2023 30th International Symposium on Discharges and **Electrical Insulation in Vacuum (ISDEIV 2023)**

Okinawa, Japan 25-30 June 2023

IEEE Catalog Number: CFP23430-POD **ISBN:**

979-8-3503-2222-4

Copyright © 2023, The Institute of Electrical Engineers of Japan (IEEJ) All Rights Reserved

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number: ISBN (Print-On-Demand): ISBN (Online): ISSN: CFP23430-POD 979-8-3503-2222-4 978-4-88686-436-9 1093-2941

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Table of Contents

Preface	III
Conference Committees	VII
Awards	IX
Table of Contents	XVI
Walter P. Dyke Award Address	XXX
High Current Interruption of Vacuum Interrupters and Voltage Breakdown during Recovery	
Edgar Dullni	

A: BREAKDOWN AND FLASHOVER

A1. Vacuum breakdown and pre-breakdown phenomena

A1-O-01	Effect of Cathode Radius on the Pre-breakdown Characteristics in Vacuum Nanogaps Yimeng Li, Fuzhi Zhan, Jia Tang, Yonghong Cheng, Guodong Meng*	1
A1-O-02	Role of surface processes in ignition of vacuum arcing: Atomistic simulation of surface diffusion under electric field gradients Flyura Djurabekova, Jyri Kimari, Anton Saressalo	5
A1-O-03	Relaxation of electric field by covering cathodeedge with vanadate glass Souichi Katagiri, Tatsuya Miyake, Takashi Naito, Hiroshi Morita, Yasushi Yamano	9
A1-O-04	Methods for statistical analysis of the breakdown voltage of vacuum gaps Patrick Rumpelt, Michael Weuffel, Thomas Schmölzer, Thierry Delachaux, Kai Hencken	13
A1-O-05	Spark Conditioning of Vacuum Interrupters with Very Low Breakdown Energy Shengquan Mu, Jiangang Ding, Xiaojing Zuo, Xinyue Li, Xiaofei Yao, Jianhua Wang, Zhiyuan Liu	17
A1-O-06	Electrode Material Adhesion between Anode and Cathode in Spark Conditioning in Vacuum Naoki Kita, Hiroki Kojima, Hideaki Fukuda, Kenta Yamamura, Naoki Hayakawa	21
A1-O-07	HV Discharges Monitoring at HVPTF through Xray Spectroscopy: Fine Time Calibration Through Microdischarges Analysis Matteo Hakeem Kushoro, Federico Guiotto, Federico Caruggi, Gabriele Croci, Antonio De Lorenzi, Luca Lotto, Isabella Mario, Andrea Muraro, Silvia Spagnolo, Nicola Pilan	N/A
A1-O-08	Development of a data analysis software for the XR-GEM installed at HVPTF and preliminary results Federico Caruggi, Gabriele Croci, Antonio De Lorenzi, Giovanni Grosso, Federico Guiotto, Matteo Hakeem Kushoro, Luca Lotto, Isabella Mario, Agostino Celora, Nicola Pilan, Silvia Spagnolo, Andrea Muraro	29
A1-O-09	Impulse Ratio Measurement Considering De-conditioning Effect in Vacuum Taiki Donen, Motohiro Sato, Yusuke Nishimura, Shinichi Miki, Makoto Miyashita	33
A1-P-01	Influence of Gap Distance on BD Characteristics of Sphere-plane Electrodes in Vacuum under Constant Electric Field Strength at Cathode Jingyu Shen, Hui Ma*, Xiangwen Xiao, Yulong Gao, Tianjia Zhou, Yingsan Geng, Zhiyuan Liu, Jianhua Wang	37
A1-P-02	Dynamic Balancing between Thermal-Field Emission Currents of Series- connected Vacuum Gaps Jiangang Ding, Shengquan Mu, Xiaofei Yao, Zhiyuan Liu, Jianhua Wang, Yingsan Geng	41
A1-P-03	Voltage conditioning of vacuum interrupters with application of out of phase voltage to the two contacts Sandeep Kulkarni, Damien Canat, Christian Arnoux, Nandeesh Kumar	45
A1-P-04	The fundamental investigation of X-ray emission from high voltage vacuum gap assumed Vacuum Interrupters Hideaki Fukuda, Kenta Yamamura	49
A1-P-05	Fundamental Study on Evaluation of Withstand Voltage and Dark Current of Graphite Electrodes in Vacuum Wakakusa Kaneko, Yasushi Yamano	52

