (Youtu Lab, Tencent), Zhenye Gan (Youtu Lab, Tencent), Guanzhong Tian (Zhejiang University), Wenbing Zhu (Rongcheer Co., Ltd), Yabiao Wang (Youtu Lab, Tencent), and Chengjie Wang (Youtu Lab, Tencent; Shanghai Jiao Tong University)	
 Exploring Incompatible Knowledge Transfer in Few-Shot Image Generation	7380
 Exploring Intra-Class Variation Factors With Learnable Cluster Prompts for Semi-Supervised Image Synthesis Yunfei Zhang (South China University of Technology), Xiaoyang Huo (South China University of Technology), Tianyi Chen (South China University of Technology), Si Wu (South China University of Technology; Peng Cheng Laboratory; PAZHOU LAB), and Hau San Wong (Department of Computer Science, City University of Hong Kong) 	7392
A Soma Segmentation Benchmark in Full Adult Fly Brain	7402
SDC-UDA: Volumetric Unsupervised Domain Adaptation Framework for Slice-Direction Continuous Cross-Modality Medical Image Segmentation	7412
Label-Free Liver Tumor Segmentation <i>Qixin Hu (Huazhong University of Science and Technology), Yixiong Chen</i> <i>(The Chinese University of Hong Kong, Shenzhen), Junfei Xiao (Johns</i> <i>Hopkins University), Shuwen Sun (The First Affiliated Hospital of</i> <i>Nanjing Medical University), Jieneng Chen (Johns Hopkins University),</i> <i>Alan L. Yuille (Johns Hopkins University), and Zongwei Zhou (Johns</i> <i>Hopkins University)</i>	7422

Interactive and Explainable Region-Guided Radiology Report Generation	3
A Loopback Network for Explainable Microvascular Invasion Classification	3
 Task-Specific Fine-Tuning via Variational Information Bottleneck for Weakly-Supervised Pathology Whole Slide Image Classification	4
YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors 7464 <i>Chien-Yao Wang (Academia Sinica, Taiwan), Alexey Bochkovskiy (Academia Sinica, Taiwan), and Hong-Yuan Mark Liao (Academia Sinica, Taiwan)</i>	
Two-Way Multi-Label Loss	6
Teaching Matters: Investigating the Role of Supervision in Vision Transformers	6
Label Information Bottleneck for Label Enhancement	7
Glocal Energy-Based Learning for Few-Shot Open-Set Recognition	7
Noisy Correspondence Learning With Meta Similarity Correction	7

 Hubs and Hyperspheres: Reducing Hubness and Improving Transductive Few-Shot Learning With Hyperspherical Embeddings
Coreset Sampling From Open-Set for Fine-Grained Self-Supervised Learning
Boosting Semi-Supervised Learning by Exploiting All Unlabeled Data
Trade-Off Between Robustness and Accuracy of Vision Transformers
Exploring and Utilizing Pattern Imbalance
Dynamic Conceptional Contrastive Learning for Generalized Category Discovery
Towards Better Decision Forests: Forest Alternating Optimization
Learning Debiased Representations via Conditional Attribute Interpolation
On the Pitfall of Mixup for Uncertainty Calibration
Class Relationship Embedded Learning for Source-Free Unsupervised Domain Adaptation 7619 Yixin Zhang (Institute of Artificial Intelligence, Hefei Comprehensive National Science Center; University of Science and Technology of China), Zilei Wang (University of Science and Technology of China), and Weinan He (University of Science and Technology of China)

 FeatureBooster: Boosting Feature Descriptors With a Lightweight Neural Network)
Guiding Pseudo-Labels With Uncertainty Estimation for Source-Free Unsupervised Domain Adaptation)
Divide and Adapt: Active Domain Adaptation via Customized Learning	
Understanding and Constructing Latent Modality Structures in Multi-Modal Representation Learning	
Deep Factorized Metric Learning	-

 Meta-Causal Learning for Single Domain Generalization	7683
Meta Omnium: A Benchmark for General-Purpose Learning-To-Learn Ondrej Bohdal (The University of Edinburgh), Yinbing Tian (Beijing University of Posts and Telecommunications), Yongshuo Zong (The University of Edinburgh), Ruchika Chavhan (The University of Edinburgh), Da Li (Samsung AI Center, Cambridge), Henry Gouk (The University of Edinburgh), Li Guo (Beijing University of Posts and Telecommunications), and Timothy Hospedales (The University of Edinburgh; Samsung AI Center, Cambridge)	7693
Robust Mean Teacher for Continual and Gradual Test-Time Adaptation Mario Döbler (University of Stuttgart), Robert A. Marsden (University of Stuttgart), and Bin Yang (University of Stuttgart)	7704
NAR-Former: Neural Architecture Representation Learning Towards Holistic Attributes Prediction Yun Yi (Xidian University), Haokui Zhang (Intellifusion; Harbin Institute of Technology, Shenzhen), Wenze Hu (Intellifusion), Nannan Wang (Xidian University), and Xiaoyu Wang (Intellifusion)	7715
Visual Query Tuning: Towards Effective Usage of Intermediate Representations for Paramete and Memory Efficient Transfer Learning <i>Cheng-Hao Tu (The Ohio State University), Zheda Mai (The Ohio State University), and Wei-Lun Chao (The Ohio State University)</i>	r 7725
 Architecture, Dataset and Model-Scale Agnostic Data-Free Meta-Learning Zixuan Hu (Tsinghua Shenzhen International Graduate School, China), Li Shen (JD Explore Academy, China), Zhenyi Wang (State University of New York at Buffalo, USA), Tongliang Liu (The University of Sydney, Australia), Chun Yuan (Tsinghua Shenzhen International Graduate School, China), and Dacheng Tao (JD Explore Academy, China) 	7736
GKEAL: Gaussian Kernel Embedded Analytic Learning for Few-Shot Class Incremental Task Huiping Zhuang (South China University of Technology, China), Zhenyu Weng (Nanyang Technological University, Singapore), Run He (South China University of Technology, China), Zhiping Lin (Nanyang Technological University, Singapore), and Ziqian Zeng (South China University of Technology, China)	7746

Mitigating Task Interference in Multi-Task Learning via Explicit Task Routing With
Chuntao Ding (Beijing Jiaotong University), Zhichao Lu (Sun Yat-sen University), Shangguang Wang (Beijing University of Posts and Telecommunications), Ran Cheng (Southern University of Science and Technology), and Vishnu Naresh Boddeti (Michigan State University)
Boundary Unlearning: Rapid Forgetting of Deep Networks via Shifting the Decision Boundary 7766
Min Chen (Huazhong University of Science and Technology, China), Weizhuo Gao (Huazhong University of Science and Technology, China), Gaoyang Liu (Huazhong University of Science and Technology, China), Kai Peng (Huazhong University of Science and Technology, China), and Chen Wang (Huazhong University of Science and Technology, China)
Task Difficulty Aware Parameter Allocation & Regularization for Lifelong Learning
Learning To Retain While Acquiring: Combating Distribution-Shift in Adversarial Data-Free Knowledge Distillation
Gaurav Patel (Purdue University, Indian Institute of Technology Hyderabad), Konda Reddy Mopuri (Purdue University, Indian Institute of Technology Hyderabad), and Qiang Qiu (Purdue University, Indian Institute of Technology Hyderabad)
A Unified Knowledge Distillation Framework for Deep Directed Graphical Models
Coaching a Teachable Student
Adaptive Plasticity Improvement for Continual Learning
 Improving Generalization of Meta-Learning With Inverted Regularization at Inner-Level 7826 Lianzhe Wang (Tsinghua University), Shiji Zhou (Tsinghua University), Shanghang Zhang (Peking University), Xu Chu (Tsinghua University), Heng Chang (Tsinghua University), and Wenwu Zhu (Tsinghua University)
Trainable Projected Gradient Method for Robust Fine-Tuning
Imitation Learning As State Matching via Differentiable Physics

 Improved Distribution Matching for Dataset Condensation	356
A General Regret Bound of Preconditioned Gradient Method for DNN Training	366
 From Node Interaction To Hop Interaction: New Effective and Scalable Graph Learning Paradigm	376
Constructing Deep Spiking Neural Networks From Artificial Neural Networks With Knowledge Distillation	386
Rate Gradient Approximation Attack Threats Deep Spiking Neural Networks	396
MobileOne: An Improved One Millisecond Mobile Backbone	3 07
Understanding Masked Autoencoders via Hierarchical Latent Variable Models	€918
Training Debiased Subnetworks With Contrastive Weight Pruning	929

One-Shot Model for Mixed-Precision Quantization Ivan Koryakovskiy (n/a), Alexandra Yakovleva (n/a), Valentin Buchnev (n/a), Temur Isaev (Huawei Technologies Co. Ltd.), and Gleb Odinokikh (n/a)	7939
Solving Oscillation Problem in Post-Training Quantization Through a Theoretical Perspective	7950
Adaptive Data-Free Quantization Biao Qian (Hefei University of Technology, China), Yang Wang (Hefei University of Technology, China), Richang Hong (Hefei University of Technology, China), and Meng Wang (Hefei University of Technology, China)	7960
Learning To Generate Image Embeddings With User-Level Differential Privacy Zheng Xu (Google Research), Maxwell Collins (Google Research), Yuxiao Wang (Google Research), Liviu Panait (Google Research), Sewoong Oh (Google Research), Sean Augenstein (Google Research), Ting Liu (Google Research), Florian Schroff (Google Research), and H. Brendan McMahan (Google Research)	7969
Cross-GAN Auditing: Unsupervised Identification of Attribute Level Similarities and Differences Between Pretrained Generative Models	7981
HandsOff: Labeled Dataset Generation With No Additional Human Annotations Austin Xu (Georgia Institute of Technology; Amazon AWS), Mariya I. Vasileva (Georgia Institute of Technology; Amazon AWS), Achal Dave (Georgia Institute of Technology; Amazon AWS), and Arjun Seshadri (Georgia Institute of Technology; Amazon AWS)	.7991
Attribute-Preserving Face Dataset Anonymization via Latent Code Optimization Simone Barattin (University of Trento), Christos Tzelepis (Queen Mary University of London), Ioannis Patras (Queen Mary University of London), and Nicu Sebe (University of Trento)	. 8001
Fake It Till You Make It: Learning Transferable Representations From Synthetic ImageNet Clones Mert Bülent Sarıyıldız (NAVER LABS Europe; Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK), Karteek Alahari (Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK), Diane Larlus (NAVER LABS Europe), and Yannis Kalantidis (NAVER LABS Europe)	. 8011

Unbiased Multiple Instance Learning for Weakly Supervised Video Anomaly Detection 8022 Hui Lv (PCAlab, Nanjing University of Science and Technology; Singapore Management University; Nanyang Technological University), Zhongqi Yue (Nanyang Technological University), Qianru Sun (Singapore Management University), Bin Luo (Alibaba Group), Zhen Cui (PCAlab, Nanjing University of Science and Technology), and Hanwang Zhang (Nanyang Technological University)
Multimodal Industrial Anomaly Detection via Hybrid Fusion
FedSeg: Class-Heterogeneous Federated Learning for Semantic Segmentation
Decentralized Learning With Multi-Headed Distillation
Learning Federated Visual Prompt in Null Space for MRI Reconstruction
Federated Learning With Data-Agnostic Distribution Fusion
CaPriDe Learning: Confidential and Private Decentralized Learning Based on Encryption-Friendly Distillation Loss
RiDDLE: Reversible and Diversified De-Identification With Latent Encryptor

Multi-View Adversarial Discriminator: Mine the Non-Causal Factors for Object Detection in Unseen Domains	03
Single Image Backdoor Inversion via Robust Smoothed Classifiers	13
Effective Ambiguity Attack Against Passport-Based DNN Intellectual Property Protection Schemes Through Fully Connected Layer Substitution	23
Color Backdoor: A Robust Poisoning Attack in Color Space	33
Adversarially Robust Neural Architecture Search for Graph Neural Networks	43
 Minimizing Maximum Model Discrepancy for Transferable Black-Box Targeted Attacks 813 Anqi Zhao (University of Electronic Science and Technology of China), Tong Chu (University of Electronic Science and Technology of China), Yahao Liu (University of Electronic Science and Technology of China), Wen Li (University of Electronic Science and Technology of China), Jingjing Li (University of Electronic Science and Technology of China), and Lixin Duan (University of Electronic Science and Technology of China) 	53
StyLess: Boosting the Transferability of Adversarial Examples	63
 Improving the Transferability of Adversarial Samples by Path-Augmented Method	73

 Feature Separation and Recalibration for Adversarial Robustness	183
CFA: Class-Wise Calibrated Fair Adversarial Training	193
Revisiting Residual Networks for Adversarial Robustness	202
 Privacy-Preserving Adversarial Facial Features	212
Edge-Aware Regional Message Passing Controller for Image Forgery Localization	222

Poster-Wed-AM

Swept-Angle Synthetic Wavelength Interferometry Alankar Kotwal (Carnegie Mellon University), Anat Levin (Technion), and Ioannis Gkioulekas (Carnegie Mellon University)	8233
RefSR-NeRF: Towards High Fidelity and Super Resolution View Synthesis Xudong Huang (Huawei Noah's Ark Lab), Wei Li (Huawei Noah's Ark Lab), Jie Hu (Huawei Noah's Ark Lab), Hanting Chen (Huawei Noah's Ark Lab), and Yunhe Wang (Huawei Noah's Ark Lab)	8244
FreeNeRF: Improving Few-Shot Neural Rendering With Free Frequency Regularization Jiawei Yang (Stanford University; Nvidia Research), Marco Pavone (Stanford University; Nvidia Research), and Yue Wang (Stanford University; Nvidia Research)	8254

Local-to-Global Registration for Bundle-Adjusting Neural Radiance Fields Yue Chen (National Key Laboratory of Human-Machine Hybrid Augmented Intelligence; Xi'an Jiaotong University), Xingyu Chen (National Key Laboratory of Human-Machine Hybrid Augmented Intelligence; Xi'an Jiaotong University), Xuan Wang (Ant Group; Tencent AI Lab), Qi Zhang (Ant Group Tencent AI Lab), Yu Guo (National Key Laboratory of Human-Machine Hybrid Augmented Intelligence; Xi'an Jiaotong University; Tencent AI Lab), Ying Shan (Tencent AI Lab), and Fei Wang (National Key Laboratory of Human-Machine Hybrid Augmented Intelligence; Xi'an Jiaotong University)	.8264
Nerflets: Local Radiance Fields for Efficient Structure-Aware 3D Scene Representation From 2D Supervision Xiaoshuai Zhang (Google Research; University of California, San Diego), Abhijit Kundu (Google Research), Thomas Funkhouser (Google Research), Leonidas Guibas (Google Research; Stanford University), Hao Su (University of California, San Diego), and Kyle Genova (Google Research)	8274
NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects Zhiwen Yan (National University of Singapore), Chen Li (National University of Singapore), and Gim Hee Lee (National University of Singapore)	8285
Grid-Guided Neural Radiance Fields for Large Urban Scenes Linning Xu (The Chinese University of Hong Kong), Yuanbo Xiangli (The Chinese University of Hong Kong), Sida Peng (Zhejiang University), Xingang Pan (Max Planck Institute for Informatics), Nanxuan Zhao (Adobe Research), Christian Theobalt (Max Planck Institute for Informatics), Bo Dai (Shanghai Al Laboratory), and Dahua Lin (The Chinese University of Hong Kong; Shanghai Al Laboratory)	.8296
Learning Neural Duplex Radiance Fields for Real-Time View Synthesis Ziyu Wan (City University of Hong Kong), Christian Richardt (Meta Reality Labs), Aljaž Božič (Meta Reality Labs), Chao Li (Meta Reality Labs), Vijay Rengarajan (Meta Reality Labs), Seonghyeon Nam (Meta Reality Labs), Xiaoyu Xiang (Meta Reality Labs), Tuotuo Li (Meta Reality Labs), Bo Zhu (Meta Reality Labs), Rakesh Ranjan (Meta Reality Labs), and Jing Liao (City University of Hong Kong)	8307
EditableNeRF: Editing Topologically Varying Neural Radiance Fields by Key Points Chengwei Zheng (Tsinghua University), Wenbin Lin (Tsinghua University), and Feng Xu (Tsinghua University)	.8317
Real-Time Neural Light Field on Mobile Devices Junli Cao (Snap Inc.), Huan Wang (Northeastern University), Pavlo Chemerys (Snap Inc.), Vladislav Shakhrai (Snap Inc.), Ju Hu (Snap Inc.), Yun Fu (Northeastern University), Denys Makoviichuk (Snap Inc.), Sergey Tulyakov (Snap Inc.), and Jian Ren (Snap Inc.)	. 8328

StyleRF: Zero-Shot 3D Style Transfer of Neural Radiance Fields Kunhao Liu (Nanyang Technological UniversityMax Planck Institute for Informatics), Fangneng Zhan (University of Ottawa; MBZUAI), Yiwen Chen (Nanyang Technological University), Jiahui Zhang (Nanyang Technological University), Yingchen Yu (Nanyang Technological University), Abdulmotaleb El Saddik (University of Ottawa; MBZUAI), Shijian Lu (Nanyang Technological University), and Eric P. Xing (Carnegie Mellon University; MBZUAI)	8338
Point2Pix: Photo-Realistic Point Cloud Rendering via Neural Radiance Fields Tao Hu (The Chinese University of Hong Kong), Xiaogang Xu (The Chinese University of Hong Kong), Shu Liu (SmartMore), and Jiaya Jia (The Chinese University of Hong Kong; SmartMore)	8349
Pointersect: Neural Rendering With Cloud-Ray Intersection Jen-Hao Rick Chang (Apple), Wei-Yu Chen (Apple; Carnegie Mellon University), Anurag Ranjan (Apple), Kwang Moo Yi (Apple; University of British Columbia), and Oncel Tuzel (Apple)	8359
 Neural Fields Meet Explicit Geometric Representations for Inverse Rendering of Urban Scenes Zian Wang (NVIDIA; University of Toronto; Vector Institute), Tianchang Shen (NVIDIA; University of Toronto; Vector Institute), Jun Gao (NVIDIA; University of Toronto; Vector Institute), Shengyu Huang (NVIDIA; ETH Zürich), Jacob Munkberg (NVIDIA), Jon Hasselgren (NVIDIA), Zan Gojcic (NVIDIA), Wenzheng Chen (NVIDIA; University of Toronto; Vector Institute), and Sanja Fidler (NVIDIA; University of Toronto; Vector Institute) 	8370
DANI-Net: Uncalibrated Photometric Stereo by Differentiable Shadow Handling, Anisotropic Reflectance Modeling, and Neural Inverse Rendering	8381
MAIR: Multi-View Attention Inverse Rendering With 3D Spatially-Varying Lighting Estimation. JunYong Choi (Korea Institute of Science and Technology(KIST); Korea University), SeokYeong Lee (Korea Institute of Science and Technology(KIST); Korea University), Haesol Park (Korea Institute of Science and Technology(KIST)), Seung-Won Jung (Korea University), Ig-Jae Kim (Korea Institute of Science and Technology(KIST); University of Science and Technology; Yonsei University), and Junghyun Cho (Korea Institute of Science and Technology(KIST))	.8392
Weakly-Supervised Single-View Image Relighting Renjiao Yi (National University of Defense Technology), Chenyang Zhu (National University of Defense Technology), and Kai Xu (National University of Defense Technology)	. 8402

Controllable Light Diffusion for Portraits	12
RGBD2: Generative Scene Synthesis via Incremental View Inpainting Using RGBD Diffusion	~~
Jiabao Lei (South China University of Technology), Jiapeng Tang (Technical University of Munich), and Kui Jia (South China University of Technology; Peng Cheng Laboratory)	<u>'</u> ∠
Neural Lens Modeling	35
RealFusion: 360° Reconstruction of Any Object From a Single Image	16
Neuralangelo: High-Fidelity Neural Surface Reconstruction	56
PermutoSDF: Fast Multi-View Reconstruction With Implicit Surfaces Using Permutohedral Lattices	56
NeuDA: Neural Deformable Anchor for High-Fidelity Implicit Surface Reconstruction	76
NEF: Neural Edge Fields for 3D Parametric Curve Reconstruction From Multi-View Images 848 Yunfan Ye (National University of Defense Technology), Renjiao Yi (National University of Defense Technology), Zhirui Gao (National University of Defense Technology), Chenyang Zhu (National University of Defense Technology), Zhiping Cai (National University of Defense Technology), and Kai Xu (National University of Defense Technology)	36
 NeuralField-LDM: Scene Generation With Hierarchical Latent Diffusion Models	96

SinGRAF: Learning a 3D Generative Radiance Field for a Single Scene	07
 Painting 3D Nature in 2D: View Synthesis of Natural Scenes From a Single Semantic Mask 85⁻ Shangzhan Zhang (Zhejiang University), Sida Peng (Zhejiang University), Tianrun Chen (Zhejiang University), Linzhan Mou (Zhejiang University), Haotong Lin (Zhejiang University), Kaicheng Yu (Alibaba Group), Yiyi Liao (Zhejiang University), and Xiaowei Zhou (Zhejiang University) 	18
 Quantitative Manipulation of Custom Attributes on 3D-Aware Image Synthesis	29
NeRFInvertor: High Fidelity NeRF-GAN Inversion for Single-Shot Real Image Animation	39
 PREIM3D: 3D Consistent Precise Image Attribute Editing From a Single Image	49
Unsupervised 3D Shape Reconstruction by Part Retrieval and Assembly	59
DiffSwap: High-Fidelity and Controllable Face Swapping via 3D-Aware Masked Diffusion 856 Wenliang Zhao (Tsinghua University), Yongming Rao (Tsinghua University), Weikang Shi (Tsinghua University), Zuyan Liu (Tsinghua University), Jie Zhou (Tsinghua University), and Jiwen Lu (Tsinghua University)	68
 Fine-Grained Face Swapping via Regional GAN Inversion	78
Logical Consistency and Greater Descriptive Power for Facial Hair Attribute Learning	88

Learning a 3D Morphable Face Reflectance Model From Low-Cost Data	3
StyleGAN Salon: Multi-View Latent Optimization for Pose-Invariant Hairstyle Transfer	Э
FaceLit: Neural 3D Relightable Faces 8619 Anurag Ranjan (Apple), Kwang Moo Yi (Apple; The University of British 8619 Columbia), Jen-Hao Rick Chang (Apple), and Oncel Tuzel (Apple)	Э
 FitMe: Deep Photorealistic 3D Morphable Model Avatars	Э
NeuWigs: A Neural Dynamic Model for Volumetric Hair Capture and Animation	1
SadTalker: Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation	2
 High-Fidelity Clothed Avatar Reconstruction From a Single Image	2

Music-Driven Group Choreography Nhat Le (AIOZ, Singapore), Thang Pham (AIOZ, Singapore), Tuong Do (AIOZ, Singapore), Erman Tjiputra (AIOZ, Singapore), Quang D. Tran (AIOZ, Singapore), and Anh Nguyen (University of Liverpool, UK)	8673
Hand Avatar: Free-Pose Hand Animation and Rendering From Monocular Video Xingyu Chen (Xiaobing.Al), Baoyuan Wang (Xiaobing.Al), and Heung-Yeung Shum (Xiaobing.Al)	8683
Biomechanics-Guided Facial Action Unit Detection Through Force Modeling Zijun Cui (Rensselaer Polytechnic Institute), Chenyi Kuang (Rensselaer Polytechnic Institute), Tian Gao (IBM Research), Kartik Talamadupula (IBM Research), and Qiang Ji (Rensselaer Polytechnic Institute)	8694
Zero-Shot Pose Transfer for Unrigged Stylized 3D Characters Jiashun Wang (Carnegie Mellon University), Xueting Li (NVIDIA), Sifei Liu (NVIDIA), Shalini De Mello (NVIDIA), Orazio Gallo (NVIDIA), Xiaolong Wang (UC San Diego), and Jan Kautz (NVIDIA)	8704
Invertible Neural Skinning Yash Kant (University of Toronto; Snap Research), Aliaksandr Siarohin (Snap Research), Riza Alp Guler (Snap Research), Menglei Chai (Snap Research), Jian Ren (Snap Research), Sergey Tulyakov (Snap Research), and Igor Gilitschenski (University of Toronto)	8715
BEDLAM: A Synthetic Dataset of Bodies Exhibiting Detailed Lifelike Animated Motion Michael J. Black (Max Planck Institute for Intelligent Systems, Germany), Priyanka Patel (Max Planck Institute for Intelligent Systems, Germany), Joachim Tesch (Max Planck Institute for Intelligent Systems, Germany), and Jinlong Yang (Google)	8726
DIFu: Depth-Guided Implicit Function for Clothed Human Reconstruction Dae-Young Song (Electronics and Telecommunications Research Institute, South Korea; Chungnam National University, South Korea), HeeKyung Lee (Electronics and Telecommunications Research Institute, South Korea), Jeongil Seo (Electronics and Telecommunications Research Institute, South Korea), and Donghyeon Cho (Chungnam National University, South Korea)	8738
Complete 3D Human Reconstruction From a Single Incomplete Image Junying Wang (University of Southern California), Jae Shin Yoon (Adobe Research), Tuanfeng Y. Wang (Adobe Research), Krishna Kumar Singh (Adobe Research), and Ulrich Neumann (University of Southern California)	8748
Learning Neural Volumetric Representations of Dynamic Humans in Minutes Chen Geng (Zhejiang University), Sida Peng (Zhejiang University), Zhen Xu (Zhejiang University), Hujun Bao (Zhejiang University), and Xiaowei Zhou (Zhejiang University)	8759
Marching-Primitives: Shape Abstraction From Signed Distance Function Weixiao Liu (National University of Singapore; Johns Hopkins University), Yuwei Wu (National University of Singapore), Sipu Ruan (National University of Singapore), and Gregory S. Chirikjian (National University of Singapore)	8771

Learning Analytical Posterior Probability for Human Mesh Recovery	1
MagicPony: Learning Articulated 3D Animals in the Wild	2
Visual-Tactile Sensing for In-Hand Object Reconstruction	3
Command-Driven Articulated Object Understanding and Manipulation	3
 Target-Referenced Reactive Grasping for Dynamic Objects	4
 NeuralDome: A Neural Modeling Pipeline on Multi-View Human-Object Interactions	4

A2J-Transformer: Anchor-to-Joint Transformer Network for 3D Interacting Hand Pose Estimation From a Single RGB Image Changlong Jiang (Huazhong University of Science and Technology, Wuhan 430074, China), Yang Xiao (Huazhong University of Science and Technology, Wuhan 430074, China), Cunlin Wu (Huazhong University of Science and Technology, Wuhan 430074, China), Mingyang Zhang (Alibaba Group), Jinghong Zheng (Huazhong University of Science and Technology, Wuhan 430074, China), Zhiguo Cao (Huazhong University of Science and Technology, Wuhan 430074, China), and Joey Tianyi Zhou (Technology and Research (A*STAR), Singapore; Technology and Research (A*STAR), Singapore)	8846
TRACE: 5D Temporal Regression of Avatars With Dynamic Cameras in 3D Environments Yu Sun (Harbin Institute of Technology), Qian Bao (Explore Academy of JD.com), Wu Liu (Explore Academy of JD.com), Tao Mei (HiDream.ai Inc.), and Michael J. Black (Max Planck Institute for Intelligent Systems)	8856
BITE: Beyond Priors for Improved Three-D Dog Pose Estimation Nadine Rüegg (ETH Zürich, Switzerland; Max Planck Institute for Intelligent Systems, Germany), Shashank Tripathi (Max Planck Institute for Intelligent Systems, Germany), Konrad Schindler (ETH Zürich, Switzerland), Michael J. Black (Max Planck Institute for Intelligent Systems, Germany), and Silvia Zuffi (IMATI-CNR, Italy)	8867
PoseFormerV2: Exploring Frequency Domain for Efficient and Robust 3D Human Pose Estima 8877 Qitao Zhao (Shandong University), Ce Zheng (Center for Research in Computer Vision, University of Central Florida), Mengyuan Liu (Key Laboratory of Machine Perception, Peking University), Pichao Wang (Amazon Prime Video), and Chen Chen (Center for Research in Computer Vision, University of Central Florida)	ition.
 Global-to-Local Modeling for Video-Based 3D Human Pose and Shape Estimation Xiaolong Shen (Zhejiang University; DAMO Academy, Alibaba Group), Zongxin Yang (Zhejiang University), Xiaohan Wang (Zhejiang University), Jianxin Ma (DAMO Academy, Alibaba Group), Chang Zhou (DAMO Academy, Alibaba Group), and Yi Yang (Zhejiang University) 	8887
TokenHPE: Learning Orientation Tokens for Efficient Head Pose Estimation via Transformers 8897 Cheng Zhang (Central China Normal University, China), Hai Liu (Central China Normal University, China), Yongjian Deng (Beijing University of Technology, China; Engineering Research Center of Intelligence Perception and Autonomous Control, Ministry of Education, China), Bochen Xie (City University of Hong Kong, China), and Youfu Li (City University of Hong Kong, China)	
GFIE: A Dataset and Baseline for Gaze-Following From 2D to 3D in Indoor Environments Zhengxi Hu (IRAIS, Nankai University; tjKLIR, Nankai University; TBI center, Nankai University), Yuxue Yang (IRAIS, Nankai University), Xiaolin Zhai (IRAIS, Nankai University; tjKLIR, Nankai University; TBI center, Nankai University), Dingye Yang (IRAIS, Nankai University; tjKLIR, Nankai University; TBI center, Nankai University), Bohan Zhou (IRAIS, Nankai University), and Jingtai Liu (IRAIS, Nankai University; tjKLIR, Nankai University; TBI center, Nankai University)	8907

Robot Structure Prior Guided Temporal Attention for Camera-to-Robot Pose Estimation From Image Sequence
Rigidity-Aware Detection for 6D Object Pose Estimation
Crowd3D: Towards Hundreds of People Reconstruction From a Single Image
Object Pose Estimation With Statistical Guarantees: Conformal Keypoint Detection andGeometric Uncertainty PropagationHeng Yang (NVIDIA Research) and Marco Pavone (NVIDIA Research)
expOSE: Accurate Initialization-Free Projective Factorization Using Exponential Regularization
Neural Voting Field for Camera-Space 3D Hand Pose Estimation
Two-View Geometry Scoring Without Correspondences
Four-View Geometry With Unknown Radial Distortion
 BKinD-3D: Self-Supervised 3D Keypoint Discovery From Multi-View Videos
 BAAM: Monocular 3D Pose and Shape Reconstruction With Bi-Contextual Attention Module and Attention-Guided Modeling

