2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P 2023)

Delft, Netherlands 3-7 July 2023

Pages 1-630

IEEE Catalog Number: CISBN: 9'

CFP23C75-POD 978-1-6654-6513-7

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP23C75-POD

 ISBN (Print-On-Demand):
 978-1-6654-6513-7

 ISBN (Online):
 978-1-6654-6512-0

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

EuroSP 2023

Table of Contents

Welcome Message from the General Chairs	xiv
Welcome Message from the PC Chairs	
Euro S&P 2023 Steering Committee	xvi
Euro S&P 2023 Organizing Committee x	(vi
Euro S&P 2023 Program Committeexv	viii
Phishing/fraud/scams	
Android, Notify Me When it is Time to Go Phishing Antonio Ruggia (University of Genoa, Italy), Andrea Possemato (EURECOM, France), Alessio Merlo (Centre for Higher Defence Studies (CASD), Italy), Dario Nisi (EURECOM, France), and Simone Aonzo (EURECOM, France)	1
Understanding, Measuring, and Detecting Modern Technical Support Scams Jienan Liu (University of Georgia), Pooja Pun (University of New Orleans), Phani Vadrevu (University of New Orleans), and Roberto Perdisci (University of Georgia; Georgia Institute of Technology)	. 18
Active Countermeasures for Email Fraud	. 39
Crypto + formal methods I	
Multi-factor Credential Hashing for Asymmetric Brute-Force Attack Resistance Vivek Nair (UC Berkeley) and Dawn Song (UC Berkeley)	56
CHEX-MIX: Combining Homomorphic Encryption with Trusted Execution Environments for Oblivious Inference in the Cloud	. 7 3
Deepika Natarajan (University of Michigan), Andrew Loveless (University of Michigan), Wei Dai (Microsoft Research), and Ron Dreslinski (University of Michigan)	

Exploitation of DRAM-PUFs Owen Millwood (The University of Sheffield, UK), Meltem Kurt Pehlivanoğlu (Kocaeli University, Turkey), Aryan Mohammadi Pasikhani (University of Sheffield, UK), Jack Miskelly (Queen's University Belfast, United Kingdom), Prosanta Gope (University of Sheffield, UK), and Elif Bilge Kavun (University of Passau, Germany)	92
Automatic Verification of Transparency Protocols	.107
SoK: Data Sovereignty Jens Ernstberger (Technical University of Munich, Germany; Berkeley Center for Responsible, Decentralized Intelligence (RDI)), Jan Lauinger (Technical University of Munich, Germany), Fatima Elsheimy (Yale University, USA), Liyi Zhou (Imperial College London, United Kingdom; Berkeley Center for Responsible, Decentralized Intelligence (RDI)), Sebastian Steinhorst (Technical University of Munich, Germany), Ran Canetti (Boston University, USA), Andrew Miller (University of Illinois at Urbana-Champaign, USA), Arthur Gervais (University College London, United Kingdom; Berkeley Center for Responsible, Decentralized Intelligence (RDI)), and Dawn Song (University of California, Berkeley, USA; Berkeley Center for Responsible, Decentralized Intelligence (RDI))	. 122
Security and AI	
Security and AI An Unbiased Transformer Source Code Learning with Semantic Vulnerability Graph	. 144
An Unbiased Transformer Source Code Learning with Semantic Vulnerability Graph	
An Unbiased Transformer Source Code Learning with Semantic Vulnerability Graph	.160

SoK: Explainable Machine Learning for Computer Security Applications 22: Azqa Nadeem (Delft University of Technology, The Netherlands), Daniël Vos (Delft University of Technology, The Netherlands), Clinton Cao (Delft University of Technology, The Netherlands), Luca Pajola (University of Padua, Italy), Simon Dieck (Delft University of Technology, The Netherlands), Robert Baumgartner (Delft University of Technology, The Netherlands), and Sicco Verwer (Delft University of Technology, The Netherlands)
Privacy
Reconstructing Individual Data Points in Federated Learning Hardened with Differential Privacy and Secure Aggregation
Towards Fine-Grained Localization of Privacy Behaviors
Masterkey Attacks Against Free-Text Keystroke Dynamics and Security Implications of Demographic Factors
"Act Natural!": Exchanging Private Messages on Public Blockchains
smartFHE: Privacy-Preserving Smart Contracts from Fully Homomorphic Encryption
Online Videos
Understanding the Security Risks of Decentralized Exchanges by Uncovering Unfair Trades in the Wild