A1-P-06	Fundamental Study on Suppression Effect of Micro Discharges and Dark Currents in Vacuum Gap by Short Pulse Voltage Conditioning Tatsuya Ito, Yasushi Yamano, Yoshitaka Miyatake, Daizo Takahashi, Toshinori Tatsumi	55
A1-P-07	Feasibility of Higher Electron Gun Voltage and Higher Electric Field by Suppressing Electron Stimulated Desorption from the Anode Masahiro Yamamoto, Yamano Yasushi, Souichi Katagiri, Nanami Morioka, Takashi Sekiguchi, Itoh Masahide	59
A1-P-08	Study on dielectric breakdown in vacuum of TiZrV coated electrode Nanami Morioka, Yasushi Yamano, Masahiro Yamamoto, Souichi Katagiri	62
A1-P-09	Simulation Study on the Post Arc Energy Characteristics of Double Break Vacuum Circuit Breaker Tianxing Liu, Enyuan Dong, Yongxing Wang	65
A1-P-10	The Switch-On Mechanism of the Current Emission Emanuele Spada, Antonio De Lorenzi, Luca Lotto, Nicola Pilan, Silvia Spagnolo, Matteo Zuin	69

A2. Surface discharges and flashover phenomena

A2-O-01	Impact of Direct Current Conditioning on Cathode Dark Current in High Vacuum Moein Borghei, Daniel Velazquez, Robert McMullen, George Latchford, Brian Riordan, Robin Langtry	74
A2-O-02	Influence of Insulator Barrier on Surface Flashover Development in Vacuum Yusuke Nakano, Yuya Funayama, Yasunori Tanaka, Tatsuo Ishijima, Shusaku Nakano, Masato Kobayashi	78
A2-O-03	Investigations of Vacuum Insulator Flashover in Pulsed Power Systems Matthew Hopkins, William Brooks, Raimi Clark, Zakari Echo, Ronald Goeke, Christopher Moore, Michael Mounho, Andreas Neuber, Jacob Stephens, Jacob Young	82
A2-O-04	Modeling of Surface Flashover in Vacuum Interrupters Using 3D Particle-In- Cell Simulation Svetlana Gossmann, Thomas Hammer	85
A2-P-01	Investigation of Surface Flashover Characteristics in Vacuum of Alumina with Evaporated Metal Adhering to Surface Naoki Asari, Kota Hamada, Junichi Kondo, Daiki Sugawara, Yasushi Yamano	89
A2-P-02	Experimental study on relationship between performance of surface flashover voltage and surface charging in a cylindrical insulating system Yuya Sasaki, Yasusi Yamano, Hideaki Fukuda, Kenta Yamamura	93
A2-P-03	Partial Discharge Detection by Space Charge Distribution Measurement Kazuki Endo, Hiroaki Miyake, Yasuhiro Tanaka	96

B: VACUUM ARCS

B1. Switching in vacuum and related phenomena

B1-I-01	Why vacuum technology is not a simple scaling from medium to high voltage? Thomas Heinz, Stefan Giere, Jörg Teichmann, Martin Koletzko, Andreas E. Geisler, Tobias Goebels, Sylvio Kosse	100
B1-O-01	Characteristics of Intermediate Frequency Vacuum Arc at Different Breaking Speeds Shangwen Xia, Jianwen Wu, Zhance Xu, Shengsheng Shi, Ziang Tong, Jingyi Lin, Ruang Chen, Jintao Zhang	107
B1-O-02	Characteristics and Multi-physics Calculation of Variable Intermediate Frequency Vacuum Arc Yuan Jiang, Qian Zhang, Jianwen Wu, Shangwen Xia, Chao Xin, Zhan Lei	N/A
B1-O-03	Post-Arc Currents of High-Voltage Vacuum Interrupters Radu-Marian Cernat, Andreas E. Geisler, Tobias Goebels, Stefan Giere	115
B1-O-04	Current and voltage behaviours of HVDC circuit breakers Hiroki Ito	119
B1-O-05	Properties of Vacuum Arcs Generated by Switching RMF Contacts with Progressing Surface Degradation Sergey Gortschakow, Diego Gonzalez, Ralf Methling, Steffen Franke, Dirk Uhrlandt, Andreas Lawall, Erik D. Taylor, Frank Graskowski	123
B1-P-01	Simulation of Magnetic Field and Experimental Research of Cup Type Four- slot and Six-slot Axial Magnetic Contact Tao Tan, Jinwang Yang, Shixin Xiu, Shenli Jia, Jiaxi Shi, Haiyang Luo, Zhiqiang Tian, Junping Chen, Haibo Su, Yong Wang	N/A
B1-P-02	Investigation on Magnetic Field and Arc Characteristics of Six-slot Cup-shaped Axial Magnetic Field Contact with Different Gaps Shenli JIA, Shixin XIU, Jinwang YANG, Tao TAN, Yongpeng MO, Haiyang LUO, Zhichang TIAN, Junping CHEN, Haibo SU, Yong WANG	N/A
B1-P-03	Influence of increased gap lengths above 20 mm for rotating vacuum arcs between TMF-contacts Benjamin Weber, Dietmar Gentsch, Michael Kurrat, Timo Meyer	135
B1-P-04	Cross validation of magnetic and optical localization methods for rotating vacuum arcs Christian Dorsch, Benajmin Weber, Manuel Philipp, Christoph Bardel, Volker Hinrichsen, Michael Kurrat	139
B1-P-05	Influence of anisotropic contact materials on the vacuum arc's chopping behavior Thierry Delachaux, Christoph Kenel, Felix Rager, Ralf-Patrick Sütterlin, Markus Hoidis, Cornelia Lang, Michael Weuffel, Dietmar Gentsch	143
B1-P-06	Hybrid DC Current switching in Vacuum under the effect of External Magnetic Field Tarek Lamara, Claudio Tricarico	147
B1-P-07	Experimental Research on the Characteristics of Low-Current Vacuum Arc in Vacuum OLTC Jing Guo, Zongqian Shi, Jiajia Sun, Yongpeng Mo, Ziyang Cao, Ziqiao Zhao	151