Multi-Object Manipulation via Object-Centric Neural Scattering Functions
Neural Part Priors: Learning To Optimize Part-Based Object Completion in RGB-D Scans 9032 Aleksei Bokhovkin (Technical University of Munich) and Angela Dai (Technical University of Munich)
 Panoptic Lifting for 3D Scene Understanding With Neural Fields
 Virtual Occlusions Through Implicit Depth
Multiview Compressive Coding for 3D Reconstruction
Behind the Scenes: Density Fields for Single View Reconstruction
VoxFormer: Sparse Voxel Transformer for Camera-Based 3D Semantic Scene Completion 9087 Yiming Li (NYU), Zhiding Yu (NVIDIA), Christopher Choy (NVIDIA), Chaowei Xiao (NVIDIA; ASU), Jose M. Alvarez (NVIDIA), Sanja Fidler (NVIDIA; University of Toronto; Vector Institute), Chen Feng (NYU), and Anima Anandkumar (NVIDIA; Caltech)
Renderable Neural Radiance Map for Visual Navigation
Learning To Detect Mirrors From Videos via Dual Correspondences

Temporally Consistent Online Depth Estimation Using Point-Based Fusion
Zero-Shot Dual-Lens Super-Resolution
 Fully Self-Supervised Depth Estimation From Defocus Clue
MVImgNet: A Large-Scale Dataset of Multi-View Images
Revisiting the Stack-Based Inverse Tone Mapping
Combining Implicit-Explicit View Correlation for Light Field Semantic Segmentation
3D Spatial Multimodal Knowledge Accumulation for Scene Graph Prediction in Point Cloud 9182 Mingtao Feng (Xidian University), Haoran Hou (Xidian University), Liang Zhang (Xidian University), Zijie Wu (Hunan University), Yulan Guo (Sun Yat-Sen University), and Ajmal Mian (The University of

Western Australia)

Role of Transients in Two-Bounce Non-Line-of-Sight Imaging	92
3D Concept Learning and Reasoning From Multi-View Images	02
Viewpoint Equivariance for Multi-View 3D Object Detection	13
 Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction	23
 BEV@DC: Bird's-Eye View Assisted Training for Depth Completion	33
Collaboration Helps Camera Overtake LiDAR in 3D Detection	43

Uni3D: A Unified Baseline for Multi-Dataset 3D Object Detection Bo Zhang (Shanghai Al Laboratory), Jiakang Yuan (School of Information Science and Technology, Fudern University), Botian Shi (Shanghai Al Laboratory), Tao Chen (School of Information Science and Technology, Fudern University), Yikang Li (Shanghai Al Laboratory), and Yu Qiao (Shanghai Al Laboratory)	9253
Towards Building Self-Aware Object Detectors via Reliable Uncertainty Quantification and Calibration <i>Kemal Oksuz (Five Al Ltd., United Kingdom), Tom Joy (Five Al Ltd., United Kingdom), and Puneet K. Dokania (Five Al Ltd., United Kingdom)</i>	9263
Depth Estimation From Camera Image and mmWave Radar Point Cloud Akash Deep Singh (University of California, Los Angeles), Yunhao Ba (University of California, Los Angeles), Ankur Sarker (University of California, Los Angeles), Howard Zhang (University of California, Los Angeles), Achuta Kadambi (University of California, Los Angeles), Stefano Soatto (University of California, Los Angeles), Mani Srivastava (University of California, Los Angeles), and Alex Wong (Yale University)	. 9275
SGLoc: Scene Geometry Encoding for Outdoor LiDAR Localization Wen Li (Xiamen University, China), Shangshu Yu (Xiamen University, China), Cheng Wang (Xiamen University, China), Guosheng Hu (Oosto, UK), Siqi Shen (Xiamen University, China), and Chenglu Wen (Xiamen University, China)	9286
ConQueR: Query Contrast Voxel-DETR for 3D Object Detection Benjin Zhu (The Chinese University of Hong Kong), Zhe Wang (The Chinese University of Hong Kong), Shaoshuai Shi (Max Planck Institute for Informatics), Hang Xu (Huawei Noah's Ark Lab), Lanqing Hong (Huawei Noah's Ark Lab), and Hongsheng Li (The Chinese University of Hong Kong; Centre for Perceptual and Interactive Intelligence)	. 9296
DeepMapping2: Self-Supervised Large-Scale LiDAR Map Optimization Chao Chen (New York University), Xinhao Liu (New York University), Yiming Li (New York University), Li Ding (University of Rochester), and Chen Feng (New York University)	.9306
Towards Unsupervised Object Detection From LiDAR Point Clouds Lunjun Zhang (University of Toronto), Anqi Joyce Yang (University of Toronto), Yuwen Xiong (University of Toronto), Sergio Casas (University of Toronto), Bin Yang (University of Toronto), Mengye Ren (University of Toronto), and Raquel Urtasun (University of Toronto)	9317
MoDAR: Using Motion Forecasting for 3D Object Detection in Point Cloud Sequences Yingwei Li (Waymo LLC), Charles R. Qi (Waymo LLC), Yin Zhou (Waymo LLC), Chenxi Liu (Waymo LLC), and Dragomir Anguelov (Waymo LLC)	. 9329
Hidden Gems: 4D Radar Scene Flow Learning Using Cross-Modal Supervision Fangqiang Ding (University of Edinburgh), Andras Palffy (Delft University of Technology), Dariu M. Gavrila (Delft University of Technology), and Chris Xiaoxuan Lu (University of Edinburgh)	. 9340
Instant Domain Augmentation for LiDAR Semantic Segmentation Kwonyoung Ryu (POSTECH), Soonmin Hwang (Camegie Mellon University), and Jaesik Park (POSTECH)	. 9350

Less Is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation 9361

Li Li (Durham University, UK), Hubert P. H. Shum (Durham University,
UK), and Toby P. Breckon (Durham University, UK)

MarS3D: A Plug-and-Play Motion-Aware Model for Semantic Segmentation on Multi-Scan 3D Point Clouds	9372
Jiahui Liu (The University of Hong Kong), Chirui Chang (The University of Hong Kong), Jianhui Liu (The University of Hong Kong), Xiaoyang Wu (The University of Hong Kong), Lan Ma (TCL AI Lab), and Xiaojuan Qi (The University of Hong Kong)	-
3D Semantic Segmentation in the Wild: Learning Generalized Models for Adverse-Condition Point Clouds	9382
Novel Class Discovery for 3D Point Cloud Semantic Segmentation)393
GD-MAE: Generative Decoder for MAE Pre-Training on LiDAR Point Clouds	9403
Masked Scene Contrast: A Scalable Framework for Unsupervised 3D Representation Learning 9415	
Xiaoyang Wu (The University of Hong Kong), Xin Wen (The University of Hong Kong), Xihui Liu (The University of Hong Kong), and Hengshuang Zhao (The University of Hong Kong)	
Open-Set Semantic Segmentation for Point Clouds via Adversarial Prototype Framework 9 Jianan Li (University of Chinese Academy of Sciences, China; Chinese Academy of Sciences, Beijing, China) and Qiulei Dong (University of Chinese Academy of Sciences, China; Chinese Academy of Sciences, China; Chinese Academy of Sciences, Beijing, China))425
ACL-SPC: Adaptive Closed-Loop System for Self-Supervised Point Cloud Completion)435

 Fast Point Cloud Generation With Straight Flows
PointVector: A Vector Representation in Point Cloud Analysis
ProxyFormer: Proxy Alignment Assisted Point Cloud Completion With Missing Part Sensitive Transformer
FAC: 3D Representation Learning via Foreground Aware Feature Contrast
Rethinking the Approximation Error in 3D Surface Fitting for Point Cloud Normal Estimation. 9486 Hang Du (Hikvision Research Institute, Hangzhou, China), Xuejun Yan (Hikvision Research Institute, Hangzhou, China), Jingjing Wang (Hikvision Research Institute, Hangzhou, China), Di Xie (Hikvision Research Institute, Hangzhou, China), and Shiliang Pu (Hikvision Research Institute, Hangzhou, China)
PointCert: Point Cloud Classification With Deterministic Certified Robustness Guarantees 9496 Jinghuai Zhang (Duke University), Jinyuan Jia (UIUC), Hongbin Liu (Duke University), and Neil Zhenqiang Gong (Duke University)
Robust Multiview Point Cloud Registration With Reliable Pose Graph Initialization and History Reweighting
Visual Prompt Multi-Modal Tracking
Progressive Neighbor Consistency Mining for Correspondence Pruning

Geometric Visual Similarity Learning in 3D Medical Image Self-Supervised Pre-Training 9538 Yuting He (Southeast University), Guanyu Yang (Southeast University), Rongjun Ge (Nanjing University of Aeronautics and Astronautics), Yang Chen (Southeast University), Jean-Louis Coatrieux (University of Rennes), Boyu Wang (Western University), and Shuo Li (Case Western Reserve University)	
Unsupervised Visible-Infrared Person Re-Identification via Progressive Graph Matching and Alternate Learning	
Domain Generalized Stereo Matching via Hierarchical Visual Transformation	
Unsupervised Cumulative Domain Adaptation for Foggy Scene Optical Flow	
 PVO: Panoptic Visual Odometry	
BAEFormer: Bi-Directional and Early Interaction Transformers for Bird's Eye View Semantic Segmentation	
Are We Ready for Vision-Centric Driving Streaming Perception? The ASAP Benchmark	

Visual Exemplar Driven Task-Prompting for Unified Perception in Autonomous Driving 96 Xiwen Liang (Shenzhen Campus of Sun Yat-sen University), Minzhe Niu (Huawei Noah's Ark Lab), Jianhua Han (Huawei Noah's Ark Lab), Hang Xu (Huawei Noah's Ark Lab), Chunjing Xu (Huawei Noah's Ark Lab), and Xiaodan Liang (Shenzhen Campus of Sun Yat-sen University)	611
 MixSim: A Hierarchical Framework for Mixed Reality Traffic Simulation	622
 Uncovering the Missing Pattern: Unified Framework Towards Trajectory Imputation and Prediction	632
MotionDiffuser: Controllable Multi-Agent Motion Prediction Using Diffusion	644
Learning Human-to-Robot Handovers From Point Clouds	654
 Phone2Proc: Bringing Robust Robots Into Our Chaotic World	665
GazeNeRF: 3D-Aware Gaze Redirection With Neural Radiance Fields	676
Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking	686
Autoregressive Visual Tracking	697

OpenGait: Revisiting Gait Recognition Towards Better Practicality	7
Pose-Disentangled Contrastive Learning for Self-Supervised Facial Representation	7
Identity-Preserving Talking Face Generation With Landmark and Appearance Priors	Э
DF-Platter: Multi-Face Heterogeneous Deepfake Dataset	Э
Physics-Driven Diffusion Models for Impact Sound Synthesis From Videos	Э
Mofusion: A Framework for Denoising-Diffusion-Based Motion Synthesis	C
Adaptive Global Decay Process for Event Cameras	1
 Frame-Event Alignment and Fusion Network for High Frame Rate Tracking	1

Exploring Discontinuity for Video Frame Interpolation Sangjin Lee (Yonsei University), Hyeongmin Lee (Yonsei University), Chajin Shin (Yonsei University), Hanbin Son (Yonsei University), and Sangyoun Lee (Yonsei University; Korea Institute of Science and Technology (KIST))	9791
AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation Zhen Li (Nankai University), Zuo-Liang Zhu (Nankai University), Ling-Hao Han (Nankai University), Qibin Hou (Nankai University), Chun-Le Guo (Nankai University), and Ming-Ming Cheng (Nankai University)	9801
Frame Interpolation Transformer and Uncertainty Guidance Markus Plack (University of Bonn, Germany), Karlis Martins Briedis (Department of Computer Science, ETH Zürich, Switzerland; DisneyResearch\Studios, Zürich, Switzerland), Abdelaziz Djelouah (DisneyResearch\Studios, Zürich, Switzerland), Matthias B. Hullin (University of Bonn, Germany), Markus Gross (Department of Computer Science, ETH Zürich, Switzerland; Department of Computer Science, ETH Zürich, Switzerland), and Christopher Schroers (DisneyResearch\Studios, Zürich, Switzerland)	9811
A Simple Baseline for Video Restoration With Grouped Spatial-Temporal Shift Dasong Li (CUHK MMLab), Xiaoyu Shi (CUHK MMLab), Yi Zhang (CUHK MMLab), Ka Chun Cheung (NVIDIA AI Technology Center), Simon See (NVIDIA AI Technology Center), Xiaogang Wang (CUHK MMLab; CPII under InnoHK), Hongwei Qin (SenseTime Research), and Hongsheng Li (CUHK MMLab; CPII under InnoHK)	9822
Recurrent Homography Estimation Using Homography-Guided Image Warping and Focus Transformer Si-Yuan Cao (Zhejiang University), Runmin Zhang (Zhejiang University), Lun Luo (Zhejiang University), Beinan Yu (Zhejiang University), Zehua Sheng (Zhejiang University), Junwei Li (Zhejiang University), and Hui-Liang Shen (Zhejiang University)	9833
 HyperCUT: Video Sequence From a Single Blurry Image Using Unsupervised Ordering Bang-Dang Pham (VinAl Research, Vietnam), Phong Tran (VinAl Research, Vietnam; MBZUAI, UAE), Anh Tran (VinAl Research, Vietnam), Cuong Pham (VinAl Research, Vietnam; Posts & Telecommunications Inst. of Tech, Vietnam), Rang Nguyen (VinAl Research, Vietnam), and Minh Hoai (VinAl Research, Vietnam; Stony Brook University, USA) 	9843
Indescribable Multi-Modal Spatial Evaluator Lingke Kong (Manteia Tech), X. Sharon Qi (University of California, Los Angeles), Qijin Shen (Fuzhou University), Jiacheng Wang (Xiamen University), Jingyi Zhang (Xiamen University), Yanle Hu (Mayo Clinic Arizona), and Qichao Zhou (Manteia Tech)	9853
Structured Kernel Estimation for Photon-Limited Deconvolution Yash Sanghvi (Purdue University), Zhiyuan Mao (Purdue University), and Stanley H. Chan (Purdue University)	9863
Polarized Color Image Denoising Zhuoxiao Li (The University of Tokyo), Haiyang Jiang (The University of Tokyo), Mingdeng Cao (The University of Tokyo), and Yinqiang Zheng (The University of Tokyo)	9873

Uncertainty-Aware Unsupervised Image Deblurring With Deep Residual Prior	9883
Low-Light Image Enhancement via Structure Modeling and Guidance) 893
Learning Sample Relationship for Exposure Correction	904
Spatially Adaptive Self-Supervised Learning for Real-World Image Denoising	914
Quantum-Inspired Spectral-Spatial Pyramid Network for Hyperspectral Image Classification 9 Jie Zhang (University of Macau, China), Yongshan Zhang (China University of Geosciences, China; University of Macau, China), and Yicong Zhou (University of Macau, China)	925
Generative Diffusion Prior for Unified Image Restoration and Enhancement	935
Ground-Truth Free Meta-Learning for Deep Compressive Sampling	947

Recognizability Embedding Enhancement for Very Low-Resolution Face Recognition and Quality Estimation
Jacky Chen Long Chai (Yonsei University), Tiong-Sik Ng (Yonsei University), Cheng-Yaw Low (Institute for Basic Science), Jaewoo Park (Yonsei University), and Andrew Beng Jin Teoh (Yonsei University)
 An Image Quality Assessment Dataset for Portraits
Bitstream-Corrupted JPEG Images Are Restorable: Two-Stage Compensation and Alignment Framework for Image Restoration
 Image Super-Resolution Using T-Tetromino Pixels
CUF: Continuous Upsampling Filters
OPE-SR: Orthogonal Position Encoding for Designing a Parameter-Free Upsampling Module in Arbitrary-Scale Image Super-Resolution
 Implicit Diffusion Models for Continuous Super-Resolution

Pixels, Regions, and Objects: Multiple Enhancement for Salient Object Detection
VILA: Learning Image Aesthetics From User Comments With Vision-Language Pretraining 10041 Junjie Ke (Google Research), Keren Ye (Google Research), Jiahui Yu (Google Research), Yonghui Wu (Google Research), Peyman Milanfar (Google Research), and Feng Yang (Google Research)
Image Cropping With Spatial-Aware Feature and Rank Consistency
B-Spline Texture Coefficients Estimator for Screen Content Image Super-Resolution
Delving StyleGAN Inversion for Image Editing: A Foundation Latent Space Viewpoint
Learning Dynamic Style Kernels for Artistic Style Transfer
SVGformer: Representation Learning for Continuous Vector Graphics Using Transformers . 10093 Defu Cao (University of Southern California), Zhaowen Wang (Adobe Research, Inc.), Jose Echevarria (Adobe Research, Inc.), and Yan Liu (University of Southern California)
Learning Generative Structure Prior for Blind Text Image Super-Resolution
Unsupervised Domain Adaption With Pixel-Level Discriminator for Image-Aware Layout Generation
Scaling Up GANs for Text-to-Image Synthesis

 ERNIE-ViLG 2.0: Improving Text-to-Image Diffusion Model With Knowledge-Enhanced Mixture-of-Denoising-Experts
Inversion-Based Style Transfer With Diffusion Models
Shifted Diffusion for Text-to-Image Generation
LayoutDM: Discrete Diffusion Model for Controllable Layout Generation
Unpaired Image-to-Image Translation With Shortest Path Regularization
DiffCollage: Parallel Generation of Large Content With Diffusion Models
Wavelet Diffusion Models Are Fast and Scalable Image Generators

 VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation
 MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation 10219 Ludan Ruan (Renmin University of China), Yiyang Ma (Peking University), Huan Yang (Microsoft Research), Huiguo He (Microsoft
Research), Ber Liu (Microsoft Research), Janiong Fu (Microsoft Research), Nicholas Jing Yuan (Microsoft Research), Qin Jin (Renmin University of China), and Baining Guo (Microsoft Research)
Adaptive Human Matting for Dynamic Videos
LVQAC: Lattice Vector Quantization Coupled With Spatially Adaptive Companding for Efficient Learned Image Compression
Hierarchical B-Frame Video Coding Using Two-Layer CANF Without Motion Coding
Towards High-Quality and Efficient Video Super-Resolution via Spatial-Temporal Data Overfitting
 HNeRV: A Hybrid Neural Representation for Videos
Regularize Implicit Neural Representation by Itself

SMPConv: Self-Moving Point Representations for Continuous Convolution
Long Range Pooling for 3D Large-Scale Scene Understanding
Progressive Random Convolutions for Single Domain Generalization
BiFormer: Vision Transformer With Bi-Level Routing Attention
Beyond Attentive Tokens: Incorporating Token Importance and Diversity for Efficient Vision Transformers
BioNet: A Biologically-Inspired Network for Face Recognition
Dual-Bridging With Adversarial Noise Generation for Domain Adaptive rPPG Estimation 10355 Jingda Du (Hong Kong Baptist University, Hong Kong), Si-Qi Liu (Hong Kong Baptist University, Hong Kong), Bochao Zhang (Hong Kong Baptist University, Hong Kong), and Pong C. Yuen (Hong Kong Baptist University, Hong Kong)
On Data Scaling in Masked Image Modeling

 Hard Patches Mining for Masked Image Modeling	375
Evolved Part Masking for Self-Supervised Learning	386
BASiS: Batch Aligned Spectral Embedding Space	396
OmniMAE: Single Model Masked Pretraining on Images and Videos	406
ViTs for SITS: Vision Transformers for Satellite Image Time Series	418
Probabilistic Debiasing of Scene Graphs	429
Blind Video Deflickering by Neural Filtering With a Flawed Atlas	439

 SCOTCH and SODA: A Transformer Video Shadow Detection Framework
MAGVIT: Masked Generative Video Transformer
Improving Robustness of Semantic Segmentation to Motion-Blur Using Class-Centric Augmentation
MobileVOS: Real-Time Video Object Segmentation Contrastive Learning Meets Knowledge Distillation
Self-Supervised Video Forensics by Audio-Visual Anomaly Detection
Frame Flexible Network
System-Status-Aware Adaptive Network for Online Streaming Video Understanding
MDQE: Mining Discriminative Query Embeddings To Segment Occluded Instances on Challenging Videos
Minghan Li (Hong Kong Polytechnic University), Shuai Li (Hong Kong Polytechnic University), Wangmeng Xiang (Hong Kong Polytechnic University), and Lei Zhang (Hong Kong Polytechnic University)
Spatio-Temporal Pixel-Level Contrastive Learning-Based Source-Free Domain Adaptation for Video Semantic Segmentation

Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation
Chat2Map: Efficient Scene Mapping From Multi-Ego Conversations
Audio-Visual Grouping Network for Sound Localization From Mixtures
Language-Guided Audio-Visual Source Separation via Trimodal Consistency
Fine-Grained Audible Video Description10585Xuyang Shen (OpenNLPLab), Dong Li (Shanghai Artificial Intelligence10585Laboratory), Jinxing Zhou (Hefei University of Technology), Zhen Qin(OpenNLPLab), Bowen He (OpenNLPLab), Xiaodong Han (OpenNLPLab), AixuanLi (Northwestern Polytechnical University), Yuchao Dai (NorthwesternPolytechnical University), Lingpeng Kong (The University of HongKong), Meng Wang (Hefei University of Technology), Yu Qiao (ShanghaiArtificial Intelligence Laboratory), and Yiran Zhong (ShanghaiArtificial Intelligence Laboratory)10585
Neural Koopman Pooling: Control-Inspired Temporal Dynamics Encoding for Skeleton-Based Action Recognition
Learning Discriminative Representations for Skeleton Based Action Recognition
Therbligs in Action: Video Understanding Through Motion Primitives
Search-Map-Search: A Frame Selection Paradigm for Action Recognition

Re2TAL: Rewiring Pretrained Video Backbones for Reversible Temporal Action Localization 10637 Chen Zhao (King Abdullah University of Science and Technology (KAUST), Saudi Arabia), Shuming Liu (King Abdullah University of Science and Technology (KAUST), Saudi Arabia), Karttikeya Mangalam (UC Berkeley, US), and Bernard Ghanem (King Abdullah University of Science and Technology (KAUST), Saudi Arabia)
Boosting Weakly-Supervised Temporal Action Localization With Text Information
Perception and Semantic Aware Regularization for Sequential Confidence Calibration 10658 Zhenghua Peng (South China University of Technology), Yu Luo (South China University of Technology), Tianshui Chen (Guangdong University of Technology), Keke Xu (South China University of Technology), and Shuangping Huang (South China University of Technology; Pazhou Laboratory)
NewsNet: A Novel Dataset for Hierarchical Temporal Segmentation
Tell Me What Happened: Unifying Text-Guided Video Completion via Multimodal Masked Video Generation
Leveraging Temporal Context in Low Representational Power Regimes
Cap4Video: What Can Auxiliary Captions Do for Text-Video Retrieval?
 Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning 10714 Antoine Yang (PSL Research University), Arsha Nagrani (Google Research), Paul Hongsuck Seo (Google Research), Antoine Miech (DeepMind), Jordi Pont-Tuset (Google Research), Ivan Laptev (PSL Research University), Josef Sivic (Czech Technical University, Prague), and Cordelia Schmid (Google Research)

Procedure-Aware Pretraining for Instructional Video Understanding
VindLU: A Recipe for Effective Video-and-Language Pretraining
Modular Memorability: Tiered Representations for Video Memorability Prediction
Multivariate, Multi-Frequency and Multimodal: Rethinking Graph Neural Networks for Emotion Recognition in Conversation
Distilling Cross-Temporal Contexts for Continuous Sign Language Recognition
You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model
Layout-Based Causal Inference for Object Navigation

Improving Vision-and-Language Navigation by Generating Future-View Image Semantics 10803 Jialu Li (UNC Chapel Hill) and Mohit Bansal (UNC Chapel Hill)
A New Path: Scaling Vision-and-Language Navigation With Synthetic Instructions and Imitation Learning
A-Cap: Anticipation Captioning With Commonsense Knowledge
Are Deep Neural Networks SMARTer Than Second Graders?
Fusing Pre-Trained Language Models With Multimodal Prompts Through Reinforcement Learning
Youngjae Yu (Yonsei University), Jiwan Chung (Yonsei University), Heeseung Yun (Seoul National University), Jack Hessel (Allen Institute for Artificial Intelligence), Jae Sung Park (Allen Institute for Artificial Intelligence; University of Washington), Ximing Lu (Allen Institute for Artificial Intelligence; University of Washington), Rowan Zellers (OpenAl), Prithviraj Ammanabrolu (Allen Institute for Artificial Intelligence), Ronan Le Bras (Allen Institute for Artificial Intelligence), Gunhee Kim (Seoul National University), and Yejin Choi (Allen Institute for Artificial Intelligence; University of Washington)
Language Adaptive Weight Generation for Multi-Task Visual Grounding
From Images to Textual Prompts: Zero-Shot Visual Question Answering With Frozen Large Language Models

Diversity-Aware Meta Visual Prompting
 Hierarchical Prompt Learning for Multi-Task Learning
Task Residual for Tuning Vision-Language Models10899Tao Yu (National University of Singapore; University of Science and10899Technology of China), Zhihe Lu (National University of Singapore), XinJin (National University of Singapore; University of Science andTechnology of China), Zhibo Chen (University of Science and Technology of China), Zhibo Chen (University of Science and Technology of China), Zhibo Chen (University of Science and Technology of China), And Xinchao Wang (National University of Singapore)
CREPE: Can Vision-Language Foundation Models Reason Compositionally?
LOCATE: Localize and Transfer Object Parts for Weakly Supervised Affordance Grounding 10922 Gen Li (University of Edinburgh), Varun Jampani (Google Research), Deqing Sun (Google Research), and Laura Sevilla-Lara (University of Edinburgh)
Overlooked Factors in Concept-Based Explanations: Dataset Choice, Concept Learnability, and Human Capability
Grounding Counterfactual Explanation of Image Classifiers to Textual Concept Space 10942 Siwon Kim (Data Science and Artificial Intelligence Lab, Seoul National University, Korea), Jinoh Oh (Amazon Alexa AI, USA), Sungjin Lee (Amazon Alexa AI, USA), Seunghak Yu (NAVER Search US), Jaeyoung Do (Amazon Alexa AI, USA), and Tara Taghavi (Amazon Alexa AI, USA)
GIVL: Improving Geographical Inclusivity of Vision-Language Models With Pre-Training Methods
Learning Bottleneck Concepts in Image Classification

SceneTrilogy: On Human Scene-Sketch and Its Complementarity With Photo and Text 10972 <i>Pinaki Nath Chowdhury (University of Surrey, United Kingdom;</i> <i>FlyTek-Surrey Joint Research Centre on Artificial Intelligence), Ayan</i> <i>Kumar Bhunia (University of Surrey, United Kingdom), Aneeshan Sain</i> <i>(University of Surrey, United Kingdom; FlyTek-Surrey Joint Research</i> <i>Centre on Artificial Intelligence), Subhadeep Koley (University of</i> <i>Surrey, United Kingdom; FlyTek-Surrey Joint Research Centre on</i> <i>Artificial Intelligence), Tao Xiang (University of Surrey, United</i> <i>Kingdom; FlyTek-Surrey Joint Research Centre on Artificial</i> <i>Intelligence), and Yi-Zhe Song (University of Surrey, United Kingdom;</i> <i>FlyTek-Surrey Joint Research Centre on Artificial Intelligence)</i>
Context-Aware Alignment and Mutual Masking for 3D-Language Pre-Training
MaskCLIP: Masked Self-Distillation Advances Contrastive Language-Image Pretraining 10995 Xiaoyi Dong (University of Science and Technology of China), Jianmin Bao (Microsoft Research Asia), Yinglin Zheng (Xiamen University), Ting Zhang (University of Science and Technology of China), Dongdong Chen (Microsoft Cloud + Al), Hao Yang (Microsoft Research Asia), Ming Zeng (Xiamen University), Weiming Zhang (University of Science and Technology of China), Lu Yuan (Microsoft Cloud + Al), Dong Chen (Microsoft Research Asia), Fang Wen (Microsoft Research Asia), and Nenghai Yu (University of Science and Technology of China)
CLIPPO: Image-and-Language Understanding From Pixels Only
 ViLEM: Visual-Language Error Modeling for Image-Text Retrieval
Non-Contrastive Learning Meets Language-Image Pre-Training

HAAV: Hierarchical Aggregation of Augmented Views for Image Captioning 11039 Chia-Wen Kuo (Georgia Tech) and Zsolt Kira (Georgia Tech)
Learning Attribute and Class-Specific Representation Duet for Fine-Grained Fashion Analysis
Yang Jiao (Amazon), Yan Gao (Amazon), Jingjing Meng (Amazon), Jin Shang (Amazon), and Yi Sun (Amazon)
Learning Instance-Level Representation for Large-Scale Multi-Modal Pretraining in E-Commerce
Yang Jin (Peking University; ByteDance Inc.), Yongzhi Li (ByteDance Inc.), Zehuan Yuan (ByteDance Inc.), and Yadong Mu (Peking University)
Cross-Image-Attention for Conditional Embeddings in Deep Metric Learning
Asymmetric Feature Fusion for Image Retrieval
Improving Zero-Shot Generalization and Robustness of Multi-Modal Models
 Hint-Aug: Drawing Hints From Foundation Vision Transformers Towards Boosted Few-Shot Parameter-Efficient Tuning
 Visual DNA: Representing and Comparing Images Using Distributions of Neuron Activations 11113 Benjamin Ramtoula (Mobile Robotics Group, University of Oxford), Matthew Gadd (Mobile Robotics Group, University of Oxford), Paul Newman (Mobile Robotics Group, University of Oxford), and Daniele De Martini (Mobile Robotics Group, University of Oxford)
End-to-End 3D Dense Captioning With Vote2Cap-DETR

Improving Table Structure Recognition With Visual-Alignment Sequential Coordinate Modeling..... 11134

Yongshuai Huang (Huawei Technologies Ltd.), Ning Lu (Huawei Technologies Ltd.), Dapeng Chen (Huawei Technologies Ltd.), Yibo Li (Peking University), Zecheng Xie (Huawei Technologies Ltd.), Shenggao Zhu (Huawei Technologies Ltd.), Liangcai Gao (Peking University), and Wei Peng (Huawei Technologies Ltd.)
Region-Aware Pretraining for Open-Vocabulary Object Detection With Vision Transformers 11144 Dahun Kim (Google Research, Brain Team), Anelia Angelova (Google Research, Brain Team), and Weicheng Kuo (Google Research, Brain Team)
Mobile User Interface Element Detection via Adaptively Prompt Tuning
Learning To Generate Text-Grounded Mask for Open-World Semantic Segmentation From Only Image-Text Pairs
ZegCLIP: Towards Adapting CLIP for Zero-Shot Semantic Segmentation
Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection
Learning Conditional Attributes for Compositional Zero-Shot Learning
CLIP-S4: Language-Guided Self-Supervised Semantic Segmentation

StructVPR: Distill Structural Knowledge With Weighting Samples for Visual Place Recognition
Yanqing Shen (Xi'an Jiaotong University), Sanping Zhou (Xi'an Jiaotong University), Jingwen Fu (Xi'an Jiaotong University), Ruotong Wang (Xi'an Jiaotong University), Shitao Chen (Xi'an Jiaotong University), and Nanning Zheng (Xi'an Jiaotong University)
UniDAformer: Unified Domain Adaptive Panoptic Segmentation Transformer via Hierarchical Mask Calibration
Primitive Generation and Semantic-Related Alignment for Universal Zero-Shot Segmentation 11238
Shuting He (Zhejiang University), Henghui Ding (Nanyang Technological University), and Wei Jiang (Zhejiang University; Nanyang Technological University)
Inferring and Leveraging Parts From Object Shape for Improving Semantic Image Synthesis 11248 Yuxiang Wei (Harbin Institute of Technology; The Hong Kong Polytechnic University), Zhilong Ji (Tomorrow Advancing Life), Xiaohe Wu (Harbin Institute of Technology), Jinfeng Bai (Harbin Institute of Technology), Lei Zhang (The Hong Kong Polytechnic University), and Wangmeng Zuo (Harbin Institute of Technology)
Compositor: Bottom-Up Clustering and Compositing for Robust Part and Object Segmentation 11259 Ju He (Johns Hopkins University), Jieneng Chen (Johns Hopkins
University), Ming-Xian Lin (Chinese Academy of Sciences), Qihang Yu (Johns Hopkins University), and Alan L. Yuille (Johns Hopkins University)
A Strong Baseline for Generalized Few-Shot Semantic Segmentation
DynaMask: Dynamic Mask Selection for Instance Segmentation
Focus on Details: Online Multi-Object Tracking With Diverse Fine-Grained Representation 11289 Hao Ren (Huazhong University of Science and Technology), Shoudong Han (Huazhong University of Science and Technology), Huilin Ding (Huazhong University of Science and Technology), Ziwen Zhang (Huazhong University of Science and Technology), Hongwei Wang (Huazhong University of Science and Technology), and Faquan Wang (Huazhong University of Science and Technology)

Dynamic Focus-Aware Positional Queries for Semantic Segmentation
Beyond mAP: Towards Better Evaluation of Instance Segmentation
Learning Orthogonal Prototypes for Generalized Few-Shot Semantic Segmentation
 Weakly Supervised Semantic Segmentation via Adversarial Learning of Classifier and Reconstructor
SemiCVT: Semi-Supervised Convolutional Vision Transformer for Semantic Segmentation 11340 Huimin Huang (Zhejiang University), Shiao Xie (Zhejiang University), Lanfen Lin (Zhejiang University), Ruofeng Tong (Zhejiang University; Zhejiang Lab), Yen-Wei Chen (Ritsumeikan University), Yuexiang Li (Tencent Jarvis Lab), Hong Wang (Tencent Jarvis Lab), Yawen Huang (Tencent Jarvis Lab), and Yefeng Zheng (Tencent Jarvis Lab)
Augmentation Matters: A Simple-Yet-Effective Approach to Semi-Supervised SemanticSegmentationZhen Zhao (University of Sydney), Lihe Yang (Nanjing University),Sifan Long (Jilin University), Jimin Pi (Baidu Inc.), Luping Zhou(University of Sydney), and Jingdong Wang (Baidu Inc.)
The Devil Is in the Points: Weakly Semi-Supervised Instance Segmentation via Point-Guided Mask Representation
Class-Incremental Exemplar Compression for Class-Incremental Learning

Full or Weak Annotations? An Adaptive Strategy for Budget-Constrained Annotation Campaigns.... 11381

Javier Gamazo Tejero (University of Bern), Martin S. Zinkernagel (Inselspital Bern, Switzerland), Sebastian Wolf (Inselspital Bern, Switzerland), Raphael Sznitman (University of Bern), and Pablo Márquez-Neila (University of Bern)
Learning Common Rationale To Improve Self-Supervised Representation for Fine-Grained Visual Recognition Problems
 Detection Hub: Unifying Object Detection Datasets via Query Adaptation on Language Embedding
Self-Supervised AutoFlow
DETR With Additional Global Aggregation for Cross-Domain Weakly Supervised Object Detection
Detecting Everything in the Open World: Towards Universal Object Detection
PROB: Probabilistic Objectness for Open World Object Detection

University), and Serena Yeung (Stanford University)

Annealing-Based Label-Transfer Learning for Open World Object Detection
Learning Transformation-Predictive Representations for Detection and Description of Local Features
Bridging Precision and Confidence: A Train-Time Loss for Calibrating Object Detection 11474 Muhammad Akhtar Munir (Mohamed bin Zayed University of Al; Information Technology University), Muhammad Haris Khan (Mohamed bin Zayed University of Al), Salman Khan (Mohamed bin Zayed University of Al; Australian National University), and Fahad Shahbaz Khan (Mohamed bin Zayed University of Al; Linkoping University)
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection
Zero-Shot Generative Model Adaptation via Image-Specific Prompt Learning
AutoLabel: CLIP-Based Framework for Open-Set Video Domain Adaptation
Bidirectional Copy-Paste for Semi-Supervised Medical Image Segmentation
Directional Connectivity-Based Segmentation of Medical Images

Ambiguous Medical Image Segmentation Using Diffusion Models
Sparse Multi-Modal Graph Transformer With Shared-Context Processing for Representation Learning of Giga-Pixel Images
METransformer: Radiology Report Generation by Transformer With Multiple Learnable Expert Tokens
 Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision
Rethinking Out-of-Distribution (OOD) Detection: Masked Image Modeling Is All You Need 11578 Jingyao Li (The Chinese University of Hong Kong), Pengguang Chen (SmartMore), Zexin He (The Chinese University of Hong Kong), Shaozuo Yu (The Chinese University of Hong Kong), Shu Liu (SmartMore), and Jiaya Jia (The Chinese University of Hong Kong; SmartMore)
MetaViewer: Towards a Unified Multi-View Representation
Deep Incomplete Multi-View Clustering With Cross-View Partial Sample and Prototype Alignment
RONO: Robust Discriminative Learning With Noisy Labels for 2D-3D Cross-Modal Retrieval . 11610 Yanglin Feng (Sichuan University), Hongyuan Zhu (Sichuan Zhiqian Technology Co., Ltd), Dezhong Peng (Sichuan University), Xi Peng (Sichuan University), and Peng Hu (Sichuan University)

Mind the Label Shift of Augmentation-Based Graph OOD Generalization
Zero-Shot Model Diagnosis
ProtoCon: Pseudo-Label Refinement via Online Clustering and Prototypical Consistency for Efficient Semi-Supervised Learning
Fine-Grained Classification With Noisy Labels
Twin Contrastive Learning With Noisy Labels
RMLVQA: A Margin Loss Approach for Visual Question Answering With Language Biases 11671 Abhipsa Basu (Vision and AI Lab, Indian Institute of Science, Bangalore), Sravanti Addepalli (Vision and AI Lab, Indian Institute of Science, Bangalore), and R. Venkatesh Babu (Vision and AI Lab, Indian Institute of Science, Bangalore)
Generative Bias for Robust Visual Question Answering
On-the-Fly Category Discovery

Co-Training 2L Submodels for Visual Recognition
Neural Dependencies Emerging From Learning Massive Categories
MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation
Towards Better Stability and Adaptability: Improve Online Self-Training for Model Adaptation in Semantic Segmentation
DARE-GRAM: Unsupervised Domain Adaptation Regression by Aligning Inverse Gram Matrices 11744 Ismail Nejjar (EPFL, Switzerland), Qin Wang (ETH Zurich, Switzerland), and Olga Fink (EPFL, Switzerland)
Equiangular Basis Vectors
Enhanced Multimodal Representation Learning With Cross-Modal KD
Decompose, Adjust, Compose: Effective Normalization by Playing With Frequency for Domain Generalization
Back to the Source: Diffusion-Driven Adaptation To Test-Time Corruption

Deep Frequency Filtering for Domain Generalization
Generalizable Implicit Neural Representations via Instance Pattern Composers
Train-Once-for-All Personalization
Mod-Squad: Designing Mixtures of Experts As Modular Multi-Task Learners
 Few-Shot Class-Incremental Learning via Class-Aware Bilateral Distillation
Multi-Mode Online Knowledge Distillation for Self-Supervised Visual Representation
Kaiyou Song (Megvii Technology), Jin Xie (Megvii Technology), Shan Zhang (Megvii Technology), and Zimeng Luo (Megvii Technology)
Dense Network Expansion for Class Incremental Learning
Class Attention Transfer Based Knowledge Distillation
Dealing With Cross-Task Class Discrimination in Online Continual Learning

 Real-Time Evaluation in Online Continual Learning: A New Hope	
DisWOT: Student Architecture Search for Distillation WithOut Training	
CODA-Prompt: COntinual Decomposed Attention-Based Prompting for Rehearsal-Free Continual Learning	
EcoTTA: Memory-Efficient Continual Test-Time Adaptation via Self-Distilled Regularization11920 Junha Song (Qualcomm AI Research; KAIST), Jungsoo Lee (Qualcomm AI Research), In So Kweon (KAIST), and Sungha Choi (Qualcomm AI Research)	
Achieving a Better Stability-Plasticity Trade-Off via Auxiliary Networks in Continual Learning	
 PA&DA: Jointly Sampling Path and Data for Consistent NAS	
Accelerating Dataset Distillation via Model Augmentation	

Multi-Agent Automated Machine Learning
Transformer-Based Learned Optimization
Solving Relaxations of MAP-MRF Problems: Combinatorial In-Face Frank-Wolfe Directions 11980 Vladimir Kolmogorov (Institute of Science and Technology Austria (ISTA), Austria)
HOTNAS: Hierarchical Optimal Transport for Neural Architecture Search
Disentangled Representation Learning for Unsupervised Neural Quantization
FFCV: Accelerating Training by Removing Data Bottlenecks
Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks
FIANCEE: Faster Inference of Adversarial Networks via Conditional Early Exits
Gradient-Based Uncertainty Attribution for Explainable Bayesian Deep Learning
How To Prevent the Continuous Damage of Noises To Model Training?
--
Genie: Show Me the Data for Quantization
OpenMix: Exploring Outlier Samples for Misclassification Detection
Data-Free Sketch-Based Image Retrieval
GLeaD: Improving GANs With a Generator-Leading Task
Learning on Gradients: Generalized Artifacts Representation for GAN-Generated Images Detection
Adversarial Normalization: I Can Visualize Everything (ICE)
 Semi-Supervised Hand Appearance Recovery via Structure Disentanglement and Dual Adversarial Discrimination

Look Around for Anomalies: Weakly-Supervised Anomaly Detection via Context-Motion Relational Learning
Diversity-Measurable Anomaly Detection
 Cloud-Device Collaborative Adaptation to Continual Changing Environments in the Real-World 12157 Yulu Gan (Peking University), Mingjie Pan (Peking University), Rongyu Zhang (The Chinese University of Hong Kong, Shenzhen), Zijian Ling (Imperial College London), Lingran Zhao (Peking University), Jiaming Liu (Peking University), and Shanghang Zhang (Peking University)
How To Prevent the Poor Performance Clients for Personalized Federated Learning? 12167 <i>Zhe Qu (Central South University), Xingyu Li (Mississippi State</i> <i>University), Xiao Han (University of South Florida), Rui Duan (Central</i> <i>South University), Chengchao Shen (Central South University), and</i> <i>Lixing Chen (Shanghai Jiaotong University)</i>
DynaFed: Tackling Client Data Heterogeneity With Global Dynamics
Elastic Aggregation for Federated Optimization
Breaching FedMD: Image Recovery via Paired-Logits Inversion Attack
Learning To Measure the Point Cloud Reconstruction Loss in a Representation Space 12208 <i>Tianxin Huang (Zhejiang University), Zhonggan Ding (Tencent YouTu</i> <i>Lab), Jiangning Zhang (Tencent YouTu Lab), Ying Tai (Tencent YouTu</i> <i>Lab), Zhenyu Zhang (Tencent YouTu Lab), Mingang Chen (Shanghai</i> <i>Development Center of Computer Software Technology), Chengjie Wang</i> <i>(Tencent YouTu Lab), and Yong Liu (Zhejiang University)</i>

Backdoor Cleansing With Unlabeled Data	;
Backdoor Defense via Deconfounded Representation Learning	•
Defending Against Patch-Based Backdoor Attacks on Self-Supervised Learning)
Backdoor Attacks Against Deep Image Compression via Adaptive Frequency Trigger)
CAP: Robust Point Cloud Classification via Semantic and Structural Modeling)
 Evading DeepFake Detectors via Adversarial Statistical Consistency	
Enhancing the Self-Universality for Transferable Targeted Attacks	
Black-Box Sparse Adversarial Attack via Multi-Objective Optimisation	

Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression	2
Seasoning Model Soups for Robustness to Adversarial and Natural Distribution Shifts 1231 Francesco Croce (University of Tübingen), Sylvestre-Alvise Rebuffi (DeepMind), Evan Shelhamer (DeepMind), and Sven Gowal (DeepMind)	3
 Towards Benchmarking and Assessing Visual Naturalness of Physical World Adversarial Attacks	4
MaLP: Manipulation Localization Using a Proactive Scheme	3
Poster-Wed-PM	
Polarimetric iToF: Measuring High-Fidelity Depth Through Scattering Media	3
 NeRFLix: High-Quality Neural View Synthesis by Learning a Degradation-Driven Inter-Viewpoint MiXer	3
SUDS: Scalable Urban Dynamic Scenes	5

	(Curriegie Menori University)	
DF	P-NeRF: Deblurred Neural Radiance Field With Physical Scene Priors	12386
	Dogyoon Lee (Yonsei University), Minhyeok Lee (Yonsei University),	
	Chajin Shin (Yonsei University), and Sangyoun Lee (Korea Institute of	
	Science and Technology (KIST))	

DyLiN: Making Light Field Networks Dynamic
Multi-Space Neural Radiance Fields
NeRFLight: Fast and Light Neural Radiance Fields Using a Shared Feature Grid
Cross-Guided Optimization of Radiance Fields With Multi-View Image Super-Resolution for High-Resolution Novel View Synthesis
NeuralEditor: Editing Neural Radiance Fields via Manipulating Point Clouds
DINER: Depth-Aware Image-Based NEural Radiance Fields
Modernizing Old Photos Using Multiple References via Photorealistic Style Transfer
Efficient Map Sparsification Based on 2D and 3D Discretized Grids
K-Planes: Explicit Radiance Fields in Space, Time, and Appearance

12-SDF: Intrinsic Indoor Scene Reconstruction and Editing via Raytracing in Neural SDFs 12489 Jingsen Zhu (State Key Lab of CAD&CG, Zhejiang University), Yuchi Huo (State Key Lab of CAD&CG, Zhejiang University; Zhejiang Lab), Qi Ye (Zhejiang University; Key Lab of CS&AUS of Zhejiang Province), Fujun Luan (Adobe Research), Jifan Li (State Key Lab of CAD&CG, Zhejiang University), Dianbing Xi (State Key Lab of CAD&CG, Zhejiang University), Lisha Wang (State Key Lab of CAD&CG, Zhejiang University), Rui Tang (KooLab, Manycore), Wei Hua (Zhejiang Lab), Hujun Bao (State Key Lab of CAD&CG, Zhejiang University), and Rui Wang (State Key Lab of CAD&CG, Zhejiang University)
Multi-View Inverse Rendering for Large-Scale Real-World Indoor Scenes
Inverse Rendering of Translucent Objects Using Physical and Neural Renderers
Accidental Light Probes
Humans As Light Bulbs: 3D Human Reconstruction From Thermal Reflection
 HumanGen: Generating Human Radiance Fields With Explicit Priors
 Seeing Through the Glass: Neural 3D Reconstruction of Object Inside a Transparent Container
3D Shape Reconstruction of Semi-Transparent Worms
Dionysus: Recovering Scene Structures by Dividing Into Semantic Pieces
SparseFusion: Distilling View-Conditioned Diffusion for 3D Reconstruction

PET-NeuS: Positional Encoding Tri-Planes for Neural Surfaces
 RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and Generation
Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation
 Infinite Photorealistic Worlds Using Procedural Generation
Diffusion-SDF: Text-To-Shape via Voxelized Diffusion
3D-Aware Multi-Class Image-to-Image Translation With NeRFs
Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures
Local 3D Editing via 3D Distillation of CLIP Knowledge
ShapeTalk: A Language Dataset and Framework for 3D Shape Edits and Deformations 12685 Panos Achlioptas (Stanford University; Snap Inc.), Ian Huang (Stanford University), Minhyuk Sung (KAIST), Sergey Tulyakov (Snap Inc.), and Leonidas Guibas (Stanford University)
CoralStyleCLIP: Co-Optimized Region and Layer Selection for Image Editing

 3D-Aware Face Swapping	2705
DCFace: Synthetic Face Generation With Dual Condition Diffusion Model	2715
 HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for Single-View 3D Hair Modeling	2726
DiffusionRig: Learning Personalized Priors for Facial Appearance Editing	2736
3D-Aware Facial Landmark Detection via Multi-View Consistent Training on Synthetic Data . 12 Libing Zeng (Texas A&M University), Lele Chen (OPPO US Research Center, InnoPeak Technology, Inc), Wentao Bao (Michigan State University), Zhong Li (OPPO US Research Center, InnoPeak Technology, Inc), Yi Xu (OPPO US Research Center, InnoPeak Technology, Inc), Junsong Yuan (University at Buffalo), and Nima Khademi Kalantari (Texas A&M University)	2747
Parametric Implicit Face Representation for Audio-Driven Facial Reenactment	2759
 MEGANE: Morphable Eyeglass and Avatar Network	2769
CodeTalker: Speech-Driven 3D Facial Animation With Discrete Motion Prior	2780

Reconstructing Signing Avatars From Video Using Linguistic Priors	91
HARP: Personalized Hand Reconstruction From a Monocular RGB Video	02
OmniAvatar: Geometry-Guided Controllable 3D Head Synthesis	14
 RaBit: Parametric Modeling of 3D Biped Cartoon Characters With a Topological-Consistent Dataset	25
Transfer4D: A Framework for Frugal Motion Capture and Deformation Transfer	36
CLOTH4D: A Dataset for Clothed Human Reconstruction	47
 Vid2Avatar: 3D Avatar Reconstruction From Videos in the Wild via Self-Supervised Scene Decomposition	58
 High-Fidelity 3D Human Digitization From Single 2K Resolution Images	69

Sampling Is Matter: Point-Guided 3D Human Mesh Reconstruction
gSDF: Geometry-Driven Signed Distance Functions for 3D Hand-Object Reconstruction 12890 Zerui Chen (PSL Research Univ., 75005 Paris, France), Shizhe Chen (PSL Research Univ., 75005 Paris, France), Cordelia Schmid (PSL Research Univ., 75005 Paris, France), and Ivan Laptev (PSL Research Univ., 75005 Paris, France)
Human Body Shape Completion With Implicit Shape and Flow Learning
ShapeClipper: Scalable 3D Shape Learning From Single-View Images via Geometric andCLIP-Based Consistency12912Zixuan Huang (Georgia Institute of Technology), Varun Jampani (GoogleResearch), Anh Thai (Georgia Institute of Technology), Yuanzhen Li(Google Research), Stefan Stojanov (Georgia Institute of Technology),and James M. Rehg (Georgia Institute of Technology)
PC2: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D Reconstruction 12923 Luke Melas-Kyriazi (Visual Geometry Group, Department of Engineering Science, University of Oxford), Christian Rupprecht (Visual Geometry Group, Department of Engineering Science, University of Oxford), and Andrea Vedaldi (Visual Geometry Group, Department of Engineering Science, University of Oxford)
NIKI: Neural Inverse Kinematics With Invertible Neural Networks for 3D Human Pose and Shape Estimation
ARCTIC: A Dataset for Dexterous Bimanual Hand-Object Manipulation
ACR: Attention Collaboration-Based Regressor for Arbitrary Two-Hand Reconstruction 12955 Zhengdi Yu (Tencent AI Lab; Durham University), Shaoli Huang (Tencent AI Lab), Chen Fang (Tencent AI Lab), Toby P. Breckon (Durham University), and Jue Wang (Tencent AI Lab)

MIME: Human-Aware 3D Scene Generation	5
CIMI4D: A Large Multimodal Climbing Motion Dataset Under Human-Scene Interactions 12977 Ming Yan (Xiamen University; Xiamen University; Xiamen University), Xin Wang (Xiamen University; Xiamen University), Yudi Dai (Xiamen University; Xiamen University), Siqi Shen (Xiamen University; Xiamen University), Chenglu Wen (Xiamen University; Xiamen University), Lan Xu (ShanghaiTech University), Yuexin Ma (ShanghaiTech University), and Cheng Wang (Xiamen University; Xiamen University)	7
 Harmonious Feature Learning for Interactive Hand-Object Pose Estimation	•
AssemblyHands: Towards Egocentric Activity Understanding via 3D Hand Pose Estimation . 12999 Takehiko Ohkawa (Meta Reality Labs; The University of Tokyo), Kun He (Meta Reality Labs), Fadime Sener (Meta Reality Labs), Tomas Hodan (Meta Reality Labs), Luan Tran (Meta Reality Labs), and Cem Keskin (Meta Reality Labs)	Э
A Characteristic Function-Based Method for Bottom-Up Human Pose Estimation	•
Unified Pose Sequence Modeling	£
Scene-Aware Egocentric 3D Human Pose Estimation	I
DiffPose: Toward More Reliable 3D Pose Estimation	I

MammalNet: A Large-Scale Video Benchmark for Mammal Recognition and Behavior Understanding
Jun Chen (King Abdullah University of Science and Technology (KAUST)), Ming Hu (King Abdullah University of Science and Technology (KAUST)), Darren J. Coker (King Abdullah University of Science and Technology (KAUST)), Michael L. Berumen (King Abdullah University of Science and
Technology (KAUST)), Blair Costelloe (Max Planck Institute of Animal Behavior; University of Konstanz), Sara Beery (Massachusetts Institute of Technology), Anna Rohrbach (University of California, Berkeley), and Mohamed Elhoseiny (King Abdullah University of Science and Technology (KAUST))
Learning 3D-Aware Image Synthesis With Unknown Pose Distribution
Pose Synchronization Under Multiple Pair-Wise Relative Poses
ObjectMatch: Robust Registration Using Canonical Object Correspondences
Learning Articulated Shape With Keypoint Pseudo-Labels From Web Images
Learning Correspondence Uncertainty via Differentiable Nonlinear Least Squares
Efficient Second-Order Plane Adjustment
Learning a Depth Covariance Function
Privacy-Preserving Representations Are Not Enough: Recovering Scene Content From Camera
Kunal Chelani (Chalmers University of Technology), Torsten Sattler (Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague), Fredrik Kahl (Chalmers University of Technology), and Zuzana Kukelova (Visual Recognition Group, Faculty of Electrical Engineering, Czech Technical University in Prague)

Objaverse: A Universe of Annotated 3D Objects
Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild
 HelixSurf: A Robust and Efficient Neural Implicit Surface Learning of Indoor Scenes With Iterative Intertwined Regularization
Visual Localization Using Imperfect 3D Models From the Internet
PRISE: Demystifying Deep Lucas-Kanade With Strongly Star-Convex Constraints for Multimodel Image Alignment
Scalable, Detailed and Mask-Free Universal Photometric Stereo
Enhanced Stable View Synthesis
End-to-End Vectorized HD-Map Construction With Piecewise Bezier Curve
DynamicStereo: Consistent Dynamic Depth From Stereo Videos
Shakes on a Plane: Unsupervised Depth Estimation From Unstabilized Photography

Gated Stereo: Joint Depth Estimation From Gated and Wide-Baseline Active Stereo Cues 13252 Stefanie Walz (Mercedes-Benz), Mario Bijelic (Princeton University), Andrea Ramazzina (Mercedes-Benz), Amanpreet Walia (Algolux), Fahim Mannan (Algolux), and Felix Heide (Mercedes-Benz)
K3DN: Disparity-Aware Kernel Estimation for Dual-Pixel Defocus Deblurring
 HRDFuse: Monocular 360° Depth Estimation by Collaboratively Learning Holistic-With-Regional Depth Distributions
OSRT: Omnidirectional Image Super-Resolution With Distortion-Aware Transformer 13283 Fanghua Yu (ShenZhen Key Lab of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Xintao Wang (ARC, Tencent PCG), Mingdeng Cao (ARC, Tencent PCG; The University of Tokyo), Gen Li (Platform Technologies, Tencent Online Video), Ying Shan (ARC, Tencent PCG), and Chao Dong (ShenZhen Key Lab of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shanghai Artificial Intelligence Laboratory)
Co-SLAM: Joint Coordinate and Sparse Parametric Encodings for Neural Real-Time SLAM 13293 Hengyi Wang (University College London), Jingwen Wang (University College London), and Lourdes Agapito (University College London)
 Few-Shot Non-Line-of-Sight Imaging With Signal-Surface Collaborative Regularization 13303 Xintong Liu (Tsinghua University), Jianyu Wang (Tsinghua University), Leping Xiao (Tsinghua University), Xing Fu (Tsinghua University), Lingyun Qiu (Tsinghua University; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications), and Zuoqiang Shi (Tsinghua University; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications)
NLOST: Non-Line-of-Sight Imaging With Transformer
Listening Human Behavior: 3D Human Pose Estimation With Acoustic Signals

Towards Domain Generalization for Multi-View 3D Object Detection in Bird-Eye-View 13333 Shuo Wang (University of Science and Technology of China), Xinhai Zhao (Huawei Noah's Ark Lab), Hai-Ming Xu (University of Adelaide), Zehui Chen (University of Science and Technology of China), Dameng Yu (Huawei Noah's Ark Lab), Jiahao Chang (University of Science and Technology of China), Zhen Yang (Huawei Noah's Ark Lab), and Feng Zhao (University of Science and Technology of China)
X3KD: Knowledge Distillation Across Modalities, Tasks and Stages for Multi-Camera 3D Object Detection
Phase-Shifting Coder: Predicting Accurate Orientation in Oriented Object Detection
Learned Two-Plane Perspective Prior Based Image Resampling for Efficient Object Detection 13364 Anurag Ghosh (Carnegie Mellon University), N. Dinesh Reddy (Carnegie Mellon University), Christoph Mertz (Carnegie Mellon University), and Srinivasa G. Narasimhan (Carnegie Mellon University)
Resource-Efficient RGBD Aerial Tracking
Toward RAW Object Detection: A New Benchmark and a New Model
Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object Detection
LiDAR-in-the-Loop Hyperparameter Optimization

Learning and Aggregating Lane Graphs for Urban Automated Driving
Center Focusing Network for Real-Time LiDAR Panoptic Segmentation
Adaptive Sparse Convolutional Networks With Global Context Enhancement for Faster Object Detection on Drone Images
MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based Self-Supervised Pre-Training
 ALSO: Automotive Lidar Self-Supervision by Occupancy Estimation
Unsupervised Intrinsic Image Decomposition With LiDAR Intensity

PVT-SSD: Single-Stage 3D Object Detector With Point-Voxel Transformer
LargeKernel3D: Scaling Up Kernels in 3D Sparse CNNs
 WeatherStream: Light Transport Automation of Single Image Deweathering
Mask3D: Pre-Training 2D Vision Transformers by Learning Masked 3D Priors
DSVT: Dynamic Sparse Voxel Transformer With Rotated Sets
IterativePFN: True Iterative Point Cloud Filtering
itKD: Interchange Transfer-Based Knowledge Distillation for 3D Object Detection
ISBNet: A 3D Point Cloud Instance Segmentation Network With Instance-Aware Sampling and Box-Aware Dynamic Convolution

Symmetric Shape-Preserving Autoencoder for Unsupervised Real Scene Point Cloud Completion . 13560

Changfeng Ma (Nanjing University, China), Yinuo Chen (Nanjing University, China), Pengxiao Guo (Nanjing University, China), Jie Guo (Nanjing University, China), Chongjun Wang (Nanjing University, China), and Yanwen Guo (Nanjing University, China)

Xiaoyu Tian (IIIS, Tsinghua University), Haoxi Ran (CMU), Yue Wang (NVIDIA), and Hang Zhao (IIIS, Tsinghua University)

SHS-Net: Learning Signed Hyper Surfaces for Oriented Normal Estimation of Point Clouds . 13591 *Qing Li (Tsinghua University, China), Huifang Feng (Xiamen University, China), Kanle Shi (Kuaishou Technology, China), Yue Gao (Tsinghua University, China), Yi Fang (New York University Abu Dhabi, UAE), Yu-Shen Liu (Tsinghua University, China), and Zhizhong Han (Wayne State University, USA)*

 Bridging Search Region Interaction With Template for RGB-T Tracking	0
Quantum Multi-Model Fitting	0
Generalizable Local Feature Pre-Training for Deformable Shape Analysis	0
Similarity Metric Learning for RGB-Infrared Group Re-Identification	2
Unsupervised Deep Asymmetric Stereo Matching With Spatially-Adaptive Self-Similarity 1367. Taeyong Song (Hyundai Motor Company R&D Division), Sunok Kim (Korea Aerospace University), and Kwanghoon Sohn (Yonsei University; Korea Institute of Science and Technology (KIST))	2
Sliced Optimal Partial Transport	1
DistractFlow: Improving Optical Flow Estimation via Realistic Distractions and Pseudo-Labeling	1
Bayesian Posterior Approximation With Stochastic Ensembles	1