B2. Interaction of vacuum arcs with magnetic fields

B2-I-01	Optical diagnostics of switching vacuum arcs	155
	Sergey Gortschakow, Steffen Franke, Diego Gonzalez, Alireza Khakpour, Ralf Methling, Alexander Batrakov, Sergey Popov, Anton Schneider, Dirk Uhrlandt	
B2-O-01	Experimental Investigation on the Characteristics of Vacuum Arc in Coupled AMF Contacts Xinkun Lv, Zongqian Shi, Ziqiao Zhao, Ziyang Cao, Yongpeng Mo, Jiajia Sun	161
B2-O-02	Transient Arc Behavior Immediately after Electrodes Separation in Axial Magnetic Field Electrode for Vacuum Interrupter Yukihiko Himata, Akira Daibo, Yoshimitsu Niwa, Takeshi Yoshida, Kazuhisa Kanaya, Yoshiaki Ohda	165
B2-O-03	Research on intermediate-frequency vacuum arc recovery characteristics of curved contact Ziang Tong, Shengsheng Shi, Xiaojun Wang, Jianwen Wu, Jingyi Lin, Jintao Zhang, Shangwen Xia, Dejie Wei	169
B2-O-04	Analysis of the plasma behaviour after current zero phase based on the post-arc current of a vacuum interrupter Timo Meyer, Dietmar Gentsch, Michael Kurrat	173
B2-O-05	Influence of Switching Contact Materials with Superimposed Axial Magnetic Field on the Vacuum Arc's Chopping Behavior Markus Fischer, Michael Beltle, Stefan Tenbohlen, Dietmar Gentsch, Werner Ebbinghaus	177
B2-P-01	Experimental investigation of Vacuum Arc Characteristics of a Low Resistance Horseshoe-type Contact with Parallel Slots Structure Yuanzhao Li, Zihan Wang, Lei Huang, Yirui Zhang, Hui Ma*, Zhiyuan Liu, Yingsan Geng, Jianhua Wang	181
B2-P-02	Study on Excitation Characteristics of 2/3 Coil-type AMF Contacts under Equal Proportion Structure in Vacuum Interrupters Peicheng Huang, Zihan Wang, Yuanzhao Li, Hao Cheng, Hui Ma*, Zhiyuan Liu, Yingsan Geng, Jianhua Wang	185
B2-P-03	Contribution of Non-equilibrium around Vacuum Arc Cathode Spot to Retrograde Motion in Application of Transverse Magnetic Field Nozomi Ishihara, Hiroto Suzuki, Kenshin Saigo, Susumu Ichinose, Masahiro Takagi, Honoka Morishita, Yuki Suzuki, Zhenwei Ren, Yusuke Nemoto, Toru Iwao	189
B3. Vacuu	im arc physics	
B3-I-01	Understanding vacuum arc ignition by concurrent multi-physics simulations Andreas Kyritsakis, Mihkel Veske, Roni Koitermaa, Tauno Tiirats, Veronika Zadin, Flyura Djurabekova	193
B3-O-01	Investigation on Low-Current Vacuum Arc Behavior by Two-Dimensional Spectroscopic Observation and Numerical Modeling using Moving Particle Semi-implicit (MPS) Method Yasunori Tanaka, Yuto Hatanaka, Daisuke Kasui, Yusuke Nakano, Tatsuo Ishijima, Gaku Asanuma, Toshiyuki Onchi	199
B3-O-02	Hybrid Modelling of Asymmetric Sheath Expansion after Current Zero in Vacuum	203