V2V4Real: A Real-World Large-Scale Dataset for Vehicle-to-Vehicle Cooperative Perception . 13712 Runsheng Xu (University of California, Los Angeles), Xin Xia (University of California, Los Angeles), Jinlong Li (Cleveland State University), Hanzhao Li (University of California, Los Angeles), Shuo Zhang (University of California, Los Angeles), Zhengzhong Tu (University of Texas at Austin), Zonglin Meng (University of California, Los Angeles), Hao Xiang (University of California, Los Angeles), Xiaoyu Dong (Northwestern University), Rui Song (Technical University of Munich; Fraunhofer Institute), Hongkai Yu (Cleveland State University), Bolei Zhou (University of California, Los Angeles), and Jiaqi Ma (University of California, Los Angeles)
ReasonNet: End-to-End Driving With Temporal and Global Reasoning
Open-World Multi-Task Control Through Goal-Aware Representation Learning and Adaptive Horizon Prediction
FJMP: Factorized Joint Multi-Agent Motion Prediction Over Learned Directed Acyclic Interaction Graphs
Trace and Pace: Controllable Pedestrian Animation via Guided Trajectory Diffusion
Galactic: Scaling End-to-End Reinforcement Learning for Rearrangement at 100k Steps-per-Second
Affordances From Human Videos as a Versatile Representation for Robotics
Indiscernible Object Counting in Underwater Scenes

Tracking Through Containers and Occluders in the Wild	
Simple Cues Lead to a Strong Multi-Object Tracker	
An In-Depth Exploration of Person Re-Identification and Gait Recognition in Cloth-Changing Conditions	
SelfME: Self-Supervised Motion Learning for Micro-Expression Recognition	
LipFormer: High-Fidelity and Generalizable Talking Face Generation With a Pre-Learned Facial Codebook	
Real-Time Multi-Person Eyeblink Detection in the Wild for Untrimmed Video	
Skinned Motion Retargeting With Residual Perception of Motion Semantics & Geometry 13864 Jiaxu Zhang (Wuhan University), Junwu Weng (Tencent Al Lab), Di Kang (Tencent Al Lab), Fang Zhao (Tencent Al Lab), Shaoli Huang (Tencent Al Lab), Xuefei Zhe (Tencent Al Lab), Linchao Bao (Tencent Al Lab), Ying Shan (Tencent Al Lab), Jue Wang (Tencent Al Lab), and Zhigang Tu (Wuhan University)	

MoDi: Unconditional Motion Synthesis From Diverse Data
Recurrent Vision Transformers for Object Detection With Event Cameras
Continuous Intermediate Token Learning With Implicit Motion Manifold for Keyframe Based Motion Interpolation
EvShutter: Transforming Events for Unconstrained Rolling Shutter Correction
Multi Domain Learning for Motion Magnification
Learning Event Guided High Dynamic Range Video Reconstruction
Joint Video Multi-Frame Interpolation and Deblurring Under Unknown Exposure Time 13935 Wei Shang (Harbin Institute of Technology), Dongwei Ren (Harbin Institute of Technology), Yi Yang (Harbin Institute of Technology), Hongzhi Zhang (Harbin Institute of Technology), Kede Ma (City University of Hong Kong), and Wangmeng Zuo (Harbin Institute of Technology; Peng Cheng Laboratory, Shenzhen)
 FeatER: An Efficient Network for Human Reconstruction via Feature Map-Based TransformER 13945 <i>Ce Zheng (University of Central Florida), Matias Mendieta (University of Central Florida), Taojiannan Yang (University of Central Florida), Guo-Jun Qi (OPPO Seattle Research Center, USA; Westlake University), and Chen Chen (University of Central Florida)</i>
 MetaFusion: Infrared and Visible Image Fusion via Meta-Feature Embedding From Object Detection

Joint HDR Denoising and Fusion: A Real-World Mobile HDR Image Dataset
Visibility Constrained Wide-Band Illumination Spectrum Design for Seeing-in-the-Dark 13976 Muyao Niu (The University of Tokyo), Zhuoxiao Li (The University of Tokyo), Zhihang Zhong (The University of Tokyo), and Yinqiang Zheng (The University of Tokyo)
Self-Supervised Blind Motion Deblurring With Deep Expectation Maximization
Structure Aggregation for Cross-Spectral Stereo Image Guided Denoising
Rawgment: Noise-Accounted RAW Augmentation Enables Recognition in a Wide Variety of
Masakazu Yoshimura (Sony Group Corporation), Junji Otsuka (Sony Group Corporation), Atsushi Irie (Sony Group Corporation), and Takeshi Ohashi (Sony Group Corporation)
Zero-Shot Noise2Noise: Efficient Image Denoising Without Any Data
Real-Time Controllable Denoising for Image and Video
Probability-Based Global Cross-Modal Upsampling for Pansharpening
ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow Removal 14049 Lanqing Guo (Nanyang Technological University, Singapore), Chong Wang (Nanyang Technological University, Singapore), Wenhan Yang (Peng Cheng Laboratory, China), Siyu Huang (Harvard University, USA), Yufei Wang (Nanyang Technological University, Singapore), Hanspeter Pfister (Harvard University, USA), and Bihan Wen (Nanyang Technological University, Singapore)

Visual Recognition-Driven Image Restoration for Multiple Degradation With Intrinsic Semantics Recovery
Blind Image Quality Assessment via Vision-Language Correspondence: A Multitask Learning Perspective
Human Guided Ground-Truth Generation for Realistic Image Super-Resolution
Real-Time 6K Image Rescaling With Rate-Distortion Optimization
Equivalent Transformation and Dual Stream Network Construction for Mobile Image Super-Resolution
Ultrahigh Resolution Image/Video Matting With Spatio-Temporal Sparsity
Comprehensive and Delicate: An Efficient Transformer for Image Restoration
PHA: Patch-Wise High-Frequency Augmentation for Transformer-Based Person Re-Identification 14133 <i>Guiwei Zhang (Beihang University), Yongfei Zhang (Beihang University;</i>
Pengcheng Laboratory), Tianyu Zhang (Beihang University), Bo Li (Beihang University), and Shiliang Pu (Hikvision Research Institute)

PyramidFlow: High-Resolution Defect Contrastive Localization Using Pyramid Normalizing Flow
Technological Innovation Center, China), Xiaobo Hu (Zhejiang University; ZJU-Hangzhou Global Scientific and Technological Innovation Center, China), Yue Wang (Zhejiang University; ZJU-Hangzhou Global Scientific and Technological Innovation Center, China), and Dong Liu (Zhejiang University; ZJU-Hangzhou Global Scientific and Technological Innovation Center, China; Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, China; Jiaxing Research Institute Zhejiang University)
Neural Fourier Filter Bank
Restoration of Hand-Drawn Architectural Drawings Using Latent Space Mapping With Degradation Generator
Neural Preset for Color Style Transfer
NÜWA-LIP: Language-Guided Image Inpainting With Defect-Free VQGAN
DualVector: Unsupervised Vector Font Synthesis With Dual-Part Representation
DATID-3D: Diversity-Preserved Domain Adaptation Using Text-to-Image Diffusion for 3D Generative Model
GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis

Fix the Noise: Disentangling Source Feature for Controllable Domain Translation
Conditional Text Image Generation With Diffusion Models
ReCo: Region-Controlled Text-to-Image Generation
 Freestyle Layout-to-Image Synthesis
Specialist Diffusion: Plug-and-Play Sample-Efficient Fine-Tuning of Text-to-Image Diffusion Models To Learn Any Unseen Style
Toward Verifiable and Reproducible Human Evaluation for Text-to-Image Generation 14277 Mayu Otani (CyberAgent, Inc.), Riku Togashi (CyberAgent, Inc.), Yu Sawai (CyberAgent, Inc.), Ryosuke Ishigami (CyberAgent, Inc.), Yuta Nakashima (Osaka University), Esa Rahtu (Tampere University), Janne Heikkilä (University of Oulu), and Shin'ichi Satoh (CyberAgent, Inc.)
Towards Flexible Multi-Modal Document Models
On Distillation of Guided Diffusion Models
Dimensionality-Varying Diffusion Process

Shape-Aware Text-Driven Layered Video Editing
Rethinking Image Super Resolution From Long-Tailed Distribution Learning Perspective 14327 Yuanbiao Gou (Sichuan University, China), Peng Hu (Sichuan University, China), Jiancheng Lv (Sichuan University, China), Hongyuan Zhu (Institute for Infocomm Research (I2R), A*STAR, Singapore), and Xi Peng (Sichuan University, China)
End-to-End Video Matting With Trimap Propagation
Context-Based Trit-Plane Coding for Progressive Image Compression
Complexity-Guided Slimmable Decoder for Efficient Deep Video Compression
Efficient Hierarchical Entropy Model for Learned Point Cloud Compression
NIRVANA: Neural Implicit Representations of Videos With Adaptive Networks and Autoregressive Patch-Wise Modeling
Learned Image Compression With Mixed Transformer-CNN Architectures
Memory-Friendly Scalable Super-Resolution via Rewinding Lottery Ticket Hypothesis 14398 Jin Lin (Xiamen University, China), Xiaotong Luo (Xiamen University, China), Ming Hong (Xiamen University, China), Yanyun Qu (Xiamen University, China), Yuan Xie (East China Normal University, China), and Zongze Wu (Shenzhen University, China)

InternImage: Exploring Large-Scale Vision Foundation Models With Deformable Convolutions 14408

Wenhai Wang (Shanghai Al Laboratory), Jifeng Dai (Tsinghua University; Shanghai Al Laboratory), Zhe Chen (Nanjing University; Shanghai Al Laboratory), Zhenhang Huang (Shanghai Al Laboratory), Zhiqi Li (Nanjing University; Shanghai Al Laboratory), Xizhou Zhu (SenseTime Research), Xiaowei Hu (Shanghai Al Laboratory), Tong Lu (Nanjing University), Lewei Lu (SenseTime Research), Hongsheng Li (The Chinese University of Hong Kong), Xiaogang Wang (SenseTime Research; The Chinese University of Hong Kong), and Yu Qiao (Shanghai Al Laboratory)
EfficientViT: Memory Efficient Vision Transformer With Cascaded Group Attention
Castling-ViT: Compressing Self-Attention via Switching Towards Linear-Angular Attention at Vision Transformer Inference
RIFormer: Keep Your Vision Backbone Effective but Removing Token Mixer
High-Resolution Image Reconstruction With Latent Diffusion Models From Human Brain Activity
Non-Contrastive Unsupervised Learning of Physiological Signals From Video
Revealing the Dark Secrets of Masked Image Modeling
Improving Visual Representation Learning Through Perceptual Understanding

FlexiViT: One Model for All Patch Sizes	Э6
AdaMAE: Adaptive Masking for Efficient Spatiotemporal Learning With Masked Autoencoders 14507	
Wele Gedara Chaminda Bandara (Johns Hopkins University), Naman Patel (Zippin), Ali Gholami (Zippin), Mehdi Nikkhah (Zippin), Motilal Agrawal (Zippin), and Vishal M. Patel (Johns Hopkins University)	
SimpSON: Simplifying Photo Cleanup With Single-Click Distracting Object Segmentation Network	18
Chuong Huynh (University of Maryland, College Park), Yuqian Zhou (Adobe Research), Zhe Lin (Adobe Research), Connelly Barnes (Adobe Research), Eli Shechtman (Adobe Research), Sohrab Amirghodsi (Adobe Research), and Abhinav Shrivastava (University of Maryland, College Park)	
 Visual Dependency Transformers: Dependency Tree Emerges From Reversed Attention 1452 Mingyu Ding (The University of Hong Kong; MIT), Yikang Shen (MIT-IBM Watson AI Lab), Lijie Fan (MIT), Zhenfang Chen (MIT-IBM Watson AI Lab), Zitian Chen (UMass Amherst), Ping Luo (The University of Hong Kong), Joshua B. Tenenbaum (MIT), and Chuang Gan (MIT-IBM Watson AI Lab; UMass Amherst) 	28
Iterative Next Boundary Detection for Instance Segmentation of Tree Rings in Microscopy Images of Shrub Cross Sections	40
 VideoMAE V2: Scaling Video Masked Autoencoders With Dual Masking	49

DropMAE: Masked Autoencoders With Spatial-Attention Dropout for Tracking Tasks
SeqTrack: Sequence to Sequence Learning for Visual Object Tracking
Bootstrapping Objectness From Videos by Relaxed Common Fate and Visual Grouping 14582 Long Lian (UC Berkeley), Zhirong Wu (Microsoft Research Asia), and Stella X. Yu (UC Berkeley; University of Michigan)
Video Event Restoration Based on Keyframes for Video Anomaly Detection
Streaming Video Model
LSTFE-Net:Long Short-Term Feature Enhancement Network for Video Small Object Detection 14613 Jinsheng Xiao (Wuhan University, China), Yuanxu Wu (Wuhan University, China), Yunhua Chen (Guangdong University of Technology, China), Shurui Wang (Wuhan University, China), Zhongyuan Wang (Wuhan University, China), and Jiayi Ma (Wuhan University, China)
A Generalized Framework for Video Instance Segmentation
Referring Multi-Object Tracking
Source-Free Video Domain Adaptation With Spatial-Temporal-Historical Consistency Learning 14643 <i>Kai Li (NEC Labs, America), Deep Patel (NEC Labs, America), Erik Kruus</i>

(NEC Labs, America), and Martin Rengiang Min (NEC Labs, America)

Seeing What You Said: Talking Face Generation Guided by a Lip Reading Expert
Egocentric Auditory Attention Localization in Conversations
iQuery: Instruments As Queries for Audio-Visual Sound Separation
Learning To Dub Movies via Hierarchical Prosody Models
A Large-Scale Robustness Analysis of Video Action Recognition Models
The Wisdom of Crowds: Temporal Progressive Attention for Early Action Prediction
STMixer: A One-Stage Sparse Action Detector
Generating Human Motion From Textual Descriptions With Discrete Representations 14730 Jianrong Zhang (Jilin University; Tencent Al Lab), Yangsong Zhang (Shanghai Jiao Tong University; Tencent Al Lab), Xiaodong Cun (Tencent Al Lab), Yong Zhang (Tencent Al Lab), Hongwei Zhao (Jilin University), Hongtao Lu (Shanghai Jiao Tong University), Xi Shen (Tencent Al Lab), and Ying Shan (Tencent Al Lab)

Cascade Evidential Learning for Open-World Weakly-Supervised Temporal Action Localization 14741

Mengyuan Chen (Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences (UCAS)), Junyu Gao (Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences (UCAS)), and Changsheng Xu (Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences (UCAS); Peng Cheng Laboratory, China)
Distilling Vision-Language Pre-Training To Collaborate With Weakly-Supervised Temporal Action Localization
Simultaneously Short- and Long-Term Temporal Modeling for Semi-Supervised Video Semantic Segmentation
MIST: Multi-Modal Iterative Spatial-Temporal Transformer for Long-Form Video Question Answering
Language-Guided Music Recommendation for Video via Prompt Analogies
Text-Visual Prompting for Efficient 2D Temporal Video Grounding
CelebV-Text: A Large-Scale Facial Text-Video Dataset
CNVid-3.5M: Build, Filter, and Pre-Train the Large-Scale Public Chinese Video-Text Dataset 14815 Tian Gan (Shandong University), Qing Wang (Ant Group), Xingning Dong (Shandong University), Xiangyuan Ren (Ant Group), Liqiang Nie (Harbin Institute of Technology (Shenzhen)), and Qingpei Guo (Ant Group)

Learning Procedure-Aware Video Representation From Instructional Videos and Their Narrations	25
Yang Bai (Meta Al), Shangwen Li (Meta Al), Xueting Yan (Meta Al), and Yin Li (University of Wisconsin-Madison)	
PDPP:Projected Diffusion for Procedure Planning in Instructional Videos	36
Towards Fast Adaptation of Pretrained Contrastive Models for Multi-Channel Video-Language Retrieval	46
Shiyuan Huang (Columbia University), Similari Hwari (Columbia University), Shiyuan Huang (Columbia University), Manling Li (UIUC), Mike Zheng Shou (National University of Singapore), Heng Ji (UIUC), and Shih-Fu Chang (Columbia University)	
 Clover: Towards a Unified Video-Language Alignment and Fusion Model	56
 Align and Attend: Multimodal Summarization With Dual Contrastive Losses	57
Learning Situation Hyper-Graphs for Video Question Answering	79
Natural Language-Assisted Sign Language Recognition	90
 SkyEye: Self-Supervised Bird's-Eye-View Semantic Mapping Using Monocular Frontal View Images	J1
Adaptive Zone-Aware Hierarchical Planner for Vision-Language Navigation	11

Iterative Vision-and-Language Navigation	4921
 EXCALIBUR: Encouraging and Evaluating Embodied Exploration	4931
Multimodal Prompting With Missing Modalities for Visual Recognition	4943
Visual Programming: Compositional Visual Reasoning Without Training	4953
 Super-CLEVR: A Virtual Benchmark To Diagnose Domain Robustness in Visual Reasoning 1 Zhuowan Li (Johns Hopkins University), Xingrui Wang (University of Southern California), Elias Stengel-Eskin (Johns Hopkins University), Adam Kortylewski (Max Planck Institute for Informatics; University of Freiburg), Wufei Ma (Johns Hopkins University), Benjamin Van Durme (Johns Hopkins University), and Alan L. Yuille (Johns Hopkins University) 	4963
Prompting Large Language Models With Answer Heuristics for Knowledge-Based Visual Ques Answering	ition 4974
À-La-Carte Prompt Tuning (APT): Combining Distinct Data via Composable Prompting 1 Benjamin Bowman (AWS AI Labs; UCLA), Alessandro Achille (AWS AI Labs), Luca Zancato (AWS AI Labs), Matthew Trager (AWS AI Labs), Pramuditha Perera (AWS AI Labs), Giovanni Paolini (AWS AI Labs), and Stefano Soatto (AWS AI Labs)	4984
ConStruct-VL: Data-Free Continual Structured VL Concepts Learning	4994

Q: How To Specialize Large Vision-Language Models to Data-Scarce VQA Tasks? A: Self-Train on Unlabeled Images!
Learning To Exploit Temporal Structure for Biomedical Vision–Language Processing
FashionSAP: Symbols and Attributes Prompt for Fine-Grained Fashion Vision-LanguagePre-Training15028Yunpeng Han (Harbin Institute of Technology Shenzhen, China), LisaiZhang (Harbin Institute of Technology Shenzhen, China), Qingcai Chen(Harbin Institute of Technology Shenzhen, China; PengCheng Laboratory,China), Zhijian Chen (Huawei Technologies Co., Ltd), Zhonghua Li(Huawei Technologies Co., Ltd), Jianxin Yang (Huawei Technologies Co.,Ltd), and Zhao Cao (Huawei Technologies Co., Ltd)
Advancing Visual Grounding With Scene Knowledge: Benchmark and Method
Beyond Appearance: A Semantic Controllable Self-Supervised Learning Framework for Human-Centric Visual Tasks
OCTET: Object-Aware Counterfactual Explanations
Local-Guided Global: Paired Similarity Representation for Visual Reinforcement Learning 15072 Hyesong Choi (Ewha W. University), Hunsang Lee (Hyundai Motor Company), Wonil Song (Yonsei University), Sangryul Jeon (University of Michigan), Kwanghoon Sohn (Yonsei University), and Dongbo Min (Ewha W. University)

 What Can Human Sketches Do for Object Detection?
Revisiting Multimodal Representation in Contrastive Learning: From Patch and Token Embeddings to Finite Discrete Tokens
Correlational Image Modeling for Self-Supervised Visual Pre-Training
Generalized Decoding for Pixel, Image, and Language
Towards Modality-Agnostic Person Re-Identification With Descriptive Query
 M6Doc: A Large-Scale Multi-Format, Multi-Type, Multi-Layout, Multi-Language, Multi-Annotation Category Dataset for Modern Document Layout Analysis
Learning Customized Visual Models With Retrieval-Augmented Knowledge
Learning Semantic Relationship Among Instances for Image-Text Matching
--
 I2MVFormer: Large Language Model Generated Multi-View Document Supervision for Zero-Shot Image Classification
ImageBind: One Embedding Space To Bind Them All
Model-Agnostic Gender Debiased Image Captioning
Boundary-Aware Backward-Compatible Representation via Adversarial Learning in Image Retrieval
 Prompt, Generate, Then Cache: Cascade of Foundation Models Makes Strong Few-Shot Learners . 15211 Renrui Zhang (CUHK MMLab; Shanghai Artificial Intelligence Laboratory), Xiangfei Hu (Shanghai Artificial Intelligence Laboratory), Bohao Li (Shanghai Artificial Intelligence Laboratory), Siyuan Huang (Shanghai Artificial Intelligence Laboratory), Hanqiu Deng (Shanghai Artificial Intelligence Laboratory), Yu Qiao (Shanghai Artificial Intelligence Laboratory), Peng Gao (Shenzhen Institute of Advanced Technology, Chinese Academy of Science; Shanghai Artificial Intelligence Laboratory), and Hongsheng Li (CUHK MMLab; CPII under InnoHK)
Towards Unified Scene Text Spotting Based on Sequence Generation
CapDet: Unifying Dense Captioning and Open-World Detection Pretraining

CLIP2: Contrastive Language-Image-Point Pretraining From Real-World Point Cloud Data 15244 <i>Yihan Zeng (Huawei Noah's Ark Lab), Chenhan Jiang (Hong Kong</i> <i>University of Science and Technology), Jiageng Mao (The Chinese</i> <i>University of Hong Kong), Jianhua Han (Huawei Noah's Ark Lab),</i> <i>Chaoqiang Ye (Huawei Noah's Ark Lab), Qingqiu Huang (Huawei Noah's Ark</i> <i>Lab), Dit-Yan Yeung (Hong Kong University of Science and Technology),</i> <i>Zhen Yang (Huawei Noah's Ark Lab), Xiaodan Liang (Sun Yat-san</i> <i>University), and Hang Xu (Huawei Noah's Ark Lab)</i>
Aligning Bag of Regions for Open-Vocabulary Object Detection
Visual Recognition by Request
Category Query Learning for Human-Object Interaction Classification
Self-Supervised Implicit Glyph Attention for Text Recognition
Enlarging Instance-Specific and Class-Specific Information for Open-Set Action Recognition. 15295 Jun Cen (The Hong Kong University of Science and Technology; Alibaba Group), Shiwei Zhang (Alibaba Group), Xiang Wang (Huazhong University of Science and Technology), Yixuan Pei (Xi'an Jiaotong University), Zhiwu Qing (Huazhong University of Science and Technology), Yingya Zhang (Alibaba Group), and Qifeng Chen (The Hong Kong University of Science and Technology)
CLIP Is Also an Efficient Segmenter: A Text-Driven Approach for Weakly Supervised Semantic Segmentation
Learning Attention As Disentangler for Compositional Zero-Shot Learning

 Universal Instance Perception As Object Discovery and Retrieval	25
Progressive Semantic-Visual Mutual Adaption for Generalized Zero-Shot Learning	37
DPF: Learning Dense Prediction Fields With Weak Supervision	47
Modeling Entities As Semantic Points for Visual Information Extraction in the Wild	58
GeoNet: Benchmarking Unsupervised Adaptation Across Geographies	58
SegLoc: Learning Segmentation-Based Representations for Privacy-Preserving Visual Localization	30
Towards Open-World Segmentation of Parts	Э2

Pruning Parameterization With Bi-Level Optimization for Efficient Semantic Segmentation on

the Edge	
 HGFormer: Hierarchical Grouping Transformer for Domain Generalized Semantic Segmentation 15413 Jian Ding (Wuhan University, China; Wuhan University, China; Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), Nan Xue (Wuhan University, China), Gui-Song Xia (Wuhan University, China; Wuhan University, China), Bernt Schiele (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany), and Dengxin Dai (Max Planck Institute for Informatics, Saarland Informatics Campus, Germany) 	
Exemplar-FreeSOLO: Enhancing Unsupervised Instance Segmentation With Exemplars 15424 Taoseef Ishtiak (Carleton University, Canada), Qing En (Carleton University, Canada), and Yuhong Guo (Carleton University, Canada; CIFAR AI Chair, Canada)	
 Weakly-Supervised Domain Adaptive Semantic Segmentation With Prototypical Contrastive Learning	
Spatial-Temporal Concept Based Explanation of 3D ConvNets	
Sparsely Annotated Semantic Segmentation With Adaptive Gaussian Mixtures	
 Fuzzy Positive Learning for Semi-Supervised Semantic Segmentation	

 STAR Loss: Reducing Semantic Ambiguity in Facial Landmark Detection
Boosting Low-Data Instance Segmentation by Unsupervised Pre-Training With Saliency Prompt 15485
Hao Li (Northwestern Polytechnical University; Zhejiang Lab), Dingwen Zhang (Northwestern Polytechnical University), Nian Liu (Mohamed bin Zayed University of Artificial Intelligence), Lechao Cheng (Zhejiang Lab), Yalun Dai (University of Chinese Academy of Sciences), Chao Zhang (NetEase), Xinggang Wang (Huazhong University of Science and Technology), and Junwei Han (Northwestern Polytechnical University)
Decoupled Semantic Prototypes Enable Learning From Diverse Annotation Types for Semi-Weakly Segmentation in Expert-Driven Domains
The Treasure Beneath Multiple Annotations: An Uncertainty-Aware Edge Detector
Knowledge Combination To Learn Rotated Detection Without Rotated Annotation
 Mapping Degeneration Meets Label Evolution: Learning Infrared Small Target Detection With Single Point Supervision
 SAP-DETR: Bridging the Gap Between Salient Points and Queries-Based Transformer Detector for Fast Model Convergency

Zero-Shot Object Counting	48
 SOOD: Towards Semi-Supervised Oriented Object Detection	58
Large-Scale Training Data Search for Object Re-Identification	68
 Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection	79
Towards Effective Visual Representations for Partial-Label Learning	89
Bi3D: Bi-Domain Active Learning for Cross-Domain 3D Object Detection	99
Boosting Detection in Crowd Analysis via Underutilized Output Features	09
 Self-Supervised Learning From Images With a Joint-Embedding Predictive Architecture 156⁻ Mahmoud Assran (Meta AI (FAIR); McGill University; Mila, Quebec AI Institute), Quentin Duval (Meta AI (FAIR)), Ishan Misra (Meta AI (FAIR)), Piotr Bojanowski (Meta AI (FAIR)), Pascal Vincent (Meta AI (FAIR)), Michael Rabbat (Meta AI (FAIR); Mila, Quebec AI Institute), Yann LeCun (Meta AI (FAIR); New York University), and Nicolas Ballas (Meta AI (FAIR)) 	19
 Weakly Supervised Segmentation With Point Annotations for Histopathology Images via Contrast-Based Variational Model	30

DoNet: Deep De-Overlapping Network for Cytology Instance Segmentation
MCF: Mutual Correction Framework for Semi-Supervised Medical Image Segmentation 15651 Yongchao Wang (Chongqing University of Posts and Telecommunications, China), Bin Xiao (Chongqing University of Posts and Telecommunications, China), Xiuli Bi (Chongqing University of Posts and Telecommunications, China), Weisheng Li (Chongqing University of Posts and Telecommunications, China), and Xinbo Gao (Chongqing University of Posts and Telecommunications, China)
 Histopathology Whole Slide Image Analysis With Heterogeneous Graph Representation Learning 15661 Tsai Hor Chan (The University of Hong Kong), Fernando Julio Cendra (The University of Hong Kong; TCL Corporate Research Hong Kong), Lan Ma (TCL Corporate Research Hong Kong), Guosheng Yin (The University of Hong Kong; Imperial College London), and Lequan Yu (The University of Hong Kong)
PEFAT: Boosting Semi-Supervised Medical Image Classification via Pseudo-Loss Estimation and Feature Adversarial Training
Causally-Aware Intraoperative Imputation for Overall Survival Time Prediction
Balanced Energy Regularization Loss for Out-of-Distribution Detection
Block Selection Method for Using Feature Norm in Out-of-Distribution Detection

Science and Technology)

Highly Confident Local Structure Based Consensus Graph Learning for Incomplete Multi-View
Jie Wen (Harbin Institute of Technology, China), Chengliang Liu (Harbin Institute of Technology, China), Gehui Xu (Harbin Institute of Technology, China), Zhihao Wu (Harbin Institute of Technology, China),
Chao Huang (Shenzhen Campus of Sun Yat-sen University, China), Lunke Fei (Guangdong University of Technology, China), and Yong Xu (Harbin Institute of Technology, China; Pengcheng Laboratory, China)
Siamese DETR
Towards Bridging the Performance Gaps of Joint Energy-Based Models
Three Guidelines You Should Know for Universally Slimmable Self-Supervised Learning 15742 Yun-Hao Cao (Nanjing University), Peiqin Sun (MEGVII Technology), and Shuchang Zhou (MEGVII Technology)
Boosting Transductive Few-Shot Fine-Tuning With Margin-Based Uncertainty Weighting and Probability Regularization
CHMATCH: Contrastive Hierarchical Matching and Robust Adaptive Threshold Boosted Semi-Supervised Learning
MarginMatch: Improving Semi-Supervised Learning with Pseudo-Margins
Ranking Regularization for Critical Rare Classes: Minimizing False Positives at a High True Positive Rate
Learning Imbalanced Data With Vision Transformers
No One Left Behind: Improving the Worst Categories in Long-Tailed Learning 15804

Global and Local Mixture Consistency Cumulative Learning for Long-Tailed Visual Recognitions	
Fei Du (Yunnan University, China; Yunnan Key Laboratory of Software Engineering), Peng Yang (Yunnan University, China; Yunnan Key Laboratory of Software Engineering), Qi Jia (Yunnan University, China; Yunnan Key Laboratory of Software Engineering), Fengtao Nan (Yunnan University, China; Yunnan Key Laboratory of Software Engineering), Xiaoting Chen (Yunnan University, China; Yunnan Key Laboratory of Software Engineering), and Yun Yang (Yunnan University, China; Yunnan Key Laboratory of Software Engineering)	
Curvature-Balanced Feature Manifold Learning for Long-Tailed Classification	
DAA: A Delta Age AdalN Operation for Age Estimation via Binary Code Transformer	
DLBD: A Self-Supervised Direct-Learned Binary Descriptor	
 Progressive Open Space Expansion for Open-Set Model Attribution	
DiGA: Distil To Generalize and Then Adapt for Domain Adaptive Semantic Segmentation 15866 Fengyi Shen (Technical University of Munich; Huawei Munich Research Center; Peking University), Akhil Gurram (Huawei Munich Research Center), Ziyuan Liu (Huawei Munich Research Center), He Wang (Peking University), and Alois Knoll (Technical University of Munich)	

University), and Alois Knoll (Technical University of Munich)

Multi-Modal Learning With Missing Modality via Shared-Specific Feature Modelling
Towards All-in-One Pre-Training via Maximizing Multi-Modal Mutual Information
Bi-Level Meta-Learning for Few-Shot Domain Generalization
Train/Test-Time Adaptation With Retrieval
Robust Test-Time Adaptation in Dynamic Scenarios
Domain Expansion of Image Generators
Switchable Representation Learning Framework With Self-Compatibility

A New Benchmark: On the Utility of Synthetic Data With Blender for Bare Supervised Learning and Downstream Domain Adaptation
Adapting Shortcut With Normalizing Flow: An Efficient Tuning Framework for Visual Recognition
Manipulating Transfer Learning for Property Inference
Heterogeneous Continual Learning
Generic-to-Specific Distillation of Masked Autoencoders
Towards a Smaller Student: Capacity Dynamic Distillation for Efficient Image Retrieval 16006 Yi Xie (South China University of Technology), Huaidong Zhang (South China University of Technology), Xuemiao Xu (South China University of Technology; State Key Laboratory of Subtropical Building Science; Ministry of Education Key Laboratory of Big Data and Intelligent Robot; Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information), Jianqing Zhu (Huaqiao University), and Shengfeng He (Singapore Management University)
CafeBoost: Causal Feature Boost To Eliminate Task-Induced Bias for Class Incremental Learning

Bilateral Memory Consolidation for Continual Learning
NICO++: Towards Better Benchmarking for Domain Generalization
DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks 16048 Samyak Jain (Vision and AI Lab, Indian Institute of Science, Bangalore), Sravanti Addepalli (Vision and AI Lab, Indian Institute of Science, Bangalore), Pawan Kumar Sahu (Vision and AI Lab, Indian Institute of Science, Bangalore), Priyam Dey (Vision and AI Lab, Indian Institute of Science, Bangalore), and R. Venkatesh Babu (Vision and AI Lab, Indian Institute of Science, Bangalore)
Differentiable Architecture Search With Random Features
Class Adaptive Network Calibration
Meta-Learning With a Geometry-Adaptive Preconditioner
DepGraph: Towards Any Structural Pruning
Stitchable Neural Networks
Integral Neural Networks

Regularization of Polynomial Networks for Image Recognition
ConvNeXt V2: Co-Designing and Scaling ConvNets With Masked Autoencoders
Shortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neural Network Explanations
Don't Lie to Me! Robust and Efficient Explainability With Verified Perturbation Analysis 16153 Thomas Fel (Brown University, USA; Artificial and Natural Intelligence Toulouse Institute; IRT Saint-Exupery, France; Innovation & Research Division, SNCF), Melanie Ducoffe (Artificial and Natural Intelligence Toulouse Institute; IRT Saint-Exupery, France; Airbus Al Research), David Vigouroux (Artificial and Natural Intelligence Toulouse Institute; IRT Saint-Exupery, France), Rémi Cadène (Sorbonne Université, CNRS, France), Mikaël Capelle (Thales Alenia Space, France), Claire Nicodème (Innovation & Research Division, SNCF), and Thomas Serre (Brown University, USA; Artificial and Natural Intelligence Toulouse Institute)
OT-Filter: An Optimal Transport Filter for Learning With Noisy Labels
Robust Generalization Against Photon-Limited Corruptions via Worst-Case Sharpness Minimization
Learning With Noisy Labels via Self-Supervised Adversarial Noisy Masking

Bit-Shrinking: Limiting Instantaneous Sharpness for Improving Post-Training Quantization . 16196 Chen Lin (Hikvision Research Institute), Bo Peng (Hikvision Research Institute), Zheyang Li (Hikvision Research Institute), Wenming Tan (Hikvision Research Institute), Ye Ren (Hikvision Research Institute), Jun Xiao (Zhe Jiang University), and Shiliang Pu (Hikvision Research Institute)
Enhancing Multiple Reliability Measures via Nuisance-Extended Information Bottleneck 16206 Jongheon Jeong (Korea Advanced Institute of Science and Technology (KAIST)), Sihyun Yu (Korea Advanced Institute of Science and Technology (KAIST)), Hankook Lee (LG AI Research), and Jinwoo Shin (Korea Advanced Institute of Science and Technology (KAIST))
AdaptiveMix: Improving GAN Training via Feature Space Shrinkage
Re-GAN: Data-Efficient GANs Training via Architectural Reconfiguration
Soft Augmentation for Image Classification
Boosting Verified Training for Robust Image Classifications via Abstraction
A New Dataset Based on Images Taken by Blind People for Testing the Robustness of Image Classification Models Trained for ImageNet Categories

Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly Supervised Video Anomaly Detection
Prototypical Residual Networks for Anomaly Detection and Localization
Class Balanced Adaptive Pseudo Labeling for Federated Semi-Supervised Learning
 Fair Federated Medical Image Segmentation via Client Contribution Estimation
Rethinking Federated Learning With Domain Shift: A Prototype View
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning 16323 Yuanhao Xiong (UCLA), Ruochen Wang (UCLA), Minhao Cheng (HKUST), Felix Yu (Google Research), and Cho-Jui Hsieh (UCLA)
Alias-Free Convnets: Fractional Shift Invariance via Polynomial Activations

STDLens: Model Hijacking-Resilient Federated Learning for Object Detection
Detecting Backdoors in Pre-Trained Encoders
 Detecting Backdoors During the Inference Stage Based on Corruption Robustness Consistency 16363 Xiaogeng Liu (Huazhong University of Science and Technology; National Engineering Research Center for Big Data Technology and System; Hubei Key Laboratory of Distributed System Security; Hubei Engineering Research Center on Big Data Security), Minghui Li (Huazhong University of Science and Technology), Haoyu Wang (Huazhong University of Science and Technology), Shengshan Hu (Huazhong University of Science and Technology; National Engineering Research Center for Big Data Technology and System; Hubei Key Laboratory of Distributed System Security; Hubei Engineering Research Center on Big Data Security), Dengpan Ye (Wuhan University), Hai Jin (Huazhong University of Science and Technology; National Engineering Research Center for Big Data Technology and System; Fubei Key Laboratory of Distributed System Security; Hubei Engineering Research Center on Big Data Security), Dengpan Ye (Wuhan University), Hai Jin (Huazhong University of Science and Technology and System; Services Computing Technology and System Lab; Cluster and Grid Computing Lab), Libing Wu (Wuhan University), and Chaowei Xiao (Arizona State University)
Can't Steal? Cont-Steal! Contrastive Stealing Attacks Against Image Encoders
Re-Thinking Model Inversion Attacks Against Deep Neural Networks
 Turning Strengths Into Weaknesses: A Certified Robustness Inspired Attack Framework Against Graph Neural Networks

Dynamic Generative Targeted Attacks With Pattern Injection	1
 Transferable Adversarial Attacks on Vision Transformers With Token Gradient Regularization 16415 Jianping Zhang (The Chinese University of Hong Kong), Yizhan Huang (The Chinese University of Hong Kong), Weibin Wu (Sun Yat-sen University), and Michael R. Lyu (The Chinese University of Hong Kong) 	
Adversarial Counterfactual Visual Explanations	5
TWINS: A Fine-Tuning Framework for Improved Transferability of Adversarial Robustness and Generalization	5
Randomized Adversarial Training via Taylor Expansion	7
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization	3
Evading Forensic Classifiers With Attribute-Conditioned Adversarial Faces	9
DartBlur: Privacy Preservation With Detection Artifact Suppression	Э

Poster-Thu-AM

JacobiNeRF: NeRF Shaping With Mutual Information Gradients
ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-Real Novel View Synthesis via Contrastive Learning
SCADE: NeRFs from Space Carving With Ambiguity-Aware Depth Estimates
Removing Objects From Neural Radiance Fields
Progressively Optimized Local Radiance Fields for Robust View Synthesis
NeRFVS: Neural Radiance Fields for Free View Synthesis via Geometry Scaffolds
ABLE-NeRF: Attention-Based Rendering With Learnable Embeddings for Neural Radiance Field 16559
Technological University), and Haiyu Zhao (SenseTime Research)
MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures
pCON: Polarimetric Coordinate Networks for Neural Scene Representations

Balanced Spherical Grid for Egocentric View Synthesis
Complementary Intrinsics From Neural Radiance Fields and CNNs for Outdoor Scene Relighting 16600 Siqi Yang (Peking University), Xuanning Cui (Peking University),
Yongjie Zhu (Beijing University of Posts and Telecommunications), Jiajun Tang (Peking University), Si Li (Beijing University of Posts and Telecommunications), Zhaofei Yu (Peking University), and Boxin Shi (Peking University)
 HyperReel: High-Fidelity 6-DoF Video With Ray-Conditioned Sampling
UV Volumes for Real-Time Rendering of Editable Free-View Human Performance
 Tensor4D: Efficient Neural 4D Decomposition for High-Fidelity Dynamic Reconstruction and Rendering
 PixHt-Lab: Pixel Height Based Light Effect Generation for Image Compositing
Computational Flash Photography Through Intrinsics
RelightableHands: Efficient Neural Relighting of Articulated Hand Models

TMO: Textured Mesh Acquisition of Objects With a Mobile Device by Using Differentiable Rendering
Jaehoon Choi (NAVER LABS; University of Maryland), Dongki Jung (NAVER LABS), Taejae Lee (NAVER LABS), Sangwook Kim (NAVER LABS), Youngdong Jung (NAVER LABS), Dinesh Manocha (University of Maryland), and Donghwan Lee (NAVER LABS)
VolRecon: Volume Rendering of Signed Ray Distance Functions for Generalizable Multi-View Reconstruction
Yufan Ren (IVRF IC EPFL), Fangjinhua Wang (Department of Computer Science, ETH Zurich), Tong Zhang (IVRF IC EPFL), Marc Pollefeys (Department of Computer Science, ETH Zurich), and Sabine Süsstrunk (IVRF IC EPFL)
Multi-View Reconstruction Using Signed Ray Distance Functions (SRDF)
 Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction
Octree Guided Unoriented Surface Reconstruction
Neural Vector Fields: Implicit Representation by Explicit Learning
DA Wand: Distortion-Aware Selection Using Neural Mesh Parameterization

Diffusion-Based Generation, Optimization, and Planning in 3D Scenes
Patch-Based 3D Natural Scene Generation From a Single Example
Consistent View Synthesis With Pose-Guided Diffusion Models
Generalized Deep 3D Shape Prior via Part-Discretized Diffusion Process
High Fidelity 3D Hand Shape Reconstruction via Scalable Graph Frequency Decomposition 16795 Tianyu Luan (State University of New York at Buffalo), Yuanhao Zhai (State University of New York at Buffalo), Jingjing Meng (State University of New York at Buffalo), Zhong Li (OPPO US Research Center, InnoPeak Technology, Inc.), Zhang Chen (OPPO US Research Center, InnoPeak Technology, Inc.), Yi Xu (OPPO US Research Center, InnoPeak Technology, Inc.), and Junsong Yuan (State University of New York at Buffalo)
 TAPS3D: Text-Guided 3D Textured Shape Generation From Pseudo Supervision

SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude Operations 16816 <i>Pu Li (MAIS, Institute of Automation, Chinese Academy of Sciences;</i> <i>University of Chinese Academy of Sciences), Jianwei Guo (MAIS,</i> <i>Institute of Automation, Chinese Academy of Sciences; University of</i> <i>Chinese Academy of Sciences), Xiaopeng Zhang (MAIS, Institute of</i> <i>Automation, Chinese Academy of Sciences; University of Chinese Academy</i> <i>of Sciences), and Dong-Ming Yan (MAIS, Institute of Automation,</i> <i>Chinese Academy of Sciences; University of Chinese Academy of</i> <i>Sciences)</i>
Interactive Cartoonization With Controllable Perceptual Factors
High-Res Facial Appearance Capture From Polarized Smartphone Images
GlassesGAN: Eyewear Personalization Using Synthetic Appearance Discovery and Targeted Subspace Modeling
Continuous Landmark Detection With 3D Queries
NeuFace: Realistic 3D Neural Face Rendering From Multi-View Images
AVFace: Towards Detailed Audio-Visual 4D Face Reconstruction
Learning Personalized High Quality Volumetric Head Avatars From Monocular RGB Videos . 16890 Ziqian Bai (Google; Simon Fraser University), Feitong Tan (Google), Zeng Huang (Google), Kripasindhu Sarkar (Google), Danhang Tang (Google), Di Qiu (Google), Abhimitra Meka (Google), Ruofei Du (Google), Mingsong Dou (Google), Sergio Orts-Escolano (Google), Rohit Pandey (Google), Ping Tan (Simon Fraser University), Thabo Beeler (Google), Sean Fanello (Google), and Yinda Zhang (Google)
OTAvatar: One-Shot Talking Face Avatar With Controllable Tri-Plane Rendering

X-Avatar: Expressive Human Avatars
InstantAvatar: Learning Avatars From Monocular Video in 60 Seconds
JAWS: Just a Wild Shot for Cinematic Transfer in Neural Radiance Fields
MonoHuman: Animatable Human Neural Field From Monocular Video
Structured 3D Features for Reconstructing Controllable Avatars
 HOOD: Hierarchical Graphs for Generalized Modelling of Clothing Dynamics
 Physically Realizable Natural-Looking Clothing Textures Evade Person Detectors via 3D Modeling
 Learning Semantic-Aware Disentangled Representation for Flexible 3D Human Body Editing 16985 Xiaokun Sun (Tianjin University, China), Qiao Feng (Tianjin University, China), Xiongzheng Li (Tianjin University, China), Jinsong Zhang (Tianjin University, China), Yu-Kun Lai (Cardiff University, United Kingdom), Jingyu Yang (Tianjin University, China), and Kun Li (Tianjin University, China)
Reconstructing Animatable Categories From Videos

Deformable Mesh Transformer for 3D Human Mesh Recovery	06
Hi4D: 4D Instance Segmentation of Close Human Interaction	16
Bringing Inputs to Shared Domains for 3D Interacting Hands Recovery in the Wild 1702 Gyeongsik Moon (Meta Reality Labs)	28
Learning Human Mesh Recovery in 3D Scenes	38
H2ONet: Hand-Occlusion-and-Orientation-Aware Network for Real-Time 3D Hand Mesh	40
Reconstruction	48
 What You Can Reconstruct From a Shadow	59
Autonomous Manipulation Learning for Similar Deformable Objects via Only One Demonstratio 17069	on.
Yu Ren (State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, China), Ronghan Chen (State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, China), and Yang Cong (State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences)	
In-Hand 3D Object Scanning From an RGB Sequence	79

Putting People in Their Place: Affordance-Aware Human Insertion Into Scenes
Detecting Human-Object Contact in Images
 What Happened 3 Seconds Ago? Inferring the Past With Thermal Imaging
Trajectory-Aware Body Interaction Transformer for Multi-Person Pose Forecasting
Mutual Information-Based Temporal Difference Learning for Human Pose Estimation in Video 17131
Runyang Feng (Jilin University; Ministry of Education, China), Yixing Gao (Jilin University; Ministry of Education, China), Xueqing Ma (Jilin University; Ministry of Education, China), Tze Ho Elden Tse (University of Birmingham), and Hyung Jin Chang (University of Birmingham)
Ego-Body Pose Estimation via Ego-Head Pose Estimation
ViPLO: Vision Transformer Based Pose-Conditioned Self-Loop Graph for Human-Object Interaction Detection
HS-Pose: Hybrid Scope Feature Extraction for Category-Level Object Pose Estimation 17163 Linfang Zheng (Southern University of Science and Technology; University of Birmingham), Chen Wang (Southern University of Science and Technology; University of Hong Kong), Yinghan Sun (Southern University of Science and Technology), Esha Dasgupta (University of Birmingham), Hua Chen (Southern University of Science and Technology), Aleš Leonardis (University of Birmingham), Wei Zhang (Southern University of Science and Technology; Peng Cheng Laboratory, China), and Hyung Jin Chang (University of Birmingham)
ScarceNet: Animal Pose Estimation With Scarce Annotations
Cross-Domain 3D Hand Pose Estimation With Dual Modalities

Linking Garment With Person via Semantically Associated Landmarks for Virtual Try-On 17194 Keyu Yan (Alibaba Group; Hefei Institute of Physical Science, Chinese Academy of Sciences, China), Tingwei Gao (Alibaba Group), Hui Zhang (Hefei Institute of Physical Science, Chinese Academy of Sciences, China; University of Science and Technology of China, China), and Chengjun Xie (Hefei Institute of Physical Science, Chinese Academy of Sciences, China)
Level-S2fM: Structure From Motion on Neural Level Set of Implicit Surfaces
Revisiting Rotation Averaging: Uncertainties and Robust Losses
SliceMatch: Geometry-Guided Aggregation for Cross-View Pose Estimation
Learning the Distribution of Errors in Stereo Matching for Joint Disparity and Uncertainty
Liyan Chen (Stevens Institute of Technology), Weihan Wang (Stevens Institute of Technology), and Philippos Mordohai (Stevens Institute of Technology)
Long-Term Visual Localization With Mobile Sensors
Learning To Predict Scene-Level Implicit 3D From Posed RGBD Data
Paired-Point Lifting for Enhanced Privacy-Preserving Visual Localization
The ObjectFolder Benchmark: Multisensory Learning With Neural and Real Objects

Learning Accurate 3D Shape Based on Stereo Polarimetric Imaging
RUST: Latent Neural Scene Representations From Unposed Imagery
Perspective Fields for Single Image Camera Calibration
VisFusion: Visibility-Aware Online 3D Scene Reconstruction From Videos
DeepLSD: Line Segment Detection and Refinement With Deep Image Gradients
Disentangling Orthogonal Planes for Indoor Panoramic Room Layout Estimation With Cross-Scale Distortion Awareness
Single Image Depth Prediction Made Better: A Multivariate Gaussian Take

 Wide-Angle Rectification via Content-Aware Conformal Mapping	7357
All-in-Focus Imaging From Event Focal Stack	7366
Multi-View Stereo Representation Revist: Region-Aware MVSNet	7376
Semantic Ray: Learning a Generalizable Semantic Field With Cross-Reprojection Attention . 1 Fangfu Liu (MEGVII Technology), Chubin Zhang (MEGVII Technology), Yu Zheng (MEGVII Technology), and Yueqi Duan (MEGVII Technology)	7386
OmniCity: Omnipotent City Understanding With Multi-Level and Multi-View Images	7397
ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of Signed Distance Fields	7408
Non-Line-of-Sight Imaging With Signal Superresolution Network	7420
Look, Radiate, and Learn: Self-Supervised Localisation via Radio-Visual Correspondence 1 Mohammed Alloulah (Nokia Bell Labs) and Maximilian Arnold (Nokia Bell Labs)	7430
Learning Transformations To Reduce the Geometric Shift in Object Detection	7441
Anchor3DLane: Learning To Regress 3D Anchors for Monocular 3D Lane Detection	7451

 BEV-SAN: Accurate BEV 3D Object Detection via Slice Attention Networks
Semi-Supervised Stereo-Based 3D Object Detection via Cross-View Consensus
Weakly Supervised Monocular 3D Object Detection Using Multi-View Projection and Direction Consistency 17482
Runzhou Tao (Beijing Institute of Technology; QCraft), Wencheng Han (University of Macau), Zhongying Qiu (QCraft), Cheng-Zhong Xu (University of Macau), and Jianbing Shen (University of Macau)
MonoATT: Online Monocular 3D Object Detection With Adaptive Token Transformer 17493 Yunsong Zhou (Shanghai Jiao Tong University), Hongzi Zhu (Shanghai Jiao Tong University), Quan Liu (Shanghai Jiao Tong University), Shan Chang (Donghua University), and Minyi Guo (Shanghai Jiao Tong University)
Azimuth Super-Resolution for FMCW Radar in Autonomous Driving
Pix2map: Cross-Modal Retrieval for Inferring Street Maps From Images
LoGoNet: Towards Accurate 3D Object Detection With Local-to-Global Cross-Modal Fusion 17524 Xin Li (East China Normal University), Tao Ma (The Chinese University of Hong Kong), Yuenan Hou (Shanghai Al Laboratory), Botian Shi (Shanghai Al Laboratory), Yuchen Yang (Fudan University), Youquan Liu (Hochschule Bremerhaven), Xingjiao Wu (Fudan University), Qin Chen (East China Normal University), Yikang Li (Shanghai Al Laboratory), Yu Qiao (Shanghai Al Laboratory), and Liang He (East China Normal University; Shanghai Key Laboratory of Multidimensional Information Processing)
Neural Map Prior for Autonomous Driving
Spherical Transformer for LiDAR-Based 3D Recognition

Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection
PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR Point Clouds 17567 Jinyu Li (QCraft), Chenxu Luo (QCraft), and Xiaodong Yang (QCraft)
PeakConv: Learning Peak Receptive Field for Radar Semantic Segmentation
Single Domain Generalization for LiDAR Semantic Segmentation
 Weakly Supervised Class-Agnostic Motion Prediction for Autonomous Driving
MethaneMapper: Spectral Absorption Aware Hyperspectral Transformer for Methane Detection 17609
Satish Kumar (University of California Santa Barbara), Ivan Arevalo (University of California Santa Barbara), ASM Iftekhar (University of California Santa Barbara), and B S Manjunath (University of California Santa Barbara)
GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds

 SCoDA: Domain Adaptive Shape Completion for Real Scans
SCPNet: Semantic Scene Completion on Point Cloud
ViewNet: A Novel Projection-Based Backbone With View Pooling for Few-Shot Point Cloud
Jiajing Chen (Syracuse University, USA), Minmin Yang (Syracuse University, USA), and Senem Velipasalar (Syracuse University, USA)
Complete-to-Partial 4D Distillation for Self-Supervised Point Cloud Sequence Representation Learning
Learnable Skeleton-Aware 3D Point Cloud Sampling
 Meta Architecture for Point Cloud Analysis
PointListNet: Deep Learning on 3D Point Lists
 PEAL: Prior-Embedded Explicit Attention Learning for Low-Overlap Point Cloud Registration 17702 Junle Yu (Hangzhou Dianzi University), Luwei Ren (Hangzhou Dianzi University), Yu Zhang (Shanghai Jiaotong University), Wenhui Zhou (Hangzhou Dianzi University), Lili Lin (Zhejiang Gongshang University), and Guojun Dai (Hangzhou Dianzi University)

Unsupervised Inference of Signed Distance Functions From Single Sparse Point Clouds Without Learning Priors
Towards Better Gradient Consistency for Neural Signed Distance Functions via Level Set Alignment
Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching
3D Registration With Maximal Cliques
PanoSwin: A Pano-Style Swin Transformer for Panorama Understanding
DKM: Dense Kernelized Feature Matching for Geometry Estimation
PATS: Patch Area Transportation With Subdivision for Local Feature Matching
Correspondence Transformers With Asymmetric Feature Learning and Matching Flow Super-Resolution
Learning Adaptive Dense Event Stereo From the Image Domain

On the Convergence of IRLS and Its Variants in Outlier-Robust Estimation	
You Only Segment Once: Towards Real-Time Panoptic Segmentation	
BEVFormer v2: Adapting Modern Image Backbones to Bird's-Eye-View Recognition via Perspective Supervision	
 UniHCP: A Unified Model for Human-Centric Perceptions	
 Planning-Oriented Autonomous Driving	
Query-Centric Trajectory Prediction	

Unsupervised Sampling Promoting for Stochastic Human Trajectory Prediction
AdamsFormer for Spatial Action Localization in the Future
PIRLNav: Pretraining With Imitation and RL Finetuning for ObjectNav
NeRF in the Palm of Your Hand: Corrective Augmentation for Robotics via Novel-View
Allan Zhou (Stanford), Moo Jin Kim (Stanford), Lirui Wang (MIT CSAIL), Pete Florence (Google), and Chelsea Finn (Stanford)
Camouflaged Instance Segmentation via Explicit De-Camouflaging
Standing Between Past and Future: Spatio-Temporal Modeling for Multi-Camera 3D Multi-Object Tracking
Level-5), and Yu-Xiong Wang (University of Illinois Urbana-Champaign)
 MotionTrack: Learning Robust Short-Term and Long-Term Motions for Multi-Object Tracking 17939 Zheng Qin (Xi'an Jiaotong University), Sanping Zhou (Xi'an Jiaotong University), Le Wang (Xi'an Jiaotong University), Jinghai Duan (Xi'an Jiaotong University), Gang Hua (Wormpex Al Research), and Wei Tang (University of Illinois at Chicago)
Multi-Modal Gait Recognition via Effective Spatial-Temporal Feature Fusion

Rethinking the Learning Paradigm for Dynamic Facial Expression Recognition
One-Shot High-Fidelity Talking-Head Synthesis With Deformable Neural Radiance Field 17969 Weichuang Li (Shanghai Al Laboratory), Longhao Zhang (DAMO Academy, Alibaba Group), Dong Wang (Shanghai Al Laboratory), Bin Zhao (Shanghai Al Laboratory; Northwestern Polytechnical University), Zhigang Wang (Shanghai Al Laboratory), Mulin Chen (Shanghai Al Laboratory; Northwestern Polytechnical University), Bang Zhang (DAMO Academy, Alibaba Group), Zhongjian Wang (DAMO Academy, Alibaba Group), Liefeng Bo (DAMO Academy, Alibaba Group), and Xuelong Li (Shanghai Al Laboratory; Northwestern Polytechnical University)
Progressive Disentangled Representation Learning for Fine-Grained Controllable Talking Head Synthesis
Event-Guided Person Re-Identification via Sparse-Dense Complementary Learning
Executing Your Commands via Motion Diffusion in Latent Space
 MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Action Recognition 18011 Xiang Wang (Huazhong University of Science and Technology; Alibaba Group), Shiwei Zhang (Alibaba Group), Zhiwu Qing (Huazhong University of Science and Technology), Changxin Gao (Huazhong University of Science and Technology), Yingya Zhang (Alibaba Group), Deli Zhao (Alibaba Group), and Nong Sang (Huazhong University of Science and Technology)
"Seeing" Electric Network Frequency From Events

Event-Based Video Frame Interpolation With Cross-Modal Asymmetric Bidirectional Motion Fields
Taewoo Kim (Korea Advanced Institute of Science and Technology), Yujeong Chae (Korea Advanced Institute of Science and Technology), Hyun-Kurl Jang (Korea Advanced Institute of Science and Technology), and Kuk-Jin Yoon (Korea Advanced Institute of Science and Technology)
Event-Based Frame Interpolation With Ad-Hoc Deblurring
Video Dehazing via a Multi-Range Temporal Alignment Network With Physical Prior
TransFlow: Transformer As Flow Learner
 MP-Former: Mask-Piloted Transformer for Image Segmentation
GradICON: Approximate Diffeomorphisms via Gradient Inverse Consistency
Neural Texture Synthesis With Guided Correspondence
Self-Supervised Non-Uniform Kernel Estimation With Flow-Based Motion Prior for Blind Image Deblurring
--
Weisheng Dong (Xidian University), Xin Li (West Virginia University), Jinjian Wu (Xidian University), and Guangming Shi (Xidian University)
Decoupling-and-Aggregating for Image Exposure Correction
You Do Not Need Additional Priors or Regularizers in Retinex-Based Low-Light Image Enhancement
DNF: Decouple and Feedback Network for Seeing in the Dark
Contrastive Semi-Supervised Learning for Underwater Image Restoration via Reliable Bank 18145 Shirui Huang (Xidian University), Keyan Wang (Xidian University), Huan Liu (McMaster University), Jun Chen (McMaster University), and Yunsong Li (Xidian University)
LG-BPN: Local and Global Blind-Patch Network for Self-Supervised Real-World Denoising 18156 Zichun Wang (Beijing Institute of Technology), Ying Fu (Beijing Institute of Technology), Ji Liu (Baidu Inc., China), and Yulun Zhang (ETH Zurich)
Spectral Bayesian Uncertainty for Image Super-Resolution
Deep Random Projector: Accelerated Deep Image Prior
Context-Aware Pretraining for Efficient Blind Image Decomposition

Metadata-Based RAW Reconstruction via Implicit Neural Functions	16
Raw Image Reconstruction With Learned Compact Metadata	16
AccelIR: Task-Aware Image Compression for Accelerating Neural Restoration	6
AutoFocusFormer: Image Segmentation off the Grid	:7
Guided Depth Super-Resolution by Deep Anisotropic Diffusion	;7
Super-Resolution Neural Operator	7
Cascaded Local Implicit Transformer for Arbitrary-Scale Super-Resolution	7
GamutMLP: A Lightweight MLP for Color Loss Recovery	8
Efficient and Explicit Modelling of Image Hierarchies for Image Restoration	'8
LEMaRT: Label-Efficient Masked Region Transform for Image Harmonization	0
CAP-VSTNet: Content Affinity Preserved Versatile Style Transfer	0

ObjectStitch: Object Compositing With Diffusion Model
DeepVecFont-v2: Exploiting Transformers To Synthesize Vector Fonts With Higher Quality 18320 Yuqing Wang (Peking University, China), Yizhi Wang (Peking University, China), Longhui Yu (Peking University, China), Yuesheng Zhu (Peking University, China), and Zhouhui Lian (Peking University, China)
Master: Meta Style Transformer for Controllable Zero-Shot and Few-Shot Artistic StyleTransfer18329Hao Tang (Center for Data Science, Peking University), Songhua Liu (National University of Singapore), Tianwei Lin (VIS, Baidu Inc.), Shaoli Huang (Tencent Al Lab), Fu Li (VIS, Baidu Inc.), Dongliang He (VIS, Baidu Inc.), and Xinchao Wang (National University of Singapore)
CLIP-Sculptor: Zero-Shot Generation of High-Fidelity and Diverse Shapes From Natural Language
LayoutDM: Transformer-Based Diffusion Model for Layout Generation
Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting 18359 Su Wang (Google Research), Chitwan Saharia (Google Research), Ceslee Montgomery (Google Research), Jordi Pont-Tuset (Google Research), Shai Noy (Google Research), Stefano Pellegrini (Google Research), Yasumasa Onoe (Google Research), Sarah Laszlo (Google Research), David J. Fleet (Google Research), Radu Soricut (Google Research), Jason Baldridge (Google Research), Mohammad Norouzi (Google Research), Peter Anderson (Google Research), and William Chan (Google Research)
SpaText: Spatio-Textual Representation for Controllable Image Generation
Paint by Example: Exemplar-Based Image Editing With Diffusion Models