Rui Li, Zhiyuan Cao, Haopo Liu, Zhenxing Wang, Liqiong Sun, Jianhua Wang

B3-O-03	Three-dimensional Electromagnetic Thermal Fluid Simulation of Cathode Jet Contributing to Motion of Cathode Spots in Vacuum Arc M.Takagi, H.Suzuki, H.Morishita, Y.Suzuki, Y.Nemoto, Z.Ren, T.Iwao	207
B3-O-04	Experimental Investigation of Vacuum Arc Under Different Axial Magnetic Field Contacts for 40.5 kV Vacuum Interrupters Hongda Wang, Lijun Wang, Hongjian Wang, Qiang Ma, Cong Wang	211
B3-O-05	Optical Emission Spectroscopy for Plasma Parameter Characterization of Vacuum Arc Cathode Spot Ryoto Itoh, Keito Kunimori, Yasushi Yamano, Akira Daibo, Naoki Asari, Yoshimitsu Niwa, Yo Sasaki, Yuki Inada	215
B3-O-06	The Excitation Temperature of The Neutrals And Ions in Diffuse-mode Vacuum Arc Yandi LIN, Masahiro SATO, Akiko KUMADA, Kunihiko HIDAKA, Kazuya KATO, Kenta YAMAMURA	219
B3-O-07	Numerical Simulation on Copper Vapor Behavior in Vacuum Arcs during Low- Current and Current Decaying Process using Moving Particle Method Daisuke Kasui, Yusuke Nakano, Yasunori Tanaka, Tatsuo Ishijima, Gaku Asanuma, Shinji Yamamoto, Toshiyuki Onchi	221
B3-O-08	The cathode spot cell properties in the vacuum arc discharge with W-fuzz cathode Ilya Muzyukin, Pavel Mikhailov, Sergey A. Barengolts, Igor V. Uimanov	N/A
B3-O-09	Study of vacuum arc threshold current for tungsten fuzz Pavel S. Mikhailov, Ilya L. Muzyukin, Yuriy I. Mamontov, Yury A. Zemskov, Igor V. Uimanov, Sergey A. Barengolts	N/A
B3-O-10	Electrostatic Induction and Electron Beam within The Vacuum Chamber Sirapat Lookrak, Anol Paisal	232
B3-P-01	Dependence of the radiation power on the length of a high-current vacuum arc Yu.A. Barinov, K.K. Zabello, A.A. Logachev, I.N. Poluyanova, S.M. Shkol'nik	N/A
B3-P-02	Experimental and Simulation Research on Influence of Arc Current on Vacuum Arc Movement Yuzi Jiang, Shixin Xiu, Zixi Liu, Shiqi Liu, Yantao Shen	N/A
B3-P-03	Numerical Simulation Research on Influence of Gap Distance on Vacuum Arc Characteristic between TMF Contacts Leming Wei, Shixin Xiu, Zixi Liu, Meiqin Guo, Dejun Zhu	N/A
B3-P-04	Study on the transport characteristics of DC vacuum arc plasma under actual magnetic field conditions Wandi Zhou, Tao Sun, Xiaolong Huang, Lihua Zhao, Yuan Liu, Shenli Jia	246
B3-P-05	Experimental Study on Spatial and Temporal Distribution of Metal Vapor Atoms in High-Current Vacuum Arc Shangyu Yang, Xiaolong Huang, Zhiqiang Yan, Shuangwei Zhao, Lihua Zhao, Shenli Jia	250
B3-P-06	Study on the Effect of Actual Transverse Magnetic Field on Vacuum Arc Xinyu Zhu, Jingjing Li, Siqi An, Qihan Li, Guolong Yang, Lihua Zhao	254
B3-P-07	Ion Charge State Variation in the Plasma Flow During the Repeating Microsecond Vacuum Arc Discharge with Nano-structured Tungsten Cathode Yury A. Zemskov, Igor V. Uimanov, Yury I. Mamontov, Sergey A. Barengolts	N/A

B3-P-08	Measurement and Characteristic Research of Laser Triggered Vacuum Switch On-Resistance Jian Ou, Shichao Yu, Yifan Sun, Hui Ma, Minfu Liao	N/A
B3-P-09	Research on the Magnetic Field Characteristics of A New Type Cup-Shaped Axial Magnetic Contacts with A Large Slotting Rotation Angle Zhiyong Liu, Junxiang Liu, Haibo Su, Xinhong Zhu	N/A
B3-P-10	Electrodynamic Acceleration of a Dielectric Body by Arc Plasma in a System of Railgun Configuration I.I. Beilis	269
B3-P-11	Initiation of a high-current vacuum arc: analysis of the contact gap voltage A.A. Logachev, Yu.A. Barinov, I.N. Poluyanova, K.K. Zabello	N/A
B3-P-12	Modeling and simulation of vacuum arc under the influence of anode melting pool Haonan Sun, Xiaolong Huang, Zhiqiang Yan, Shuangwei Zhao, Lihua Zhao, Shenli Jia	276
B3-P-13	Analysis of Electron and Heavy Particle Velocities as Function of Ambient Pressure Changes in Vacuum Arc H.Suzuki, M.Takagi, N.Ishihara, H.Morishita, Y.Suzuki, Y.Nemoto, Z.Ren, T.Iwao	280