InstructPix2Pix: Learning To Follow Image Editing Instructions
LayoutFormer++: Conditional Graphic Layout Generation via Constraint Serialization and Decoding Space Restriction
Self-Guided Diffusion Models
HOLODIFFUSION: Training a 3D Diffusion Model Using 2D Images
Class-Balancing Diffusion Models
Conditional Image-to-Video Generation With Latent Flow Diffusion Models
Video Probabilistic Diffusion Models in Projected Latent Space
Regularized Vector Quantization for Tokenized Image Synthesis
EfficientSCI: Densely Connected Network With Space-Time Factorization for Large-Scale Video Snapshot Compressive Imaging
 MMVC: Learned Multi-Mode Video Compression With Block-Based Prediction Mode Selection and Density-Adaptive Entropy Coding

Video Compression With Entropy-Constrained Neural Representations	
 WIRE: Wavelet Implicit Neural Representations	
TINC: Tree-Structured Implicit Neural Compression	
CompletionFormer: Depth Completion With Convolutions and Vision Transformers	
Lite-Mono: A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation	
Global Vision Transformer Pruning With Hessian-Aware Saliency	
Lite DETR: An Interleaved Multi-Scale Encoder for Efficient DETR	
PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers	
Visual Atoms: Pre-Training Vision Transformers With Sinusoidal Waves	

Neuron Structure Modeling for Generalizable Remote Physiological Measurement
Explaining Image Classifiers With Multiscale Directional Image Representation
Integrally Pre-Trained Transformer Pyramid Networks
PartMix: Regularization Strategy To Learn Part Discovery for Visible-Infrared Person Re-Identification
Knowledge Distillation for 6D Pose Estimation by Aligning Distributions of Local Predictions
Focused and Collaborative Feedback Integration for Interactive Image Segmentation 18643 Qiaoqiao Wei (Tsinghua University, China), Hui Zhang (Tsinghua University, China), and Jun-Hai Yong (Tsinghua University, China)
 PolyFormer: Referring Image Segmentation As Sequential Polygon Generation
Devil's on the Edges: Selective Quad Attention for Scene Graph Generation

 Panoptic Video Scene Graph Generation
Generalized Relation Modeling for Transformer Tracking
Representation Learning for Visual Object Tracking by Masked Appearance Transfer
Unified Mask Embedding and Correspondence Learning for Self-Supervised Video Segmentation . 18706 Liulei Li (Zhejiang University; Baidu VIS), Wenguan Wang (Zhejiang University), Tianfei Zhou (ETH Zurich), Jianwu Li (Beijing Institute of Technology), and Yi Yang (Zhejiang University)
EVAL: Explainable Video Anomaly Localization
MOSO: Decomposing MOtion, Scene and Object for Video Prediction
TarViS: A Unified Approach for Target-Based Video Segmentation

Efficient Movie Scene Detection Using State-Space Transformers
Latency Matters: Real-Time Action Forecasting Transformer
Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning
Watch or Listen: Robust Audio-Visual Speech Recognition With Visual Corruption Modelingand Reliability Scoring18783Joanna Hong (Image and Video Systems Lab, KAIST), Minsu Kim (Image andVideo Systems Lab, KAIST), Jeongsoo Choi (Image and Video Systems Lab, KAIST), and Yong Man Ro (Image and Video Systems Lab, KAIST)
ReVISE: Self-Supervised Speech Resynthesis With Visual Input for Universal and Generalized Speech Regeneration
 SynthVSR: Scaling Up Visual Speech Recognition With Synthetic Supervision
SVFormer: Semi-Supervised Video Transformer for Action Recognition
Collecting Cross-Modal Presence-Absence Evidence for Weakly-Supervised Audio-Visual Event Perception

Post-Processing Temporal Action Detection
HaLP: Hallucinating Latent Positives for Skeleton-Based Self-Supervised Learning of
Anshul Shah (Johns Hopkins University), Aniket Roy (Johns Hopkins University), Ketul Shah (Johns Hopkins University), Shlok Mishra (University of Maryland, College Park), David Jacobs (University of Maryland, College Park; Meta), Anoop Cherian (MERL), and Rama Chellappa (Johns Hopkins University)
TriDet: Temporal Action Detection With Relative Boundary Modeling
Hybrid Active Learning via Deep Clustering for Video Action Detection
Two-Stream Networks for Weakly-Supervised Temporal Action Localization With Semantic-Aware
Mechanisms
Weakly Supervised Video Emotion Detection and Prediction via Cross-Modal Temporal Erasing Network 18888
Zhicheng Zhang (Nankai University, China), Lijuan Wang (Nankai University, China), and Jufeng Yang (Nankai University, China)
Collaborative Noisy Label Cleaner: Learning Scene-Aware Trailers for Multi-Modal Highlight Detection in Movies
Weakly Supervised Temporal Sentence Grounding With Uncertainty-Guided Self-Training 18908 Yifei Huang (The University of Tokyo; Shanghai Artificial Intelligence Laboratory), Lijin Yang (The University of Tokyo), and Yoichi Sato (The University of Tokyo)
SViTT: Temporal Learning of Sparse Video-Text Transformers

 AutoAD: Movie Description in Context	0
 Text With Knowledge Graph Augmented Transformer for Video Captioning	↓1
 StepFormer: Self-Supervised Step Discovery and Localization in Instructional Videos	52
Dual Alignment Unsupervised Domain Adaptation for Video-Text Retrieval	52
 Hierarchical Semantic Correspondence Networks for Video Paragraph Grounding	'3
CLIPPING: Distilling CLIP-Based Models With a Student Base for Video-Language Retrieval 1898 Renjing Pei (Huawei Noah's Ark Lab), Jianzhuang Liu (Huawei Noah's Ark Lab), Weimian Li (Huawei Noah's Ark Lab), Bin Shao (Huawei Noah's Ark Lab), Songcen Xu (Huawei Noah's Ark Lab), Peng Dai (Huawei Noah's Ark Lab), Juwei Lu (Huawei Noah's Ark Lab), and Youliang Yan (Huawei	3

Noah's Ark Lab)

Learning Emotion Representations From Verbal and Nonverbal Communication
Context De-Confounded Emotion Recognition
CiCo: Domain-Aware Sign Language Retrieval via Cross-Lingual Contrastive Learning 19016 <i>Yiting Cheng (Fudan University), Fangyun Wei (Microsoft Research</i> <i>Asia), Jianmin Bao (Microsoft Research Asia), Dong Chen (Microsoft</i> <i>Research Asia), and Wenqiang Zhang (Fudan University)</i>
Discovering the Real Association: Multimodal Causal Reasoning in Video Question Answering
Chuanqi Zang (Beijing Institute of Technology), Hanqing Wang (Beijing Institute of Technology), Mingtao Pei (Beijing Institute of Technology), and Wei Liang (Beijing Institute of Technology; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing)
LEGO-Net: Learning Regular Rearrangements of Objects in Rooms
LANA: A Language-Capable Navigator for Instruction Following and Generation
Policy Adaptation From Foundation Model Feedback
Token Turing Machines19070Michael S. Ryoo (Google Research), Keerthana Gopalakrishnan (GoogleResearch), Kumara Kahatapitiya (Google Research), Ted Xiao (GoogleResearch), Kumara Kahatapitiya (Google Research), Ted Xiao (GoogleResearch), Kanishka Rao (Google Research), Austin Stone (GoogleResearch), Yao Lu (Google Research), Julian Ibarz (Google Research), and Anurag Arnab (Google Research)Image Research)
Unicode Analogies: An Anti-Objectivist Visual Reasoning Challenge

Exploring the Effect of Primitives for Compositional Generalization in Vision-and-Language. 19092 Chuanhao Li (Beijing Institute of Technology, China), Zhen Li (Beijing Institute of Technology, China), Chenchen Jing (Zhejiang University, Hangzhou, China), Yunde Jia (Shenzhen MSU-BIT University, China; Beijing Institute of Technology, China), and Yuwei Wu (Shenzhen MSU-BIT University, China; Beijing Institute of Technology, China)
VQACL: A Novel Visual Question Answering Continual Learning Setting
MaPLe: Multi-Modal Prompt Learning
Meta-Personalizing Vision-Language Models To Find Named Instances in Video
Understanding and Improving Visual Prompting: A Label-Mapping Perspective
RefTeacher: A Strong Baseline for Semi-Supervised Referring Expression Comprehension 19144 Jiamu Sun (Xiamen University), Gen Luo (Xiamen University), Yiyi Zhou (Xiamen University), Xiaoshuai Sun (Xiamen University), Guannan Jiang (Contemporary Amperex Technology), Zhiyu Wang (Contemporary Amperex Technology), and Rongrong Ji (Xiamen University; Shenzhen Research Institute of Xiamen University)
Leveraging per Image-Token Consistency for Vision-Language Pre-Training
Improving Visual Grounding by Encouraging Consistent Gradient-Based Explanations 19165 Ziyan Yang (Rice University), Kushal Kafle (Adobe Research), Franck Dernoncourt (Adobe Research), and Vicente Ordonez (Rice University)

ссххх

 Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks
Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification
Shepherding Slots to Objects: Towards Stable and Robust Object-Centric Learning
Learning Visual Representations via Language-Guided Sampling
L-Colns: Language-Based Colorization With Instance Awareness
EDA: Explicit Text-Decoupling and Dense Alignment for 3D Visual Grounding
MSINet: Twins Contrastive Search of Multi-Scale Interaction for Object ReID

Unifying Vision, Text, and Layout for Universal Document Processing
RA-CLIP: Retrieval Augmented Contrastive Language-Image Pre-Training
Fine-Grained Image-Text Matching by Cross-Modal Hard Aligning Network
Text-Guided Unsupervised Latent Transformation for Multi-Attribute Image Manipulation . 19285 Xiwen Wei (South China University of Technology), Zhen Xu (South China University of Technology), Cheng Liu (Shantou University), Si Wu (South China University of Technology; Peng Cheng Laboratory), Zhiwen Yu (South China University of Technology), and Hau San Wong (City University of Hong Kong)
Improving Image Recognition by Retrieving From Web-Scale Image-Text Data
Pic2Word: Mapping Pictures to Words for Zero-Shot Composed Image Retrieval
DATE: Domain Adaptive Product Seeker for E-Commerce
Multimodality Helps Unimodality: Cross-Modal Few-Shot Learning With Multimodal Models 19325 Zhiqiu Lin (Carnegie Mellon University), Samuel Yu (Carnegie Mellon University), Zhiyi Kuang (Carnegie Mellon University), Deepak Pathak (Carnegie Mellon University), and Deva Ramanan (Carnegie Mellon University)
Finetune Like You Pretrain: Improved Finetuning of Zero-Shot Vision Models

DeepSolo: Let Transformer Decoder With Explicit Points Solo for Text Spotting
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
R2Former: Unified Retrieval and Reranking Transformer for Place Recognition
Open-Set Fine-Grained Retrieval via Prompting Vision-Language Evaluator
Open-Category Human-Object Interaction Pre-Training via Language Modeling Framework 19392 Sipeng Zheng (Renmin University of China), Boshen Xu (UESTC), and Qin Jin (Renmin University of China)
Neural Congealing: Aligning Images to a Joint Semantic Atlas
Open Vocabulary Semantic Segmentation With Patch Aligned Contrastive Learning
Semantic Human Parsing via Scalable Semantic Transfer Over Multiple Label Domains 19424 Jie Yang (The Chinese University of Hong Kong, Shenzhen), Chaoqun Wang (The Chinese University of Hong Kong, Shenzhen), Zhen Li (The Chinese University of Hong Kong, Shenzhen), Junle Wang (Tencent), and Ruimao Zhang (The Chinese University of Hong Kong, Shenzhen)

Explicit Visual Prompting for Low-Level Structure Segmentations
FreeSeg: Unified, Universal and Open-Vocabulary Image Segmentation
Zero-Shot Referring Image Segmentation With Global-Local Context Features
DejaVu: Conditional Regenerative Learning To Enhance Dense Prediction
Meta Compositional Referring Expression Segmentation
Interactive Segmentation As Gaussion Process Classification
Semantic-Promoted Debiasing and Background Disambiguation for Zero-Shot Instance Segmentation
Principles of Forgetting in Domain-Incremental Semantic Segmentation in Adverse Weather Conditions

AttentionShift: Iteratively Estimated Part-Based Attention Map for Pointly Supervised Instance Segmentation
PIDNet: A Real-Time Semantic Segmentation Network Inspired by PID Controllers
Leveraging Hidden Positives for Unsupervised Semantic Segmentation
Understanding Imbalanced Semantic Segmentation Through Neural Collapse
Balancing Logit Variation for Long-Tailed Semantic Segmentation
Boundary-Enhanced Co-Training for Weakly Supervised Semantic Segmentation
Conflict-Based Cross-View Consistency for Semi-Supervised Semantic Segmentation
Learning Multi-Modal Class-Specific Tokens for Weakly Supervised Dense Object Localization 19596 Lian Xu (The University of Western Australia), Wanli Ouyang (Shanghai AI Laboratory), Mohammed Bennamoun (The University of Western Australia), Farid Boussaid (The University of Western Australia), and Dan Xu (Hong Kong University of Science and Technology)
 WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation

DualRel: Semi-Supervised Mitochondria Segmentation From a Prototype Perspective 19617 Huayu Mai (University of Science and Technology of China), Rui Sun (University of Science and Technology of China), Tianzhu Zhang (University of Science and Technology of China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center; Deep Space Exploration Lab), Zhiwei Xiong (University of Science and Technology of China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center), and Feng Wu (University of Science and Technology of China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center)
Distilling Self-Supervised Vision Transformers for Weakly-Supervised Few-Shot Classification & Segmentation
Co-Salient Object Detection With Uncertainty-Aware Group Exchange-Masking
Supervised Masked Knowledge Distillation for Few-Shot Transformers
Modeling the Distributional Uncertainty for Salient Object Detection Models
Weak-Shot Object Detection Through Mutual Knowledge Transfer
CAT: LoCalization and IdentificAtion Cascade Detection Transformer for Open-World Object Detection
Adaptive Sparse Pairwise Loss for Object Re-Identification

DETRs With Hybrid Matching
Generating Features With Increased Crop-Related Diversity for Few-Shot Object Detection . 19713 Jingyi Xu (Stony Brook University), Hieu Le (EPFL), and Dimitris Samaras (Stony Brook University)
ScaleKD: Distilling Scale-Aware Knowledge in Small Object Detector
Multiclass Confidence and Localization Calibration for Object Detection
Open-Set Representation Learning Through Combinatorial Embedding
ProD: Prompting-To-Disentangle Domain Knowledge for Cross-Domain Few-Shot Image Classification 19754
ProD: Prompting-To-Disentangle Domain Knowledge for Cross-Domain Few-Shot Image Classification
 ProD: Prompting-To-Disentangle Domain Knowledge for Cross-Domain Few-Shot Image Classification
 ProD: Prompting-To-Disentangle Domain Knowledge for Cross-Domain Few-Shot Image Classification

 Hierarchical Discriminative Learning Improves Visual Representations of Biomedical Microscopy
 KiUT: Knowledge-Injected U-Transformer for Radiology Report Generation
Image Quality-Aware Diagnosis via Meta-Knowledge Co-Embedding
Interventional Bag Multi-Instance Learning on Whole-Slide Pathological Images
Visual Prompt Tuning for Generative Transfer Learning
LINe: Out-of-Distribution Detection by Leveraging Important Neurons
GCFAgg: Global and Cross-View Feature Aggregation for Multi-View Clustering

Exploring and Exploiting Uncertainty for Incomplete Multi-View Classification	3
BiCro: Noisy Correspondence Rectification for Multi-Modality Data via Bi-Directional Cross-Modal Similarity Consistency	3
 Bi-Directional Distribution Alignment for Transductive Zero-Shot Learning	3
HIER: Metric Learning Beyond Class Labels via Hierarchical Regularization	3
MaskCon: Masked Contrastive Learning for Coarse-Labelled Dataset	3
Class Prototypes Based Contrastive Learning for Classifying Multi-Label and Fine-Grained Educational Videos	3
Learning From Noisy Labels With Decoupled Meta Label Purifier	4
SuperDisco: Super-Class Discovery Improves Visual Recognition for the Long-Tail	4

Matthias Eisenmann (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Annika Reinke (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany; Heidelberg University, Germany), Vivienn Weru (Division of Biostatistics, German Cancer Research Center (DKFZ), Germany), Minu D. Tizabi (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Fabian Isensee (Division of Medical Image Computing, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Tim J. Adler (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany), Sharib Ali (University of Leeds, UK), Vincent Andrearczyk (HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Switzerland; Lausanne University Hospital, Switzerland), Marc Aubreville (Technische Hochschule Ingolstadt, Germany), Uiiwal Baid (University of Pennsylvania, USA; University of Pennsylvania, USA; University of Pennsylvania, USA), Spyridon Bakas (University of Pennsylvania, USA; University of Pennsylvania, USA; University of Pennsylvania, USA), Niranjan Balu (University of Washington, USA), Sophia Bano (University College London, UK), Jorge Bernal (Universitat Autònoma de Barcelona & Computer Vision Center, Spain), Sebastian Bodenstedt (Division of Translational Surgical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, Germany), Alessandro Casella (Department of Advanced Robotics, Istituto Italiano di Tecnologia, Italy and Department of Electronics, Information and Bioengineering, Italy), Veronika Cheplygina (IT University of Copenhagen, Denmark), Marie Daum (Heidelberg University Hospital, Germany), Marleen de Bruijne (Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC, The Netherlands; University of Copenhagen, Denmark), Adrien Depeursinge (University of Applied Sciences Western Switzerland (HES-SO), Switzerland; Lausanne University Hospital, Switzerland), Reuben Dorent (Harvard Medical School, Brigham and Women's Hospital, USA; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK), Jan Egger (University Hospital Essen (AöR), Germany), David G. Ellis (University of Nebraska Medical Center, USA), Sandy Engelhardt (Heidelberg University Hospital, Germany), Melanie Ganz (Copenhagen University Hospital, Denmark; University of Copenhagen, Denmark), Noha Ghatwary (Arab Academy of Science and Technology, Egypt), Gabriel Girard (CIBM Center for Biomedical Imaging, Switzerland; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland), Patrick Godau (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany; Heidelberg University, Germany; National Center for Tumor Diseases (NCT), Germany), Anubha Gupta (SBILab, Department of ECE, IIIT-Delhi, India), Lasse Hansen (University of

Lübeck, Germany), Kanako Harada (The University of Tokyo, Japan), Mattias P. Heinrich (University of Lübeck, Germany), Nicholas Heller (University of Minnesota, USA), Alessa Hering (Radboud University Medical Center, The Netherlands; Fraunhofer MEVIS, Germany), Arnaud Huaulmé (Univ Rennes, INSERM, France), Pierre Jannin (Univ Rennes, INSERM, France), Ali Emre Kavur (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Oldřich Kodym (Brno University of Technology, Czech Republic), Michal Kozubek (Masaryk University, Czech Republic), Jianning Li (University Hospital Essen (AöR), Germany), Hongwei Li (University of Zurich, Switzerland), Jun Ma (University of Toronto, Canada), Carlos Martín-Isla (Universitat de Barcelona, Spain), Bjoern Menze (University of Zurich, Switzerland), Alison Noble (University of Oxford, UK), Valentin Oreiller (University of Applied Sciences Western Switzerland (HES-SO), Switzerland; Lausanne University Hospital, Switzerland), Nicolas Padoy (University of Strasbourg, CNRS, France; IHU Strasbourg, France), Sarthak Pati (University of Pennsylvania, USA; University of Pennsylvania, USA: University of Pennsylvania, USA: Technical University of Munich, Germany), Kelly Payette (University Children's Hospital Zurich, University of Zurich, Switzerland; University of Zurich, Switzerland), Tim Rädsch (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Jonathan Rafael-Patiño (Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland), Vivek Singh Bawa (Oxford Brookes University, UK), Stefanie Speidel (Division of Translational Surgical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), TU Dresden, Germany), Carole H. Sudre (University College London, UK; University College London, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, UK; University College London, UK), Kimberlin van Wijnen (Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC, The Netherlands), Martin Wagner (Heidelberg University Hospital, Germany), Donglai Wei (Computer Science, Boston College, USA), Amine Yamlahi (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany), Moi Hoon Yap (Manchester Metropolitan University, UK), Chun Yuan (University of Washington, USA), Maximilian Zenk (Division of Medical Image Computing, German Cancer Research Center (DKFZ), Germany; Heidelberg University, Germany), Aneeg Zia (Intuitive Surgical, Inc., Sunnyvale, USA), David Zimmerer (Division of Medical Image Computing, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany), Dogu Baran Aydogan (University of Eastern Finland, Finland; Aalto University School of Science, Finland), Binod Bhattarai (University of Aberdeen, UK), Louise Bloch (University of Applied Sciences and Arts Dortmund, Germany; University Hospital Essen, Germany; University Hospital Essen, Germany), Raphael Brüngel (University of Applied Sciences and Arts Dortmund, Germany; University Hospital Essen,

Germany; University Hospital Essen, Germany), Jihoon Cho (School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Chanyeol Choi (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA), Qi Dou (The Chinese University of Hong Kong, Hong Kong), Ivan Ezhov (Technical University of Munich, Germany), Christoph M. Friedrich (University of Applied Sciences and Arts Dortmund, Germany; University Hospital Essen, Germany), Clifton D. Fuller (The University of Texas MD Anderson Cancer Center, USA), Rebati Raman Gaire (Nepal Applied Mathematics and Informatics Institute for Research (NAAMII), Nepal), Adrian Galdran (Universidad Pompeu Fabra, Spain; University of Adelaide, Australia), Álvaro García Faura (XLAB d.o.o., Ljubljana, Slovenia), Maria Grammatikopoulou (Touch Surgery, Medtronic, UK), SeulGi Hong (CJ Al Center, Seoul, Republic of Korea), Mostafa Jahanifar (University of Warwick, UK), Ikbeom Jang (Hankuk University of Foreign Studies, Republic of Korea; Massachusetts General Hospital, USA; Harvard Medical School, USA), Abdolrahim Kadkhodamohammadi (Touch Surgery, Medtronic, UK), Inha Kang (School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Florian Kofler (Helmholtz AI, Helmholtz Zentrum München, Germany; Technical University Munich, Germany; Technical University of Munich, Germany; Technical University of Munich, Germany), Satoshi Kondo (Muroran Institute of Technology, Japan), Hugo Kuijf (UMC Utrecht, Utrecht, The Netherlands), Mingxing Li (University of Science and Technology of China, China), Minh Luu (Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Tomaž Martinčič (XLAB d.o.o., Liubliana, Slovenia), Pedro Morais (2Ai, School of Technology, IPCA, Portugal), Mohamed A. Naser (The University of Texas MD Anderson Cancer Center, USA), Bruno Oliveira (2Ai, School of Technology, IPCA, Portugal; University of Minho, Portugal; University of Minho, Portugal), David Owen (Touch Surgery, Medtronic, UK), Subeen Pang (Massachusetts Institute of Technology, USA), Jinah Park (School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Sung-Hong Park (Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea), Szymon Plotka (Sano Centre for Computational Medicine, Poland; University of Amsterdam, The Netherlands; Amsterdam University Medical Center, University of Amsterdam, The Netherlands), Elodie Puybareau (LRE, EPITA, France), Nasir Rajpoot (University of Warwick, UK), Kanghyun Ryu (Artificial Intelligence and Robotics Institute, Korea Institute of Science and Technology, Republic of Korea), Numan Saeed (Mohamed Bin Zaved University of Artificial Intelligence, UAE), Adam Shephard (University of Warwick, UK), Pengcheng Shi (Mohamed Bin Zayed University of Artificial Intelligence, UAE), Dejan Štepec (XLAB d.o.o., Ljubljana, Slovenia; University of Ljubljana, Slovenia), Ronast Subedi (Nepal Applied Mathematics and Informatics Institute for Research (NAAMII), Nepal), Guillaume Tochon (LRE, EPITA, France), Helena R. Torres (2Ai, School of Technology, IPCA, Portugal; University of Minho, Portugal; University of Minho, Portugal), Helene Urien (ISEP, France), João L. Vilaça (2Ai, School of Technology, IPCA, Portugal), Kareem A. Wahid (The University of Texas MD Anderson Cancer Center, USA), Haojie Wang (Xiamen University, China), Jiacheng Wang

	(Xiamen University, China), Liansheng Wang (Xiamen University, China), Xiyue Wang (Sichuan University, China), Benedikt Wiestler (Technical University of Munich, Germany), Marek Wodzinski (AGH UST, Department of Measurement and Electronics, Poland; University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland), Fangfang Xia (Data Science and Learning Division, Argonne National Laboratory, USA; University of Chicago, USA), Juanying Xie (Shaanxi Normal University, China), Zhiwei Xiong (University of Science and Technology of China, China), Sen Yang (Al Lab, Tencent, China), Yanwu Yang (Harbin Institute of Technology, China), Zixuan Zhao (University of Chicago, USA), Klaus Maier-Hein (Division of Medical Image Computing, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German Cancer Research Center (DKFZ), Germany, Annette Kopp-Schneider (Division of Biostatistics, German Cancer Research Center (DKFZ), Germany), and Lena Maier-Hein (Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Germany; Helmholtz Imaging, German, Cancer Research Center (DKFZ), Germany; Heidelberg University, Germany; Heidelberg University, Germany; National Center for Tumor Diseases (NCT), Germany)	
Ba	anced Product of Calibrated Experts for Long-Tailed Recognition	7
Tra Dis	insfer Knowledge From Head to Tail: Uncertainty Calibration Under Long-Tailed tribution Jiahao Chen (Renmin University of China) and Bing Su (Beijing Key Laboratory of Big Data Management and Analysis Methods)	3
FRI	EDOM: Fairness Domain Adaptation Approach to Semantic Scene Understanding 1998 Thanh-Dat Truong (University of Arkansas, USA), Ngan Le (University of Arkansas, USA), Bhiksha Raj (Carnegie Mellon University, USA), Jackson Cothren (University of Arkansas, USA), and Khoa Luu (University of Arkansas, USA)	3
со	T: Unsupervised Domain Adaptation With Clustering and Optimal Transport	3
Mŀ	IPL: Minimum Happy Points Learning for Active Source Free Domain Adaptation	3
Up	cycling Models Under Domain and Category Shift	•

PMR: Prototypical Modal Rebalance for Multimodal Learning
 MMANet: Margin-Aware Distillation and Modality-Aware Regularization for Incomplete Multimodal Learning
Feature Alignment and Uniformity for Test Time Adaptation
Revisiting Prototypical Network for Cross Domain Few-Shot Learning
A Whac-a-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others 20071 Zhiheng Li (University of Rochester), Ivan Evtimov (Meta AI), Albert Gordo (Meta AI), Caner Hazirbas (Meta AI), Tal Hassner (Meta AI), Cristian Canton Ferrer (Meta AI), Chenliang Xu (University of Rochester), and Mark Ibrahim (Meta AI)
Independent Component Alignment for Multi-Task Learning
MDL-NAS: A Joint Multi-Domain Learning Framework for Vision Transformer
MELTR: Meta Loss Transformer for Learning To Fine-Tune Video Foundation Models

1% VS 100%: Parameter-Efficient Low Rank Adapter for Dense Predictions
Rebalancing Batch Normalization for Exemplar-Based Class-Incremental Learning
Partial Network Cloning
ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer
Rethinking Feature-Based Knowledge Distillation for Face Recognition
Regularizing Second-Order Influences for Continual Learning
Generalization Matters: Loss Minima Flattening via Parameter Hybridization for Efficient Online Knowledge Distillation
Decoupling Learning and Remembering: A Bilevel Memory Framework With Knowledge Projection for Task-Incremental Learning

On the Stability-Plasticity Dilemma of Class-Incremental Learning
Simulated Annealing in Early Layers Leads to Better Generalization
Frustratingly Easy Regularization on Representation Can Boost Deep Reinforcement Learning 20215
Qiang He (Institute of Automation, Chinese Academy of Sciences, China), Huangyuan Su (Carnegie Mellon University, United States), Jieyu Zhang (University of Washington, United States), and Xinwen Hou (Institute of Automation, Chinese Academy of Sciences, China)
Tunable Convolutions With Parametric Multi-Loss Optimization
Re-Basin via Implicit Sinkhorn Differentiation
Gradient Norm Aware Minimization Seeks First-Order Flatness and Improves Generalization 20247
Xingxuan Zhang (Tsinghua University), Renzhe Xu (Tsinghua University), Han Yu (Tsinghua University), Hao Zou (Tsinghua University), and Peng Cui (Tsinghua University)
AstroNet: When Astrocyte Meets Artificial Neural Network
Network Expansion for Practical Training Acceleration
Defining and Quantifying the Emergence of Sparse Concepts in DNNs

Samples With Low Loss Curvature Improve Data Efficiency	20290
Masked Images Are Counterfactual Samples for Robust Fine-Tuning	20301
Bias Mimicking: A Simple Sampling Approach for Bias Mitigation	20311
 NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for Vision Transformers	20321
Practical Network Acceleration With Tiny Sets	20331
TeSLA: Test-Time Self-Learning With Automatic Adversarial Augmentation	20341
Discriminator-Cooperated Feature Map Distillation for GAN Compression	:0351
 Private Image Generation With Dual-Purpose Auxiliary Classifier	20361
ImageNet-E: Benchmarking Neural Network Robustness via Attribute Editing	:0371
Masked Jigsaw Puzzle: A Versatile Position Embedding for Vision Transformers	:0382

A New Comprehensive Benchmark for Semi-Supervised Video Anomaly Detection and Anticipation 203	392
Congqi Cao (Northwestern Polytechnical University, China), Yue Lu (Northwestern Polytechnical University, China), Peng Wang (Northwestern Polytechnical University, China), and Yanning Zhang (Northwestern Polytechnical University, China)	
SimpleNet: A Simple Network for Image Anomaly Detection and Localization	02
DaFKD: Domain-Aware Federated Knowledge Distillation	12
Reliable and Interpretable Personalized Federated Learning	22
Adaptive Channel Sparsity for Federated Learning Under System Heterogeneity	32
Bias-Eliminating Augmentation Learning for Debiased Federated Learning	42
 Instance-Aware Domain Generalization for Face Anti-Spoofing	53
Adversarially Masking Synthetic To Mimic Real: Adaptive Noise Injection for Point Cloud Segmentation Adaptation	64