B4. Computer modeling and computer aided design

B4-I-01	Numerical simulation of multi-components vacuum arcs with different anode modes: A Review Lijun Wang, Jieli Chen, Zhefeng Zhang, Runming Zhang, Hexiao Gao, Shenli Jia	284
B4-O-01	Simulation of Double Cathode Spots with Different Kinds of Protrusions in Vacuum Arc Runming Zhang, Lijun Wang, Xinyi Liu, Hexiao Gao, Cong Wang	290
B4-O-02	Simulation of ion bombardment of dense plasma on cold cathode by Molecular Dynamics Haonan Yang, Shuhang Shen, Zhongdong Wang, Ruoyu Xu, Mingyu Zhou	294
B4-O-03	Multi-field Co-simulation on Contact Bounce Suppression for Fast Vacuum Switch Lifan Zhang, Enyuan Dong, Yongxing Wang, Sheng Yin, Jialong Liu	298
B4-O-04	Three-dimensional MHD simulation of arc in 126 kV vacuum circuit breaker considering active anode Jieli Chen, Lijun Wang, Zhefeng Zhang, Cong Wang, Jilei Que	302
B4-O-05	3D Three-fluid Modeling of Ion Separation Phenomenon in Vacuum Arc Ion Sources Zhefeng Zhang, Lijun Wang, Jieli Chen	306
B4-P-01	Numerical simulations of the plasma parameters in the SPIDER device Roman Zagórski, Emanuele Sartori, Gianluigi Serianni, Alastair Shepherd	310
B4-P-02	Study on the Influence of Ion Charge State Distribution on the Residual Plasma Radial Motion Yixuan Li, Yongpeng Mo, Zongqian Shi, Shenli Jia	N/A

B4-P-03	Numerical Study of Large Contact Diameter and Gap Vacuum Arc in 252kV Vacuum Interrupter Shuangwei Zhao, Xiaolong Huang, Jingjing Li, Zhiyun Wu, Lihua Zhao, Shenli Jia	318
B4-P-04	Transient Vacuum study of Electric Arc in Radio Frequency Quadrupole of the Linear Particle Accelerator IFMIF César Caballero Pérez, Francesco Scantamburlo, Andrea de Franco, Ivan Moya, Luis González-Gallego, Juan Manuel García	322
B4-P-05	Model of electron emission from an expanding explosive emission plasma front Yury I. Mamontov, Igor V. Uimanov	N/A
B4-P-06	Effect of Micro-particles Impact Phenomena on Contact Surface in High Voltage Vacuum Interrupter after Conditioning Yulong Gao, Hao Cheng, Jingyu Shen, Tianjia Zhou, Hui Ma*, Yingsan Geng, Zhiyuan Liu, Jianhua Wang	330
B4-P-07	Electric field optimization method of multi-stage floating shield vacuum interrupter Yongjia Luo, Shenli Jia, Lihua Zhao, Xiaolong Huang, Zhiqiang Tian, Yuanjie Ma	334
B4-P-08	A low resistance vacuum interrupter electrode with hook support under contact plates Zeyu Huang, Shenli Jia, Lihua Zhao, Xiaolong Huang, Junping Chen, Haiyang Luo	338
B4-P-09	Multi-objective Optimization of Repulsive Force Actuator for Vacuum Circuit Breaker Peiyuan Li, Xiaoming Liu, Hai Chen, Wentao Jiang, Yongjie Zhou	341
B4-P-10	Analysis of Physical Parameters of CuCr Metal Vapor Arc Plasma for Vacuum Circuit Breaker Yue Zheng, Yang Yue, He Yang, Xianyang Ke, Jing Xu, Xulu Fan	343
B4-P-11	Study on electromagnetic force interaction and influencing factors of fast repulsion mechanism of vacuum circuit breaker Yue Zheng, Yang Yue, He Yang, Xianyang Ke, Jing Xu, Xulu Fan	345
B4-P-12	Achieving Higher Fidelity Pulsed-Power Simulations Through Advanced Gap Closure Modeling in Vacuum Transmission Lines David Sirajuddin, Mark H. Hess, Keith L. Cartwright, Peggy J. Christenson, Tim D. Pointon, Nick Roberds, Russell DePriest, Bruce Weber, Ben Ulmen	N/A

B5. Pulsed power physics and technology

B5-O-01	Numerical Investigation on Influence of Electric Field Distribution on Energy Deposition Structure in Wire Electrical Explosion in Vacuum Guiling Fu, Zongqian Shi, Ziyang Cao	353
B5-P-01	Effect of Static Voltage Distribution on Trigger Delay Time of Double-gap Laser-triggered Vacuum Switch Gang Lu, Lujie Gai, Ming Zhang, Yifan Sun, Xiongying Duan, Minfu Liao	N/A
B5-P-02	Structure Design of 300 kV Laser Triggered Multi-stage Vacuum Switch Yifan Sun, Gang Lu, Ming Zhang, Xinzhe Song, Minfu Liao, Xiongying Duan	N/A
B5-P-03	A Miniaturized Surface Flash Triggered Vacuum Switch with Low Trigger Delay Time and High Working Life Ming Zhang, Hui Ma, Gang Lu, Liang Bu, Xiongying Duan, Minfu Liao	365