Model Barrier: A Compact Un-Transferable Isolation Domain for Model Intellectual Property Protection
MEDIC: Remove Model Backdoors via Importance Driven Cloning
Progressive Backdoor Erasing via Connecting Backdoor and Adversarial Attacks
Reinforcement Learning-Based Black-Box Model Inversion Attacks
T-SEA: Transfer-Based Self-Ensemble Attack on Object Detection
Proximal Splitting Adversarial Attack for Semantic Segmentation
 Towards Transferable Targeted Adversarial Examples

Shenglin Yin (Peking University, China), Kelu Yao (Zhejiang Laboratory, China; Institute of Computing Technology, Chinese Academy of Sciences, China), Sheng Shi (Northwest University, P. R. China; Al Lab, Lenovo Research, P. R. China), Yangzhou Du (Al Lab, Lenovo Research, P. R. China), and Zhen Xiao (Peking University, China)	
Generalist: Decoupling Natural and Robust Generalization Hongjun Wang (Peking University) and Yisen Wang (Peking University)	20554
Cooperation or Competition: Avoiding Player Domination for Multi-Target Robustness via Adaptive Budgets Yimu Wang (University of Waterloo, Canada), Dinghuai Zhang (University of Montreal Montreal, Canada), Yihan Wu (University of Pittsburgh, United States), Heng Huang (University of Pittsburgh, United States), and Hongyang Zhang (University of Waterloo, Canada)	20564
Discrete Point-Wise Attack Is Not Enough: Generalized Manifold Adversarial Attack for Face Recognition <i>Qian Li (Eastern Institute for Advanced Study, China), Yuxiao Hu</i> <i>(Eastern Institute for Advanced Study, China), Ye Liu (Eastern</i> <i>Institute for Advanced Study, China), Dongxiao Zhang (Eastern</i> <i>Institute for Advanced Study, China), Xin Jin (Eastern Institute for</i> <i>Advanced Study, China), and Yuntian Chen (Eastern Institute for</i> <i>Advanced Study, China)</i>	20575
RIATIG: Reliable and Imperceptible Adversarial Text-to-Image Generation With Natural Prompts Han Liu (Washington University in St. Louis), Yuhao Wu (Washington University in St. Louis), Shixuan Zhai (Washington University in St. Louis), Bo Yuan (Rutgers University), and Ning Zhang (Washington University in St. Louis)	20585
CLIP2Protect: Protecting Facial Privacy Using Text-Guided Makeup via Adversarial Latent Search Fahad Shamshad (Mohamed Bin Zayed University of AI, UAE), Muzammal Naseer (Mohamed Bin Zayed University of AI, UAE), and Karthik Nandakumar (Mohamed Bin Zayed University of AI, UAE)	20595
TruFor: Leveraging All-Round Clues for Trustworthy Image Forgery Detection and Localization Fabrizio Guillaro (University Federico II of Naples), Davide Cozzolino (University Federico II of Naples), Avneesh Sud (Google Research), Nicholas Dufour (Google Research), and Luisa Verdoliva (University Federico II of Naples)	20606

Poster-Thu-PM

NeRDi: Single-View NeRF Synthesis With Language-Guided Diffusion As General Image Priors 20637

Congyue Deng (Stanford University), Chiyu Max Jiang (Waymo), Charles R. Qi (Waymo), Xinchen Yan (Waymo), Yin Zhou (Waymo), Leonidas Guibas (Stanford University; Google Research), and Dragomir Anguelov (Waymo)

GM-NeRF: Learning Generalizable Model-Based Neural Radiance Fields From Multi-View Images .. 20648

Jianchuan Chen (Dalian University of Technology, China), Wentao Yi (Dalian University of Technology, China), Liqian Ma (ZMO Al Inc.), Xu Jia (Dalian University of Technology, China), and Huchuan Lu (Dalian University of Technology, China)

MixNeRF: Modeling a Ray With Mixture Density for Novel View Synthesis From Sparse Inputs 20659

Seunghyeon Seo (Seoul National Univeristy), Donghoon Han (Seoul National Univeristy), Yeonjin Chang (Seoul National Univeristy), and Nojun Kwak (Seoul National Univeristy)

SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting With Neural Radiance Fields 20669

Ashkan Mirzaei (Samsung Al Centre Toronto; University of Toronto), Tristan Aumentado-Armstrong (Samsung Al Centre Toronto; University of Toronto; Vector Institute for Al), Konstantinos G. Derpanis (Samsung Al Centre Toronto; York University; Vector Institute for Al), Jonathan Kelly (University of Toronto), Marcus A. Brubaker (Samsung Al Centre Toronto; York University; Vector Institute for Al), Igor Gilitschenski (University of Toronto), and Alex Levinshtein (Samsung Al Centre Toronto)

Masked Wavelet Representation for Compact Neural Radiance Fields	
Daniel Rho (Al2XL, KT), Byeonghyeon Lee (Sungkyunkwan University),	
Seungtae Nam (Sungkyunkwan University), Joo Chan Lee (Sungkyunkwan	
University), Jong Hwan Ko (Sungkyunkwan University), and Eunbyung Park (Sungkyunkwan University)	
PaletteNeRF: Palette-Based Appearance Editing of Neural Radiance Fields	

Zhengfei Kuang (Stanford University), Fujun Luan (Adobe Research), Sai Bi (Adobe Research), Zhixin Shu (Adobe Research), Gordon Wetzstein (Stanford University), and Kalyan Sunkavalli (Stanford University)

Transforming Radiance Field With Lipschitz Network for Photorealistic 3D Scene Stylization 20712 Zicheng Zhang (University of Chinese Academy of Sciences), Yinglu Liu (JD Al Research), Congying Han (University of Chinese Academy of Sciences), Yingwei Pan (HiDream.ai Inc.), Tiande Guo (University of Chinese Academy of Sciences), and Ting Yao (HiDream.ai Inc.)
Occlusion-Free Scene Recovery via Neural Radiance Fields
TriVol: Point Cloud Rendering via Triple Volumes
DyNCA: Real-Time Dynamic Texture Synthesis Using Neural Cellular Automata
Neural Scene Chronology
ReLight My NeRF: A Dataset for Novel View Synthesis and Relighting of Real World Objects .20762 Marco Toschi (Eyecan.ai), Riccardo De Matteo (Eyecan.ai), Riccardo Spezialetti (Eyecan.ai), Daniele De Gregorio (Eyecan.ai), Luigi Di Stefano (University of Bologna), and Samuele Salti (University of Bologna)
ORCa: Glossy Objects As Radiance-Field Cameras
Nighttime Smartphone Reflective Flare Removal Using Optical Center Symmetry Prior 20783 Yuekun Dai (Nanyang Technological University), Yihang Luo (Nanyang Technological University), Shangchen Zhou (Nanyang Technological University), Chongyi Li (Nanyang Technological University), and Chen Change Loy (Nanyang Technological University)
SunStage: Portrait Reconstruction and Relighting Using the Sun as a Light Stage

The Differentiable Lens: Compound Lens Search Over Glass Surfaces and Materials for ObjectDetection20803Geoffroi Côté (Universite Laval; Princeton University), Fahim Mannan(Algolux), Simon Thibault (Universite Laval), Jean-François Lalonde(Universite Laval), and Felix Heide (Princeton University; Algolux)
Teleidoscopic Imaging System for Microscale 3D Shape Reconstruction
Looking Through the Glass: Neural Surface Reconstruction Against High Specular Reflections 20823
Jiaxiong Qiu (VCIP, CS, Nankai University), Peng-Tao Jiang (Zhejiang University), Yifan Zhu (VCIP, CS, Nankai University), Ze-Xin Yin (VCIP, CS, Nankai University), Ming-Ming Cheng (VCIP, CS, Nankai University), and Bo Ren (VCIP, CS, Nankai University)
NeuralUDF: Learning Unsigned Distance Fields for Multi-View Reconstruction of Surfaces With Arbitrary Topologies
Xiaoxiao Long (The University of Hong Kong; Tencent Games), Cheng Lin (Tencent Games), Lingjie Liu (Max Planck Institute for Informatics), Yuan Liu (The University of Hong Kong), Peng Wang (The University of Hong Kong), Christian Theobalt (Max Planck Institute for Informatics), Taku Komura (The University of Hong Kong), and Wenping Wang (Texas A&M University)
Sphere-Guided Training of Neural Implicit Surfaces
OReX: Object Reconstruction From Planar Cross-Sections Using Neural Fields
Persistent Nature: A Generative Model of Unbounded 3D Worlds
3D Neural Field Generation Using Triplane Diffusion
Diffusion-Based Signed Distance Fields for 3D Shape Generation

Efficient View Synthesis and 3D-Based Multi-Frame Denoising With Multiplane Feature Representations
Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and Text-to-Image Diffusion Models
Jiale Xu (ARC Lab; ShanghaiTech University), Xintao Wang (ARC Lab), Weihao Cheng (ARC Lab), Yan-Pei Cao (ARC Lab), Ying Shan (ARC Lab), Xiaohu Qie (Tencent PCG), and Shenghua Gao (ShanghaiTech University; Shanghai Engineering Research Center of Intelligent Vision and Imaging; Shanghai Engineering Research Center of Energy Efficient and Custom Al IC)
SINE: Semantic-Driven Image-Based NeRF Editing With Prior-Guided Editing Field
3D Highlighter: Localizing Regions on 3D Shapes via Text Descriptions
Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion
PanoHead: Geometry-Aware 3D Full-Head Synthesis in 360°
 StyleGene: Crossover and Mutation of Region-Level Facial Genes for Kinship Face Synthesis 20960 Hao Li (Computer Vision Institute, Shenzhen University), Xianxu Hou (National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University; Xi'an Jiaotong-Liverpool University), Zepeng Huang (Computer Vision Institute, Shenzhen University), and Linlin Shen (Computer Vision Institute, Shenzhen University; National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University; Shenzhen Institute of Artificial Intelligence and Robotics for Society; Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University)
Parameter Efficient Local Implicit Image Function Network for Face Segmentation
Graphics Capsule: Learning Hierarchical 3D Face Representations From 2D Images

Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars
Learning Neural Parametric Head Models
Zero-Shot Text-to-Parameter Translation for Game Character Auto-Creation
Learning Locally Editable Virtual Humans
Auto-CARD: Efficient and Robust Codec Avatar Driving for Real-Time Mobile Telepresence 21036 Yonggan Fu (Georgia Institute of Technology), Yuecheng Li (Meta), Chenghui Li (Meta), Jason Saragih (Meta), Peizhao Zhang (Meta), Xiaoliang Dai (Meta), and Yingyan Celine Lin (Georgia Institute of Technology)
Ham2Pose: Animating Sign Language Notation Into Pose Sequences

PointAvatar: Deformable Point-Based Head Avatars From Videos)57
 PAniC-3D: Stylized Single-View 3D Reconstruction From Portraits of Anime Characters 210 Shuhong Chen (University of Maryland - College Park, USA; ByteDance), Kevin Zhang (ByteDance), Yichun Shi (University of Maryland - College Park, USA), Heng Wang (University of Maryland - College Park, USA), Yiheng Zhu (University of Maryland - College Park, USA), Guoxian Song (University of Maryland - College Park, USA), Sizhe An (University of Maryland - College Park, USA), Janus Kristjansson (ByteDance), Xiao Yang (University of Maryland - College Park, USA), and Matthias Zwicker (ByteDance))68
 HandNeRF: Neural Radiance Fields for Animatable Interacting Hands)78
VGFlow: Visibility Guided Flow Network for Human Reposing	388
Clothed Human Performance Capture With a Double-Layer Neural Radiance Fields)98
POEM: Reconstructing Hand in a Point Embedded Multi-View Stereo	108
FlexNeRF: Photorealistic Free-Viewpoint Rendering of Moving Humans From Sparse Views . 211 Vinoj Jayasundara (University of Maryland, College Park), Amit Agrawal (Amazon.com, Inc.), Nicolas Heron (Amazon.com, Inc.), Abhinav Shrivastava (University of Maryland, College Park), and Larry S. Davis (University of Maryland, College Park; Amazon.com, Inc.)	118

Flow Supervision for Deformable NeRF
Building Rearticulable Models for Arbitrary 3D Objects From 4D Point Clouds 21138 Shaowei Liu (University of Illinois Urbana-Champaign), Saurabh Gupta (University of Illinois Urbana-Champaign), and Shenlong Wang (University of Illinois Urbana-Champaign)
Implicit 3D Human Mesh Recovery Using Consistency With Pose and Shape From Unseen-View 21148
Hanbyel Cho (Korea Advanced Institute of Science and Technology (KAIST), South Korea), Yooshin Cho (Korea Advanced Institute of Science and Technology (KAIST), South Korea), Jaesung Ahn (Korea Advanced Institute of Science and Technology (KAIST), South Korea), and Junmo Kim (Korea Advanced Institute of Science and Technology (KAIST), South Korea)
One-Stage 3D Whole-Body Mesh Recovery With Component Aware Transformer
Im2Hands: Learning Attentive Implicit Representation of Interacting Two-Hand Shapes 21169 Jihyun Lee (KAIST), Minhyuk Sung (KAIST), Honggyu Choi (KAIST), and Tae-Kyun Kim (KAIST; Imperial College London)
FLEX: Full-Body Grasping Without Full-Body Grasps
DexArt: Benchmarking Generalizable Dexterous Manipulation With Articulated Objects 21190 Chen Bao (Shanghai Jiao Tong University), Helin Xu (Tsinghua University), Yuzhe Qin (UC San Diego), and Xiaolong Wang (UC San Diego)
CARTO: Category and Joint Agnostic Reconstruction of ARTiculated Objects
CIRCLE: Capture in Rich Contextual Environments

Decoupling Human and Camera Motion From Videos in the Wild
GarmentTracking: Category-Level Garment Pose Tracking
 Hierarchical Temporal Transformer for 3D Hand Pose Estimation and Action Recognition From Egocentric RGB Videos
PSVT: End-to-End Multi-Person 3D Pose and Shape Estimation With Progressive Video Transformers
Delving Into Discrete Normalizing Flows on SO(3) Manifold for Probabilistic Rotation Modeling

 3D-POP - An Automated Annotation Approach to Facilitate Markerless 2D-3D Tracking of Freely Moving Birds With Marker-Based Motion Capture
TTA-COPE: Test-Time Adaptation for Category-Level Object Pose Estimation
Markerless Camera-to-Robot Pose Estimation via Self-Supervised Sim-to-Real Transfer 21296 Jingpei Lu (University of California, San Diego), Florian Richter (University of California, San Diego), and Michael C. Yip (University of California, San Diego)
 SMOC-Net: Leveraging Camera Pose for Self-Supervised Monocular Object Pose Estimation 21307 Tao Tan (School of Artificial Intelligence, UCAS; State Key Laboratory of Multimodal Artificial Intelligence Systems, CASIA) and Qiulei Dong (School of Artificial Intelligence, UCAS; State Key Laboratory of Multimodal Artificial Intelligence Systems, CASIA; Center for Excellence in Brain Science and Intelligence Technology, CAS)
IMP: Iterative Matching and Pose Estimation With Adaptive Pooling
Self-Supervised Representation Learning for CAD

Few-Shot Geometry-Aware Keypoint Localization	37
SparsePose: Sparse-View Camera Pose Regression and Refinement	19
A Large-Scale Homography Benchmark	50
Learning Geometric-Aware Properties in 2D Representation Using Lightweight CAD Models, or Zero Real 3D Pairs	71
AutoRecon: Automated 3D Object Discovery and Reconstruction	32
Multi-Sensor Large-Scale Dataset for Multi-View 3D Reconstruction	92
NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization)4

Self-Supervised Super-Plane for Neural 3D Reconstruction	5
PlaneDepth: Self-Supervised Depth Estimation via Orthogonal Planes	5
Single View Scene Scale Estimation Using Scale Field	5
3D Line Mapping Revisited	5
Inverting the Imaging Process by Learning an Implicit Camera Model	6
SfM-TTR: Using Structure From Motion for Test-Time Refinement of Single-View Depth Networks	6
iDisc: Internal Discretization for Monocular Depth Estimation	7
DC2: Dual-Camera Defocus Control by Learning To Refocus	8
A Practical Stereo Depth System for Smart Glasses	8

GeoMVSNet: Learning Multi-View Stereo With Geometry Perception
DINN360: Deformable Invertible Neural Network for Latitude-Aware 360° Image Rescaling 21519 Yichen Guo (Beihang University, China), Mai Xu (Beihang University, China), Lai Jiang (University of British Columbia, Canada), Leonid Sigal (University of British Columbia, Canada), and Yunjin Chen (Beihang University, China)
OmniVidar: Omnidirectional Depth Estimation From Multi-Fisheye Images
Learning To Fuse Monocular and Multi-View Cues for Multi-Frame Depth Estimation in Dynamic
 Scenes
Modality-Invariant Visual Odometry for Embodied Vision
 VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud
CAPE: Camera View Position Embedding for Multi-View 3D Object Detection
AeDet: Azimuth-Invariant Multi-View 3D Object Detection
Object Detection With Self-Supervised Scene Adaptation

Understanding the Robustness of 3D Object Detection With Bird's-Eye-View Representations in Autonomous Driving
BEVHeight: A Robust Framework for Vision-Based Roadside 3D Object Detection
Uncertainty-Aware Vision-Based Metric Cross-View Geolocalization
OrienterNet: Visual Localization in 2D Public Maps With Neural Matching
MSMDFusion: Fusing LiDAR and Camera at Multiple Scales With Multi-Depth Seeds for 3D Object Detection
Virtual Sparse Convolution for Multimodal 3D Object Detection
Optimal Transport Minimization: Crowd Localization on Density Maps for Semi-Supervised Counting
VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking
GraVoS: Voxel Selection for 3D Point-Cloud Detection

MSeg3D: Multi-Modal 3D Semantic Segmentation for Autonomous Driving
LaserMix for Semi-Supervised LiDAR Semantic Segmentation
Implicit Surface Contrastive Clustering for LiDAR Point Clouds
 Semi-Weakly Supervised Object Kinematic Motion Prediction
PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained Image-Language
Minghua Liu (UC San Diego), Yinhao Zhu (Qualcomm Al Research), Hong Cai (Qualcomm Al Research), Shizhong Han (Qualcomm Al Research), Zhan Ling (UC San Diego), Fatih Porikli (Qualcomm Al Research), and Hao Su (UC San Diego)
Learning Weather-General and Weather-Specific Features for Image Restoration Under Multiple Adverse Weather Conditions
Geometry and Uncertainty-Aware 3D Point Cloud Class-Incremental Semantic Segmentation 21759
Yuwei Yang (Sichuan University), Munawar Hayat (Monash University), Zhao Jin (Sichuan University), Chao Ren (Sichuan University), and Yinjie Lei (Sichuan University)
Learning 3D Representations From 2D Pre-Trained Models via Image-to-Point Masked Autoencoders 21769
Renrui Zhang (Shanghai Artificial Intelligence Laboratory; CUHK MMLab), Liuhui Wang (Peking University), Yu Qiao (Shanghai Artificial Intelligence Laboratory), Peng Gao (Shanghai Artificial Intelligence Laboratory), and Hongsheng Li (CUHK MMLab; CPII under InnoHK)
ToThePoint: Efficient Contrastive Learning of 3D Point Clouds via Recycling

PointDistiller: Structured Knowledge Distillation Towards Efficient and Compact 3D Detection
PointConvFormer: Revenge of the Point-Based Convolution
Self-Positioning Point-Based Transformer for Point Cloud Understanding
PointClustering: Unsupervised Point Cloud Pre-Training Using Transformation Invariance in Clustering
Neural Intrinsic Embedding for Non-Rigid Point Cloud Matching
HGNet: Learning Hierarchical Geometry From Points, Edges, and Surfaces
LP-DIF: Learning Local Pattern-Specific Deep Implicit Function for 3D Objects and Scenes 21856 Meng Wang (Tsinghua University, China), Yu-Shen Liu (Tsinghua University, China), Yue Gao (Tsinghua University, China), Kanle Shi (Kuaishou Technology, China), Yi Fang (New York University Abu Dhabi, UAE), and Zhizhong Han (Wayne State University, USA)
Conjugate Product Graphs for Globally Optimal 2D-3D Shape Matching
UTM: A Unified Multiple Object Tracking Model With Identity-Aware Feature Enhancement . 21876 Sisi You (Nanjing University of Posts and Telecommunications), Hantao Yao (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences (CASIA)), Bing-Kun Bao (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences), and Changsheng Xu (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences (CASIA); University of Chinese Academy of Sciences)

Learning Rotation-Equivariant Features for Visual Correspondence
Adaptive Spot-Guided Transformer for Consistent Local Feature Matching
PMatch: Paired Masked Image Modeling for Dense Geometric Matching
Iterative Geometry Encoding Volume for Stereo Matching
Adaptive Annealing for Robust Geometric Estimation
Tangentially Elongated Gaussian Belief Propagation for Event-Based Incremental OpticalFlow Estimation21940Jun Nagata (DENSO IT LAB., INC., Japan) and Yusuke Sekikawa (DENSO ITLAB., INC., Japan)
Robust and Scalable Gaussian Process Regression and Its Applications
BEV-Guided Multi-Modality Fusion for Driving Perception
 HumanBench: Towards General Human-Centric Perception With Projector Assisted Pretraining 21970 Shixiang Tang (The University of Sydney; SenseTime Research), Cheng Chen (SenseTime Research), Qingsong Xie (SenseTime Research), Meilin Chen (Zhejiang University; SenseTime Research), Yizhou Wang (Zhejiang University; SenseTime Research), Yuanzheng Ci (The University of Sydney), Lei Bai (Shanghai Al Laboratory), Feng Zhu (SenseTime Research), Haiyang Yang (SenseTime Research), Li Yi (SenseTime Research), Rui Zhao (SenseTime Research; Shanghai Jiao Tong University, China), and Wanli Ouyang (Shanghai Al Laboratory)

Think Twice Before Driving: Towards Scalable Decoders for End-to-End Autonomous Driving 21983

Xiaosong Jia (Shanghai Jiao Tong University; Shanghai Al Laboratory), Penghao Wu (Shanghai Al Laboratory; University of California at San Diego), Li Chen (Shanghai Al Laboratory), Jiangwei Xie (Shanghai Al Laboratory), Conghui He (Shanghai Al Laboratory), Junchi Yan (Shanghai Jiao Tong University; Shanghai Al Laboratory), and Hongyang Li (Shanghai Al Laboratory; Shanghai Jiao Tong University)	
ProphNet: Efficient Agent-Centric Motion Forecasting With Anchor-Informed Proposals 21 Xishun Wang (QCraft), Tong Su (QCraft), Fang Da (QCraft), and Xiaodong Yang (QCraft)	995
StarCraftImage: A Dataset for Prototyping Spatial Reasoning Methods for Multi-Agent Environments	004
 Stimulus Verification Is a Universal and Effective Sampler in Multi-Modal Human Trajectory Prediction	014
 PyPose: A Library for Robot Learning With Physics-Based Optimization	024

Source-Free Adaptive Gaze Estimation by Uncertainty Reduction	
Camouflaged Object Detection With Feature Decomposition and Edge Reconstruction 22046 Chunming He (Tsinghua University), Kai Li (NEC Laboratories America), Yachao Zhang (Tsinghua University), Longxiang Tang (Tsinghua University), Yulun Zhang (ETH Zurich), Zhenhua Guo (Tianyi Traffic Technology), and Xiu Li (Tsinghua University)	• •
MOTRv2: Bootstrapping End-to-End Multi-Object Tracking by Pretrained Object Detectors 22056 Yuang Zhang (Shanghai Jiao Tong University), Tiancai Wang (MEGVII Technology), and Xiangyu Zhang (MEGVII Technology; Beijing Academy of Artificial Intelligence)	.)
Clothing-Change Feature Augmentation for Person Re-Identification	.)
Dynamic Aggregated Network for Gait Recognition)
 Feature Representation Learning With Adaptive Displacement Generation and Transformer Fusion for Micro-Expression Recognition	
 MetaPortrait: Identity-Preserving Talking Head Generation With Fast Personalized Adaptation)
 FLAG3D: A 3D Fitness Activity Dataset With Language Instruction	.)

TranSG: Transformer-Based Skeleton Graph Prototype Contrastive Learning With Structure-Trajectory Prompted Reconstruction for Person Re-Identification
NeMo: Learning 3D Neural Motion Fields From Multiple Video Instances of the Same Action 22129 <i>Kuan-Chieh Wang (Stanford University), Zhenzhen Weng (Stanford University), Maria Xenochristou (Stanford University), João Pedro Araújo (Stanford University), Jeffrey Gu (Stanford University), Karen Liu (Stanford University), and Serena Yeung (Stanford University)</i>
Unsupervised Space-Time Network for Temporally-Consistent Segmentation of Multiple Motions 22139 <i>Etienne Meunier (Inna, France) and Patrick Bouthemy (Inna, France)</i>
Deep Polarization Reconstruction With PDAVIS Events
Range-Nullspace Video Frame Interpolation With Focalized Motion Estimation
Exploring Motion Ambiguity and Alignment for High-Quality Video Frame Interpolation 22169 Kun Zhou (SSE, CUHK-Shenzhen; SmartMore Corporation), Wenbo Li (CUHK), Xiaoguang Han (SSE, CUHK-Shenzhen), and Jiangbo Lu (SmartMore Corporation)
1000 FPS HDR Video With a Spike-RGB Hybrid Camera
Deep Discriminative Spatial and Temporal Network for Efficient Video Deblurring

Gated Multi-Resolution Transfer Network for Burst Restoration and Enhancement
A Unified HDR Imaging Method With Pixel and Patch Level
BiasBed – Rigorous Texture Bias Evaluation
Learning a Practical SDR-to-HDRTV Up-Conversion Using New Dataset and Degradation Models 22231 Cheng Guo (Communication University of China; Peng Cheng Laboratory), Leidong Fan (Peng Cheng Laboratory; Peking University), Ziyu Xue (Academy of Broadcasting Science, National Radio and Television Administration; Communication University of China), and Xiuhua Jiang (Peng Cheng Laboratory; Peking University)
Learning a Deep Color Difference Metric for Photographic Images
Learning a Simple Low-Light Image Enhancer From Paired Low-Light Instances
Residual Degradation Learning Unfolding Framework With Mixing Priors Across Spectral and Spatial for Compressive Spectral Imaging
Toward Stable, Interpretable, and Lightweight Hyperspectral Super-Resolution

RIDCP: Revitalizing Real Image Dehazing via High-Quality Codebook Priors	32
Robust Unsupervised StyleGAN Image Restoration	Э2
Quality-Aware Pre-Trained Models for Blind Image Quality Assessment)2
Learning To Exploit the Sequence-Specific Prior Knowledge for Image Processing Pipelines	14
Haina Qin (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Longfei Han (Beijing Technology and Business University), Weihua Xiong (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences), Juan Wang (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences), Wentao Ma (Zeku Technology), Bing Li (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences), and Weiming Hu (State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences; School of Artificial Intelligence, University of Chinese Academy of Sciences)	
Multi-Realism Image Compression With a Conditional Generator	24
RGB No More: Minimally-Decoded JPEG Vision Transformers	34
Kernel Aware Resampler	47
Spatial-Frequency Mutual Learning for Face Super-Resolution	56

Activating More Pixels in Image Super-Resolution Transformer
Omni Aggregation Networks for Lightweight Image Super-Resolution
Towards Artistic Image Aesthetics Assessment: A Large-Scale Dataset and a New Method 22388 Ran Yi (Shanghai Jiao Tong University), Haoyuan Tian (Shanghai Jiao Tong University), Zhihao Gu (Shanghai Jiao Tong University), Yu-Kun Lai (Cardiff University), and Paul L. Rosin (Cardiff University)
RWSC-Fusion: Region-Wise Style-Controlled Fusion Network for the Prohibited X-Ray Security Image Synthesis
Efficient Scale-Invariant Generator With Column-Row Entangled Pixel Synthesis
Masked and Adaptive Transformer for Exemplar Based Image Translation
SmartBrush: Text and Shape Guided Object Inpainting With Diffusion Model
Neural Transformation Fields for Arbitrary-Styled Font Generation
Referring Image Matting

 Handwritten Text Generation From Visual Archetypes
SceneComposer: Any-Level Semantic Image Synthesis
Affordance Diffusion: Synthesizing Hand-Object Interactions
LayoutDiffusion: Controllable Diffusion Model for Layout-to-Image Generation
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation 22500 Nataniel Ruiz (Google Research; Boston University), Yuanzhen Li (Google Research), Varun Jampani (Google Research), Yael Pritch (Google Research), Michael Rubinstein (Google Research), and Kfir Aberman (Google Research)
GLIGEN: Open-Set Grounded Text-to-Image Generation
Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models
EDICT: Exact Diffusion Inversion via Coupled Transformations
Solving 3D Inverse Problems Using Pre-Trained 2D Diffusion Models

Diffusion Probabilistic Model Made Slim	2
Align Your Latents: High-Resolution Video Synthesis With Latent Diffusion Models	
Binary Latent Diffusion	,
 Semi-Supervised Video Inpainting With Cycle Consistency Constraints	,
Towards Accurate Image Coding: Improved Autoregressive Image Generation With Dynamic Vector Quantization	•
Large-Capacity and Flexible Video Steganography via Invertible Neural Network	
Neural Video Compression With Diverse Contexts	,
Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos	,

Structured Sparsity Learning for Efficient Video Super-Resolution	8
DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training	.8
Boost Vision Transformer With GPU-Friendly Sparsity and Quantization	,8
All Are Worth Words: A ViT Backbone for Diffusion Models	9
Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers	0
 Vision Transformer With Super Token Sampling	0
DropKey for Vision Transformer	0

Seeing Beyond the Brain: Conditional Diffusion Model With Sparse Masked Modeling for Vision Decoding
ResFormer: Scaling ViTs With Multi-Resolution Training
Stare at What You See: Masked Image Modeling Without Reconstruction
Mixed Autoencoder for Self-Supervised Visual Representation Learning
 Shape-Erased Feature Learning for Visible-Infrared Person Re-Identification
G-MSM: Unsupervised Multi-Shape Matching With Graph-Based Affinity Priors
Efficient Mask Correction for Click-Based Interactive Image Segmentation
Prototype-Based Embedding Network for Scene Graph Generation

Graph Representation for Order-Aware Visual Transformation	
Unbiased Scene Graph Generation in Videos	
Recurrence Without Recurrence: Stable Video Landmark Detection With Deep Equilibrium Models	
VideoTrack: Learning To Track Objects via Video Transformer	
Breaking the "Object" in Video Object Segmentation	
Hierarchical Semantic Contrast for Scene-Aware Video Anomaly Detection	
Mask-Free Video Instance Segmentation	
 Hierarchical Neural Memory Network for Low Latency Event Processing	
Unifying Short and Long-Term Tracking With Graph Hierarchies	
Towards End-to-End Generative Modeling of Long Videos With Memory-Efficient Bidirectional Transformers	

An Empirical Study of End-to-End Video-Language Transformers With Masked Visual Modeling 22898
Tsu-Jui Fu (UC Santa Barbara), Linjie Li (UC Santa Barbara), Zhe Gan (UC Santa Barbara), Kevin Lin (Microsoft), William Yang Wang (UC Santa Barbara), Lijuan Wang (Microsoft), and Zicheng Liu (Microsoft)
Egocentric Audio-Visual Object Localization
AVFormer: Injecting Vision Into Frozen Speech Models for Zero-Shot AV-ASR
A Light Weight Model for Active Speaker Detection
Dense-Localizing Audio-Visual Events in Untrimmed Videos: A Large-Scale Benchmark and Baseline
Video Test-Time Adaptation for Action Recognition
Unified Keypoint-Based Action Recognition Framework via Structured Keypoint Pooling 22962 Ryo Hachiuma (Konica Minolta, Inc.), Fumiaki Sato (Konica Minolta, Inc.), and Taiki Sekii (Konica Minolta, Inc.)
Object Discovery From Motion-Guided Tokens
Open Set Action Recognition via Multi-Label Evidential Learning

PivoTAL: Prior-Driven Supervision for Weakly-Supervised Temporal Action Localization 22992 Mamshad Nayeem Rizve (University of Central Florida), Gaurav Mittal (Microsoft), Ye Yu (Microsoft), Matthew Hall (Microsoft), Sandra Sajeev (Microsoft), Mubarak Shah (University of Central Florida), and Mei Chen (Microsoft)
Improving Weakly Supervised Temporal Action Localization by Bridging Train-Test Gap in Pseudo Labels23003Jingqiu Zhou (The Chinese University of Hong Kong), Linjiang Huang (The Chinese University of Hong Kong; Centre for Perceptual and Interactive Intelligence, Hong Kong), Liang Wang (Institute of Automation Chinese Academy of Science), Si Liu (Beihang University), and Hongsheng Li (The Chinese University of Hong Kong; Centre for Perceptual and Interactive Intelligence, Hong Kong; Xidian University)
 Are Binary Annotations Sufficient? Video Moment Retrieval via Hierarchical Uncertainty-Based Active Learning
Query-Dependent Video Representation for Moment Retrieval and Highlight Detection 23023 WonJun Moon (Sungkyunkwan University), Sangeek Hyun (Sungkyunkwan University), SangUk Park (Pyler), Dongchan Park (Pyler), and Jae-Pil Heo (Sungkyunkwan University)
Vita-CLIP: Video and Text Adaptive CLIP via Multimodal Prompting
Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection to Image-Text Pre-Training
Hierarchical Video-Moment Retrieval and Step-Captioning
HierVL: Learning Hierarchical Video-Language Embeddings

Learning Transferable Spatiotemporal Representations From Natural Script Knowledge 23079 Ziyun Zeng (Tsinghua University; Applied Research Center (ARC), Tencent PCG), Yuying Ge (The University of Hong Kong), Xihui Liu (The University of Hong Kong), Bin Chen (Harbin Institute of Technology, Shenzhen), Ping Luo (The University of Hong Kong), Shu-Tao Xia (Tsinghua University), and Yixiao Ge (Applied Research Center (ARC), Tencent PCG)
 WINNER: Weakly-Supervised hlerarchical decompositioN and aligNment for Spatio-tEmporal Video gRounding
Collaborative Static and Dynamic Vision-Language Streams for Spatio-Temporal Video Grounding
Learning Action Changes by Measuring Verb-Adverb Textual Relationships
LAVENDER: Unifying Video-Language Understanding As Masked Language Modeling 23119 Linjie Li (Microsoft), Zhe Gan (Microsoft), Kevin Lin (Microsoft), Chung-Ching Lin (Microsoft), Zicheng Liu (Microsoft), Ce Liu (Microsoft), and Lijuan Wang (Microsoft)
DeCo: Decomposition and Reconstruction for Compositional Temporal Grounding via Coarse-To-Fine Contrastive Ranking

CVT-SLR: Contrastive Visual-Textual Transformation for Sign Language Recognition With
Variational Alignment
Jiangbin Zheng (Research Center for Industries of the Future, Westlake
University), Yile Wang (Research Center for Industries of the Future,
Westlake University; Institute for Al Industry Research (AIR), Teinghug University), Chang Tan (Decearch Center for Industries of the
Tsingnuu University), Cheng Tun (Research Center for Industries of the
Industries of the Future Westlake University). Ge Wang (Research
Center for Industries of the Future. Westlake University), Jun Xia
(Research Center for Industries of the Future, Westlake University),
Yidong Chen (Xiamen University), and Stan Z. Li (Research Center for
Industries of the Future, Westlake University)
Joint Visual Grounding and Tracking With Natural Language Specification
Accelerating Vision-Language Pretraining With Free Language Modeling
University of Hong Kong), Yixiao Ge (ARC Lab), Feng Zheng (Southem
University of Science and Technology; Peng Cheng Laboratory), Ran
Cheng (Southem University of Science and Technology), Ying Shan (ARC
Lab), Xiaohu Qie (Tencent PCG), and Ping Luo (The University of Hong
Kong; Shanghai Al Laboratory)
CoWs on Pasture: Baselines and Benchmarks for Language-Driven Zero-Shot Object Navigation 23171
Samir Yitzhak Gadre (Columbia University), Mitchell Wortsman
(University of Washington), Gabriel Ilharco (University of Washington), Ludwig Schmidt (University of Washington), and Shuran
Song (Columbia University)
N/have Ma Ave and Mhat Make Lasting At Over Decad Markhvide Image Cas Lasting Lleing
Hierarchies and Scenes
Brandon Clark (University of Central Florida, USA), Alec Kerrigan
(University Of Central Florida, USA), Partin Parag Kulkarni (University of
Central Florida, USA), vicence vivanco Cepeda (University of Central Florida, USA), and Muharak Shah (University of Central
Florida, USA)
ANetQA: A Large-Scale Benchmark for Fine-Grained Compositional Reasoning Over Untrimmed
VIGEOS
Dianzi University, China). Zhao (Zheijang University, China). Eei
Wu (Zhejiang University, China), Jianping Fan (Hangzhou Dianzi
University, China; Al Lab at Lenovo Research, China), Kui Ren
(Zhejiang University, China), and Jun Yu (Hangzhou Dianzi University, China)

MetaCLUE: Towards Comprehensive Visual Metaphors Research	201
GeoVLN: Learning Geometry-Enhanced Visual Representation With Slot Attention for Vision-and-Language Navigation	212
 Being Comes From Not-Being: Open-Vocabulary Text-to-Motion Generation With Wordless Training	222
 LASP: Text-to-Text Optimization for Language-Aware Soft Prompting of Vision & Language Models	232
Position-Guided Text Prompt for Vision-Language Pre-Training	242
 Intrinsic Physical Concepts Discovery With Object-Centric Predictive Models	252
 MAP: Multimodal Uncertainty-Aware Vision-Language Pre-Training Model	262
CLAMP: Prompt-Based Contrastive Learning for Connecting Language and Animal Pose 23. Xu Zhang (The University of Sydney, Australia), Wen Wang (Zhejiang University, China), Zhe Chen (The University of Sydney, Australia), Yufei Xu (The University of Sydney, Australia), Jing Zhang (The University of Sydney, Australia), and Dacheng Tao (The University of Sydney, Australia)	272

Teacher-Generated Spatial-Attention Labels Boost Robustness and Accuracy of Contrastive Models 232	82
Yushi Yao (Waymo), Chang Ye (Google), Junfeng He (Google), and Gamaleldin F. Elsayed (Google)	
DegAE: A New Pretraining Paradigm for Low-Level Vision	92
RILS: Masked Visual Reconstruction in Language Semantic Space	04
Learning Geometry-Aware Representations by Sketching	15
 SketchXAI: A First Look at Explainability for Human Sketches	27
MAGVLT: Masked Generative Vision-and-Language Transformer	38
Zero-Shot Everything Sketch-Based Image Retrieval, and in Explainable Style	49

 Semantic-Conditional Diffusion Networks for Image Captioning	23359
REVEAL: Retrieval-Augmented Visual-Language Pre-Training With Multi-Source Multimodal Knowledge Memory	23369
Variational Distribution Learning for Unsupervised Text-to-Image Generation Minsoo Kang (ECE), Doyup Lee (Seoul National University), Jiseob Kim (Seoul National University), Saehoon Kim (Seoul National University), and Bohyung Han (ECE; Kakao Brain)	23380
Scaling Language-Image Pre-Training via Masking Yanghao Li (Meta Al, FAIR), Haoqi Fan (Meta Al, FAIR), Ronghang Hu (Meta Al, FAIR), Christoph Feichtenhofer (Meta Al, FAIR), and Kaiming He (Meta Al, FAIR)	23390
LANIT: Language-Driven Image-to-Image Translation for Unlabeled Data Jihye Park (Korea University, Korea), Sunwoo Kim (Korea University, Korea), Soohyun Kim (Korea University, Korea), Seokju Cho (Korea University, Korea), Jaejun Yoo (UNIST, Korea), Youngjung Uh (Korea University, Korea), and Seungryong Kim (Korea University, Korea)	23401
Revisiting Self-Similarity: Structural Embedding for Image Retrieval Seongwon Lee (Yonsei University, Seoul, Korea), Suhyeon Lee (Yonsei University, Seoul, Korea), Hongje Seong (Yonsei University, Seoul, Korea), and Euntai Kim (Yonsei University, Seoul, Korea)	23412
Improving Cross-Modal Retrieval With Set of Diverse Embeddings Dongwon Kim (Dept. of CSE, POSTECH), Namyup Kim (Dept. of CSE, POSTECH), and Suha Kwak (Graduate School of AI, POSTECH)	23422
Masked Autoencoding Does Not Help Natural Language Supervision at Scale Floris Weers (NA), Vaishaal Shankar (NA), Angelos Katharopoulos (NA), Yinfei Yang (NA), and Tom Gunter (NA)	23432
Few-Shot Learning With Visual Distribution Calibration and Cross-Modal Distribution Alignment Runqi Wang (Beihang University; Huawei Noah's Ark Lab), Hao Zheng (Huawei Noah's Ark Lab; Tokyo Institute of Technology), Xiaoyue Duan (Beihang University), Jianzhuang Liu (Huawei Noah's Ark Lab), Yuning Lu (Huawei Noah's Ark Lab; University of Science and Technology of China), Tian Wang (Beihang University), Songcen Xu (Huawei Noah's Ark Lab), and Baochang Zhang (Beihang University; Zhongguancun Laboratory)	23445

Deep Hashing With Minimal-Distance-Separated Hash Centers	55
ConZIC: Controllable Zero-Shot Image Captioning by Sampling-Based Polishing	65
Learning To Name Classes for Vision and Language Models	77
Data-Efficient Large Scale Place Recognition With Graded Similarity Supervision	87
DetCLIPv2: Scalable Open-Vocabulary Object Detection Pre-Training via Word-Region Alignment	97
HOICLIP: Efficient Knowledge Transfer for HOI Detection With Vision-Language Models 2350 Shan Ning (ShanghaiTech University, China), Longtian Qiu (ShanghaiTech University, China), Yongfei Liu (ByteDance Inc.), and Xuming He (ShanghaiTech University, China; Shanghai Engineering Research Center of Intelligent Vision and Imaging)	07
OvarNet: Towards Open-Vocabulary Object Attribute Recognition	18
NeRF-RPN: A General Framework for Object Detection in NeRFs	28

Mask-Free OVIS: Open-Vocabulary Instance Segmentation Without Manual Mask Annotations 23539

Vibashan VS (Johns Hopkins University), Ning Yu (Salesforce Research), Chen Xing (Salesforce Research), Can Qin (Northeastern University), Mingfei Gao (Salesforce Research), Juan Carlos Niebles (Salesforce Research), Vishal M. Patel (Johns Hopkins University), and Ran Xu (Salesforce Research)
 GP-VTON: Towards General Purpose Virtual Try-On via Collaborative Local-Flow Global-Parsing Learning
 Decomposed Soft Prompt Guided Fusion Enhancing for Compositional Zero-Shot Learning
Contrastive Grouping With Transformer for Referring Image Segmentation
Semantic Prompt for Few-Shot Image Recognition
GRES: Generalized Referring Expression Segmentation
Network-Free, Unsupervised Semantic Segmentation With Synthetic Images
Few-Shot Semantic Image Synthesis With Class Affinity Transfer

Ultra-High Resolution Segmentation With Ultra-Rich Context: A Novel Benchmark
Content-Aware Token Sharing for Efficient Semantic Segmentation With Vision Transformers 23631
Chenyang Lu (Eindhoven University of Technology), Daan de Geus (Eindhoven University of Technology), and Gijs Dubbelman (Eindhoven University of Technology)
 Hierarchical Dense Correlation Distillation for Few-Shot Segmentation
On Calibrating Semantic Segmentation Models: Analyses and an Algorithm
FastInst: A Simple Query-Based Model for Real-Time Instance Segmentation
Out-of-Candidate Rectification for Weakly Supervised Semantic Segmentation
Foundation Model Drives Weakly Incremental Learning for Semantic Segmentation
Long-Tailed Visual Recognition via Self-Heterogeneous Integration With Knowledge Excavation
Instance-Specific and Model-Adaptive Supervision for Semi-Supervised Semantic Segmentation 23705 Zhen Zhao (University of Sydney; Baidu VIS), Sifan Long (Baidu VIS; Jilin University), Jimin Pi (Baidu VIS), Jingdong Wang (Baidu VIS), and Luping Zhou (University of Sydney)

Active Finetuning: Exploiting Annotation Budget in the Pretraining-Finetuning Paradigm 23715 <i>Yichen Xie (University of California, Berkeley), Han Lu (Shanghai Jiao</i> <i>Tong University), Junchi Yan (Shanghai Jiao Tong University), Xiaokang</i> <i>Yang (Shanghai Jiao Tong University), Masayoshi Tomizuka (University</i> <i>of California, Berkeley), and Wei Zhan (University of California,</i> <i>Berkeley)</i>
IDGI: A Framework To Eliminate Explanation Noise From Integrated Gradients
 Weakly Supervised Posture Mining for Fine-Grained Classification
Vision Transformers Are Good Mask Auto-Labelers
Enhanced Training of Query-Based Object Detection via Selective Query Recollection 23756 Fangyi Chen (Carnegie Mellon University), Han Zhang (Carnegie Mellon University), Kai Hu (Carnegie Mellon University), Yu-Kai Huang (Carnegie Mellon University), Chenchen Zhu (Meta AI), and Marios Savvides (Meta AI)
Box-Level Active Detection
CIGAR: Cross-Modality Graph Reasoning for Domain Adaptive Object Detection
DA-DETR: Domain Adaptive Detection Transformer With Information Fusion

Continual Detection Transformer for Incremental Object Detection Yaoyao Liu (Max Planck Institute for Informatics, Saarland Informatics Campus), Bernt Schiele (Max Planck Institute for Informatics, Saarland Informatics Campus), Andrea Vedaldi (University of Oxford), and Christian Rupprecht (University of Oxford)	23799
Semi-DETR: Semi-Supervised Object Detection With Detection Transformers Jiacheng Zhang (Sun Yat-sen University, China; department of Computer Vision Technology (VIS), Baidu Inc., China), Xiangru Lin (Department of Computer Vision Technology (VIS), Baidu Inc., China), Wei Zhang (Department of Computer Vision Technology (VIS), Baidu Inc., China), Kuo Wang (Sun Yat-sen University, China), Xiao Tan (Department of Computer Vision Technology (VIS), Baidu Inc., China), Junyu Han (Department of Computer Vision Technology (VIS), Baidu Inc., China), Errui Ding (Department of Computer Vision Technology (VIS), Baidu Inc., China), Inc., China), Jingdong Wang (Department of Computer Vision Technology (VIS), Baidu Inc., China), and Guanbin Li (Sun Yat-sen University, China)	23809
 Hierarchical Supervision and Shuffle Data Augmentation for 3D Semi-Supervised Object Detection Chuandong Liu (Chongqing University of Posts and Telecommunications, China; Chongqing Key Laboratory of Signal and Information Processing, China), Chenqiang Gao (Chongqing University of Posts and Telecommunications, China; Chongqing Key Laboratory of Signal and Information Processing, China), Fangcen Liu (Chongqing University of Posts and Telecommunications, China; Chongqing Key Laboratory of Signal and Information Processing, China), Pengcheng Li (Chongqing University of Posts and Telecommunications, China; Chongqing Key Laboratory of Signal and Information Processing, China), Deyu Meng (Xi'an Jiaotong University, China; Macau University of Posts and Technology, Macau), and Xinbo Gao (Chongqing University of Posts and Telecommunications, China) 	23819
Harmonious Teacher for Cross-Domain Object Detection Jinhong Deng (University of Electronic Science and Technology of China), Dongli Xu (University of Sydney), Wen Li (Shenzhen Institute for Advanced Study, UESTC), and Lixin Duan (Shenzhen Institute for Advanced Study, UESTC; Sichuan Provincial People's Hospital, UESTC)	23829
Contrastive Mean Teacher for Domain Adaptive Object Detectors Shengcao Cao (University of Illinois at Urbana-Champaign), Dhiraj Joshi (IBM Research), Liang-Yan Gui (University of Illinois at Urbana-Champaign), and Yu-Xiong Wang (University of Illinois at Urbana-Champaign)	23839
Out-of-Distributed Semantic Pruning for Robust Semi-Supervised Learning Yu Wang (Peking University, China; Peking University Shenzhen), Pengchong Qiao (Peking University, China; Peng Cheng Laboratory, China; Peking University Shenzhen), Chang Liu (Tsinghua University, China), Guoli Song (Peng Cheng Laboratory, China; Peking University Shenzhen), Xiawu Zheng (Peng Cheng Laboratory, China; Peking University Shenzhen), and Jie Chen (Peking University, China; Peng Cheng Laboratory, China; Peking University Shenzhen)	23849

(ML)2P-Encoder: On Exploration of Channel-Class Correlation for Multi-Label Zero-Shot Learning
Ziming Liu (The Hong Kong Polytechnic University, China), Song Guo (The Hong Kong Polytechnic University, China; The Hong Kong Polytechnic University Shenzhen Research Institute, China), Xiaocheng Lu (The Hong Kong Polytechnic University, China), Jingcai Guo (The Hong Kong Polytechnic University, China; The Hong Kong Polytechnic University Shenzhen Research Institute, China), Jiewei Zhang (The Hong Kong Polytechnic University, China), Yue Zeng (The Hong Kong Polytechnic University, China), and Fushuo Huo (The Hong Kong Polytechnic University, China)
MagicNet: Semi-Supervised Multi-Organ Segmentation via Magic-Cube Partition and Recovery 23869
Duowen Chen (East China Normal University), Yunhao Bai (East China Normal University), Wei Shen (Shanghai Jiao Tong University), Qingli Li (East China Normal University), Lequan Yu (The University of Hong Kong), and Yan Wang (East China Normal University)
Devil Is in the Queries: Advancing Mask Transformers for Real-World Medical Image Segmentation and Out-of-Distribution Localization
 SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection
OCELOT: Overlapped Cell on Tissue Dataset for Histopathology
DeGPR: Deep Guided Posterior Regularization for Multi-Class Cell Detection and Counting . 23913 Aayush Kumar Tyagi (IIT Delhi), Chirag Mohapatra (IIT Delhi), Prasenjit Das (AIIMS, New Delhi), Govind Makharia (AIIMS, New Delhi), Lalita Mehra (AIIMS, New Delhi), Prathosh AP (IISc, Bangalore), and Mausam Mausam (IIT Delhi)
Best of Both Worlds: Multimodal Contrastive Learning With Tabular and Imaging Data 23924 Paul Hager (Technical University of Munich; Klinikum Rechts der Isar), Martin J. Menten (Technical University of Munich; Klinikum Rechts der Isar; Imperial College London), and Daniel Rueckert (Technical University of Munich; Klinikum Rechts der Isar; Imperial College London)
--
RankMix: Data Augmentation for Weakly Supervised Learning of Classifying Whole Slide Images With Diverse Sizes and Imbalanced Categories
GEN: Pushing the Limits of Softmax-Based Out-of-Distribution Detection
Discriminating Known From Unknown Objects via Structure-Enhanced Recurrent Variational AutoEncoder
Sample-Level Multi-View Graph Clustering
On the Effects of Self-Supervision and Contrastive Alignment in Deep Multi-View Clustering 23976 Daniel J. Trosten (UiT The Arctic University of Norway), Sigurd Løkse (UiT The Arctic University of Norway), Robert Jenssen (UiT The Arctic University of Norway), and Michael C. Kampffmeyer (UiT The Arctic University of Norway)
Deep Fair Clustering via Maximizing and Minimizing Mutual Information: Theory, Algorithm and Metric
Transductive Few-Shot Learning With Prototype-Based Label Propagation by Iterative Graph Refinement
Open-Set Likelihood Maximization for Few-Shot Learning
HyperMatch: Noise-Tolerant Semi-Supervised Learning via Relaxed Contrastive Constraint .24017 Beitong Zhou (Hikvision Research Institute), Jing Lu (Hikvision Research Institute), Kerui Liu (Hikvision Research Institute), Yunlu Xu (Hikvision Research Institute), Zhanzhan Cheng (Hikvision Research Institute), and Yi Niu (Hikvision Research Institute)

Token Boosting for Robust Self-Supervised Visual Transformer Pre-Training
Difficulty-Based Sampling for Debiased Contrastive Representation Learning
Improving Selective Visual Question Answering by Learning From Your Peers
 Superclass Learning With Representation Enhancement
DISC: Learning From Noisy Labels via Dynamic Instance-Specific Selection and Correction 24070 Yifan Li (Institute of Computing Technology, CAS, China; University of the Chinese Academy of Sciences, China), Hu Han (Institute of Computing Technology, CAS, China; University of the Chinese Academy of Sciences, China; Peng Cheng Laboratory, China), Shiguang Shan (Institute of Computing Technology, CAS, China; University of the Chinese Academy of Sciences, China; Peng Cheng Laboratory, China), and Xilin Chen (Institute of Computing Technology, CAS, China; University of the Chinese Academy of Sciences, China)
 FCC: Feature Clusters Compression for Long-Tailed Visual Recognition
Dynamically Instance-Guided Adaptation: A Backward-Free Approach for Test-Time Domain Adaptive Semantic Segmentation
Semi-Supervised Domain Adaptation With Source Label Adaptation

Adjustment and Alignment for Unbiased Open Set Domain Adaptation
C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation
ALOFT: A Lightweight MLP-Like Architecture With Dynamic Low-Frequency Transform for Domain Generalization
Modality-Agnostic Debiasing for Single Domain Generalization
ActMAD: Activation Matching To Align Distributions for Test-Time-Training
TIPI: Test Time Adaptation With Transformation Invariance
Improved Test-Time Adaptation for Domain Generalization
Learning With Fantasy: Semantic-Aware Virtual Contrastive Constraint for Few-Shot Class-Incremental Learning

NIFF: Alleviating Forgetting in Generalized Few-Shot Object Detection via Neural Instance Feature Forging
MixPHM: Redundancy-Aware Parameter-Efficient Tuning for Low-Resource Visual Question Answering
Jingjing Jiang (Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University) and Nanning Zheng (Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University)
PIVOT: Prompting for Video Continual Learning
BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning
DKT: Diverse Knowledge Transfer Transformer for Class Incremental Learning
PCR: Proxy-Based Contrastive Replay for Online Class-Incremental Continual Learning 24246 Huiwei Lin (Harbin Institute of Technology, Shenzhen), Baoquan Zhang (Harbin Institute of Technology, Shenzhen), Shanshan Feng (Harbin Institute of Technology, Shenzhen), Xutao Li (Harbin Institute of Technology, Shenzhen), and Yunming Ye (Harbin Institute of Technology, Shenzhen)
Masked Autoencoders Enable Efficient Knowledge Distillers

Data-Free Knowledge Distillation via Feature Exchange and Activation Region Constraint 24266 Shikang Yu (Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, China; University of Chinese Academy of Sciences, China), Jiachen Chen (Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, China; University of Chinese Academy of Sciences, China), Hu Han (University of Chinese Academy of Sciences, China), Hu Han (University of Chinese Academy of Sciences, China; Peng Cheng Laboratory, China), and Shuqiang Jiang (Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, China; University of Chinese Academy of Sciences, China)
Multi-Level Logit Distillation
Preserving Linear Separability in Continual Learning by Backward Feature Projection 24286 Qiao Gu (University of Toronto), Dongsub Shim (LG AI Research), and Florian Shkurti (University of Toronto)
Critical Learning Periods for Multisensory Integration in Deep Networks
SLACK: Stable Learning of Augmentations With Cold-Start and KL Regularization
Improving Generalization With Domain Convex Game
 Exploring Data Geometry for Continual Learning
FlowGrad: Controlling the Output of Generative ODEs With Gradients
Deep Graph Reprogramming

X-Pruner: eXplainable Pruning for Vision Transformers	4355
Bias in Pruned Vision Models: In-Depth Analysis and Countermeasures	4364
Compacting Binary Neural Networks by Sparse Kernel Selection	4374
Deep Deterministic Uncertainty: A New Simple Baseline	4384
Understanding Deep Generative Models With Generalized Empirical Likelihoods	4395
 Fair Scratch Tickets: Finding Fair Sparse Networks Without Weight Training	4406
 Hard Sample Matters a Lot in Zero-Shot Quantization	4417
PD-Quant: Post-Training Quantization Based on Prediction Difference Metric	4427

Vector Quantization With Self-Attention for Quality-Independent Representation Learning . 24438 Zhou Yang (Xidian University), Weisheng Dong (Xidian University), Xin Li (West Virginia University), Mengluan Huang (Xidian University), Yulin Sun (Xidian University), and Guangming Shi (Xidian University)
Masked Auto-Encoders Meet Generative Adversarial Networks and Beyond
Sequential Training of GANs Against GAN-Classifiers Reveals Correlated "Knowledge Gaps" Present Among Independently Trained GAN Instances
Edges to Shapes to Concepts: Adversarial Augmentation for Robust Vision
Towards Universal Fake Image Detectors That Generalize Across Generative Models
Explicit Boundary Guided Semi-Push-Pull Contrastive Learning for Supervised Anomaly Detection
Generating Anomalies for Video Anomaly Detection With Prompt-Based Feature Mapping . 24500 Zuhao Liu (Sun Yat-sen University, China; Ministry of Education, China), Xiao-Ming Wu (Sun Yat-sen University, China; Ministry of Education, China), Dian Zheng (Sun Yat-sen University, China; Ministry of Education, China), Kun-Yu Lin (Sun Yat-sen University, China; Ministry of Education, China), and Wei-Shi Zheng (Sun Yat-sen University, China; Ministry of Education, China)
Revisiting Reverse Distillation for Anomaly Detection
MetaMix: Towards Corruption-Robust Continual Learning With Temporally Self-Adaptive Data Transformation

ScaleFL: Resource-Adaptive Federated Learning With Heterogeneous Clients
Confidence-Aware Personalized Federated Learning via Variational Expectation Maximization 24542 Junyi Zhu (ESAT-PSI, KU Leuven), Xingchen Ma (Amazon Web Services), and Matthew B. Blaschko (ESAT-PSI, KU Leuven)
 Make Landscape Flatter in Differentially Private Federated Learning
Rethinking Domain Generalization for Face Anti-Spoofing: Separability and Alignment 24563 Yiyou Sun (University of Wisconsin-Madison), Yaojie Liu (Google Research), Xiaoming Liu (Google Research; Michigan State University), Yixuan Li (University of Wisconsin-Madison), and Wen-Sheng Chu (Google Research)
StyleAdv: Meta Style Adversarial Training for Cross-Domain Few-Shot Learning
The Dark Side of Dynamic Routing Neural Networks: Towards Efficiency Backdoor Injection 24585 Simin Chen (University of Texas at Dallas), Hanlin Chen (Purdue University), Mirazul Haque (University of Texas at Dallas), Cong Liu (University of California, Riverside), and Wei Yang (University of Texas at Dallas)
 Architectural Backdoors in Neural Networks
You Are Catching My Attention: Are Vision Transformers Bad Learners Under Backdoor Attacks?
A Practical Upper Bound for the Worst-Case Attribution Deviations

Sibling-Attack: Rethinking Transferable Adversarial Attacks Against Face Recognition	
Angelic Patches for Improving Third-Party Object Detector Performance	
Introducing Competition To Boost the Transferability of Targeted Adversarial Examples Through Clean Feature Mixup	
Towards Compositional Adversarial Robustness: Generalizing Adversarial Training to Composite Semantic Perturbations	
Boosting Accuracy and Robustness of Student Models via Adaptive Adversarial Distillation . 24668 Bo Huang (The Hong Kong University of Science and Technology, China), Mingyang Chen (The Hong Kong University of Science and Technology, China), Yi Wang (Dongguan University of Technology, China), Junda Lu (Macquarie University, Australia), Minhao Cheng (The Hong Kong University of Science and Technology, China), and Wei Wang (The Hong Kong University of Science and Technology, China)	
The Enemy of My Enemy Is My Friend: Exploring Inverse Adversaries for Improving Adversarial Training	
Robust Single Image Reflection Removal Against Adversarial Attacks	

 Physical-World Optical Adversarial Attacks on 3D Face Recognition	4699
 AUNet: Learning Relations Between Action Units for Face Forgery Detection	4709

Author Index