C: APPLICATIONS

C1. Vacuum interrupters and their applications

C1-I-01	Development of high voltage VCBs as a candidate for SF6 free switching equipment Hitoshi Saito	369
C1-O-01	The Effect of Contact Structure on Vacuum Interrupter Performance Min Li, Anthony PAPILLON, Christian MOMBARD	375
C1-O-02	Evaluation of efficient electrode conditioning method for vacuum interrupters Kunihiko Tomiyasu, Kazuhiro Sato, Takashi Sato, Daisuke Sugai, Masato Kobayashi	378
C1-O-03	Overview of Test Methods for Electric Strength of Vacuum Interrupter using Lightning Impulse Voltage Karen Flügel, Dietmar Gentsch, Michael Kurrat	382
C1-O-04	The influence on partial discharge in vacuum by chromium oxide coating on alumina surface Kota Hamada, Naoki Asari, Chihiro Tateyama	386
C1-O-05	Influence of the Microstructure of Cu-Cr Alloy Electrode on Vacuum Arc Yusuke Maede, Masahiro Sato, Eiji Kaneko, Akiko Kumada	390
C1-P-01	Research on Equivalent Breaking Test Method of 10kV Mechanical DC Circuit Breaker Feifan ZHANG, Shixin XIU, Shenli JIA, Shiqi LIU, Yongpeng Mo, Zongqian SHI	N/A
C1-P-02	Simulation Analysis of Electric Field on High Voltage Vacuum Interrupter Shuo Li, Shixin Xiu, Shenli Jia, Haiyang Luo, Zhiqiang Tian, Junping Chen, Wei Li, Zhen Wang	N/A
C1-P-03	Multiple Breakdown Induced by Previous Breakdown in Higher Frequency AC Conditioning Ryota Konagi, Hiroki Kojima, Shinsuke Iitsuka, Masato Kobayashi, Naoki Hayakawa	402
C1-P-04	Interruption performance of vacuum circuit breaker under low- and very low- frequency condition D. Gentsch, E. D. Taylor, A. Lawall	406
C1-P-05	Study on the Contact Resistance and Temperature-rise Performance of High- voltage Vacuum Interrupter Zhaode Wu, Haibo Su, Junxiang Liu, Yongpeng Mo, Shuwei Fan, Shenli Jia	410
C1-P-06	Comparative Investigation among Different Devices Used to Measure Post Arc Current in DC Interruption with Vacuum Interrupters Qiang Tang, Shenli Jia, Zongqian Shi, Yongpeng Mo	414
C1-P-07	The Influence of Speed Control on Voltage Distribution of Double-Break Vacuum Circuit Breaker Yuanyuan Hu, Jie Zhang, Lin Cheng, Huaqing Dong, Yifan Fu, Minfu Liao	418
C1-P-08	Intelligent optimization of vacuum circuit breaker closing speed Rong Fan, Yongpeng Mo, Shuwei Fan, Shenli Jia	422
C1-P-09	Voltage conditioning process of vacuum interrupters at ultra-high voltages: industrial advantages and technical challenges Fedor KOROLEV, Renaud CARLEN, Dominique PICCOLOMO, Damien CANAT	426

C1-P-10	Research on Influence of Structural Size Parameters on Magnetic Field Characteristics of Coil Type Vacuum Interrupter Contact Gap Jingxia Huang, Haibo Su, Yong Wang, Junxiang liu, Le Gu, Jianbin Ye, Lin Yu	N/A
C1-P-11	A study of transients associated with vacuum on-load tap changers in power transformer Sreeram V, Arunkumar S, Rajaramamohanarao Chennu, T Gurudev, S Sudhakara Reddy	N/A
C1-P-12	Design and implementation of the optimal magnetron test for a low voltage small diameter vacuum interrupter with a fixed shield Pierre Ander Aranaga Decori, Jesus Izcara Zurro, Severo Aranaga Lopez, Aritz Hurtado Vicuña, Iker Lasa Ojanguren, Ander Jordana Landa	437
C1-P-13	Analysis and characterization of X-ray events in medium voltage vacuum interrupters under Lightning Impulse Voltage Nicoló Marconato, Nicola Pilan, Renato Gobbo, Paolo Bettini, Antonio De Lorenzi, Andreas Lawall, Erik D. Taylor, Felix Pino	441
C1-P-14	Medium Voltage Vacuum Circuit Breakers Boucing Time Overall Study Saïd Attak, Achang Wu, Jean-Philippe Claeys, Lucien Sannino, Jean-Pierre Meley, Anthony Papillon, Eloïse Bonjean, Marc Ferrazzi, Xavier Godechot	445
C1-P-15	Improvement of anti-welding ability of arc-melted CuCr contact material by addition of trace element of Te Peng Li, Peng Guo, Ning han, Xiao Jun Wang, Gang Li, Zhiyuan Liu	N/A
C1-P-16	Optimal Design of Contact Configuration for High Voltage Vacuum Interrupter Based on Response Surface Method and Multi Objective Genetic Algorithm Jin-Yong Na, Ryul Hwang, Geon Kim, Young-Kwang Cha, Heung-Jin Ju, Bang-Wook Lee	453
C1-P-17	Partial Discharge Characteristics in a Vacuum Interrupter under Different Shield Potentials Khin Yadana Kyaw, Yusuke Nakano, Yasunori Tanaka, Tatsuo Ishijima, Shusaku Nakano, Masato Kobayashi	457
C1-P-18	Measurement of Electrode Surface Temperature and Post-Arc Current in Vacuum Interrupter Akira Daibo, Yoshimitsu Niwa, Naoki Asari, Yukihiko Himata, Takuya Saito, Takeshi Yoshida	461
C1-P-19	Analysis of Breakdown Endurance Performance under Coupling Effect of Current Drop Rate and Voltage Rise Rate for DC Vacuum Circuit Breaker Shi Hongfei, Liu Xiaoming, Chen Hai, Li Peiyuan, Zhou Yongjie, Han Xu	465
C1-P-20	Reliability Analysis of DC Vacuum Circuit Breaker Based on Complementary Effect of Mechanism Velocity and Current Drop Rate Xiaoming Liu, Hongfei Shi, Hai Chen, Peiyuan Li, Xu Han	469
C1-P-21	Electromechanical and Electromagnetic Parameter Design and Breaking Performance Analysis of DC Vacuum Circuit Breaker Xiaoming Liu, Hongfei Shi, Hai Chen, Peiyuan Li, Yongjie Zhou, Xu Han	473
C1-P-22	Characteristics and Identification Method of Partial Discharge Signal in Vacuum Interrupter for Medium Voltage Solid Insulated Switchgear Hiroaki Cho, Yuuki Fujii, Junichi Kondo	477
C1-P-23	Research on Remanence Detection of Transformer with Phase Selection of Vacuum Switch Yu Xin, Xiongying Duan*, Jinjin Li, Xiao Wang	480

C1-P-24	One Test Method for DCCB Based on Vacuum Interrupter Xiyuan Liao, Shenli Jia, Xiaolong Huang, Lihua Zhao, Zhaowei Peng, Shiyang Huang	484
C1-P-25	Research on a Novel Vacuum Contactor and its Displacement Control Gongrun Wang, Enyuan Dong, Yongxing Wang, Liyan Zhang, Sheng Yin	488
C2. Surfa	ce science and modification and related technologies	
C2-I-01	Vacuum Technology for Constructing Large-Scaled Systems Yoshio Saito	492
C2-O-01	State-Selective Observations of Molecular Orbitals by Means of Field Emission Microscopy (FEM) Yuho Yamamoto, Ryohei Tsuruta, Yoichi Yamada, Yutaro Ono, Tomohiro Nobeyama, Masahiro Sasaki	498
C2-O-02	Relaxation effect of electric field for Functionally Graded Materials in Vacuum Fei Kong, Cheng Zhang, Tao Shao	N/A
C2-O-03	X-ray Micro-Discharges Fine Dynamics in a Vacuum High Voltage Experiment Silvia Spagnolo, Luigi Cordaro, Tommaso Patton, Nicola Pilan, Antonio De Lorenzi, Cristiano L. Fontana, Andrea Muraro, Felix Pino, Gabriele Croci, Davide Rigamonti, Michele Fincato, Luca Lotto, Isabella Mario, Emilio Martines, Emanuele Spada, Marco Tardocchi, Matteo Zuin	503

C3. Electron, ion, neutron, X-ray and other beam and light sources

C3-P-01	Investigation of Secondary Electron Emission Coefficients during Geostationary	
	Orbit Operations and Effects of Atmospheric Exposure	507
	Sachiho Kemmotsu, Kousuke Amamizu, Hiroaki Miyake, Yasuhiro Tanaka	
C3-P-02	Characteristics of negative ion current by control of bias voltage to second anode in Cs free negative ion source using TPDSheet U	511
	Keite Miure Teige Celte Buenishi Onume Alire Tenegeure	511
	Kallo.Miura, Taiga.Goka, Kyouichi.Onuma, Akira Tonegawa	

C4. Accelerator and fusion reactor related issues

C4-I-01	Overview of the Neutral Beam Injector for ITER G. Serianni, NBTF Team	515
C4-O-01	Development of X-Ray collimators to identify sources of radiation in devices insulated by large vacuum gaps	516
	Nicola Pilan, Matteo Agostini, Michele Fincato, Cristiano Fontana, Renato Gobbo, Luca Lotto, Nicolò Marconato, Isabella Mario, Roberto Pasqualotto, Giancarlo Pesavento, Tommaso Patton, Felix Pino, Silvia Spagnolo, Antonio De Lorenzi	
C4-P-01	Design of electrodes for high voltage tests in MITICA Daniele Aprile, Giovanni Berton, Giuseppe Chitarin, Sylvestre Denizeau, Tommaso Patton, Nicola	521
	Pilan, Marco Tollin, Matteo Valente	
C4-P-02	Electrical insulation of plasma facing metallic structures for the RFX-mod2 experiment	524
	Luigi Cordaro, Matteo Zuin, Domenico Abate, Roberto Cavazzana, Bruno Laterza, Luca Lotto, Luca Peruzzo, Simone Peruzzo	
C4-P-03	Thermal conductivity measurement of fuzzy W using a thermoreflectance method	526
	Shin Kajita, Takashi Yagi, Noriyasu Ohno	

C4-P-04	Field emission current from protrusion structures formed by helium plasma with various impurity gases	529
	Rongshi Zhang, Shin Kajita, Hirohiko Tanaka, Dogyun Hwangbo, Noriyasu Ohno	
C4-P-05	Arc ignition and hot spot formation on tungsten with nano-tendril bundles under hydrogen plasma exposure	533
	Dogyun Hwangbo, Shuangyuan Feng, Rongshi Zhang, Shin Kajita, Maria M. D. Cunha, Remco Timmer, Jordy Vernimmen, John Scholten, Hirohiko Tanaka, Yuki Hayashi, Thomas Morgan	
C4-P-06	Electrostatic Design of the MITICA Intermediate Electrostatic Shield	537
	Tommaso Patton, Daniele Aprile, Giovanni Berton, Giuseppe Chitarin, Sylvestre Denizeau, Diego Marcuzzi, Nicola Pilan, Marco Tollin, Lauro Trevisan, Matteo Valente	
C4-P-07	Insulation and conditioning of an electrostatic bunch length monitor for the	
	Linear IFMIF Prototype Accelerator.	542
	Andrea De Franco, Marco Poggi, Saerom Kwon, Carin Yann	

C5. Space related technologies

C5-I-01	State-of-the-art of Ion Engine onboard Hayabusa/Hayabusa2 Asteroid Explorers	
	- Design Philosophy for Electrical Insulation - Hitoshi KUNINAKA	546
C5-O-01	Ignition Stability of Electrothermal Pulsed Plasma Thruster Bo Cao, Ze Ma, Zhiyuan Cao, Jianhua Wang, Yingsan Geng, Zhenxing Wang	549
C5-O-02	Secondary Electron Emission Measurements of Aluminum plate for on-orbit demonstration evaluation Kumi Nitta, Seiichiroh Kan, Tsuyoshi Nakagawa	553

C6. Vacuum microelectronics and their applications

C6-I-01	High-voltage engineering in vacuum and with electron beams for scanning electron microscope Soichiro Matsunaga, Takashi Doi	556
C6-O-01	Protective Layer Process of Graphene-Oxide- Semiconductor Electron Emission Devices for Low Earth Orbit Applications Ren Mutsukawa, Naoyuki Matsumoto, Yoshinori Takao, Hiromasa Murata, Masayoshi Nagao, Katsuhisa Murakami	560
C6-O-02	Electron emission characteristics of nc-Si based planar-type electron emission devices H.Shimawaki, M.Nagao, K.Murakami	563
C6-O-03	The impact of Titanium nitride coating on emission characteristics in volcano- structured field emitter array Hiromasa Murata, Katsuhisa Murakami, Masayoshi Nagao	565
C6-P-01	Development of planar type electron emission devices using a heterostructure of two-dimensional materials Katsuhisa Murakami, Masaya Yamamoto, Hiromasa Murata, Hidenori Mimura, Yoichiro Neo, Masayoshi Nagao	567

D: OTHERS

D-P-01	Effect of different electrode materials on the arc energy under arc discharge Chang Ma, Fancong Kong, Xiongying Duan, Zhongyu Li, Bairu Cheng, Minfu Liao	569
D-P-02	Protection mechanism analysis and performance test of polyimide under arc discharge Chang Ma, Fancong Kong, Xiongying Duan, Hong Pan, Minfu Liao	N/A
D-P-03	Research on Fault Diagnosis of High Voltage Circuit Breakers Based on Vibration Signal in Low Temperature Environment Zhiming Zheng, Yifan Fu, Minfu Liao*, Fuxing Yang, Xiongying Duan	577
D-P-04	Study on the influence of current limiting characteristics of self-driving current limiters Zeming Feng, Rufan Wang, Minfu Liao*, Dongze Xie, Xiongying Duan, Jun Qiu	N/A
D-P-05	Research on Arc Restraint in Dynamic Response Process of A New Self-Driving Fault Current Limiter Dongze Xie, Rufan Wang, Minfu Liao*, Zeming Feng, Xiongying Duan, Jun Qiu	585
D-P-06	Design and Parameter Characteristics of A New Fault Current Limiter Based on Self-driving Rheostat Rufan Wang, Hongyang Yin, Dongze Xie, Zeming Feng, Minfu Liao*, Xiongying Duan	589
D-P-07	Occurrence and protection of cable joint faults Fancong Kong, Chang Ma, Xiongying Duan, Zhongyu Li, Bairu Cheng, Minfu Liao	593