Environments	352
Rongwu Xu (Tsinghua University), Sen Yang (Yale University), Fan Zhang (Yale University, USA), and Zhixuan Fang (Tsinghua University, China; Shanghai Qi Zhi Institute)	
Forward Pass: On the Security Implications of Email Forwarding Mechanism and Policy Enze Liu (UC San Diego, USA), Gautam Akiwate (Stanford University, USA), Mattijs Jonker (University of Twente, USA), Ariana Mirian (UC San Diego, USA), Grant Ho (UC San Diego, USA), Geoffrey M. Voelker (UC San Diego, USA), and Stefan Savage (UC San Diego, USA)	373
Privformer: Privacy-Preserving Transformer with MPC	392
Coverage and Secure Use Analysis of Content Security Policies via Clustering	411
CommiTEE: An Efficient and Secure Commit-Chain Protocol using TEEs	429
Fuzzing & Vulnerability finding	
- 4.2.2.1.5 44 1 4.1.101.112 11111 J	
EF\CF: High Performance Smart Contract Fuzzing for Exploit Generation Michael Rodler (University of Duisburg-Essen; Amazon Web Services), David Paaßen (University of Duisburg-Essen), Wenting Li (NEC Laboratories Europe), Lukas Bernhard (Ruhr-University Bochum), Thorsten Holz (CISPA Helmholtz Center for Information Security), Ghassan Karame (Ruhr-University Bochum), and Lucas Davi (University of Duisburg-Essen)	449
EF\CF: High Performance Smart Contract Fuzzing for Exploit Generation	449
EF\CF: High Performance Smart Contract Fuzzing for Exploit Generation Michael Rodler (University of Duisburg-Essen; Amazon Web Services), David Paaßen (University of Duisburg-Essen), Wenting Li (NEC Laboratories Europe), Lukas Bernhard (Ruhr-University Bochum), Thorsten Holz (CISPA Helmholtz Center for Information Security), Ghassan Karame (Ruhr-University Bochum), and Lucas Davi (University of Duisburg-Essen) Fuzzing SGX Enclaves via Host Program Mutations Arslan Khan (Purdue University), Muqi Zou (Purdue University), Kyungtae Kim (Purdue University), Dongyan Xu (Purdue University), Antonio Bianchi (Purdue University), and Dave Jing Tian (Purdue	472

Hunting for Truth: Analyzing Explanation Methods in Learning-based Vulnerability Discovery Tom Ganz (SAP SE, Germany), Philipp Rall (Technische Universität Darmstadt, Germany), Martin Härterich (SAP SE, Germany), and Konrad Rieck (Technische Universität Berlin, Germany)	524
Networks	
Systematic Improvement of Access-Stratum Security in Mobile Networks Rhys Miller (University of Surrey, UK), Ioana Boureanu (University of Surrey, UK), Stephan Wesemeyer (University of Surrey, UK), Zhili Sun (University of Surrey, UK), and Hemant Zope (Fraunhofer FOKUS, Germany)	542
Anomaly-based Filtering of Application-Layer DDoS Against DNS Authoritatives	558
SoK: A Data-Driven View on Methods to Detect Reflective Amplification DDoS Attacks Using Honeypots	576
SoK: Pragmatic Assessment of Machine Learning for Network Intrusion Detection	592
GNN4IFA: Interest Flooding Attack Detection with Graph Neural Networks Andrea Agiollo (University of Bologna), Enkeleda Bardhi (Sapienza University of Rome), Mauro Conti (University of Padua; Delft University of Technology), Riccardo Lazzeretti (Sapienza University of Rome), Eleonora Losiouk (University of Padua), and Andrea Omicini (University of Bologna)	615
Side Channels and Transient Execution	
SoK: Analysis of Root Causes and Defense Strategies for Attacks on Microarchitectural Optimizations Nadja Ramhöj Holtryd (Chalmers University of Technology, Sweden), Madhavan Manivannan (Chalmers University of Technology, Sweden), and Per Stenström (Chalmers University of Technology, Sweden)	631
MicroProfiler: Principled Side-Channel Mitigation through Microarchitectural Profiling	651

You Cannot Always Win the Race: Analyzing Mitigations for Branch Target Prediction Attacks 67 Alyssa Milburn (Intel), Ke Sun (Intel), and Henrique Kawakami (Intel)	⁷ 1
Towards Automated Detection of Single-Trace Side-Channel Vulnerabilities in Constant-Time Cryptographic Code	37
From Dragondoom to Dragonstar: Side-Channel Attacks and Formally Verified Implementation of WPA3 Dragonfly Handshake)7
Crypto + formal methods II	
Recurring Contingent Service Payment 72 Aydin Abadi (University College London, UK), Steven J. Murdoch (University College London, UK), and Thomas Zacharias (University College London, UK)	<u>2</u> 4
SIM: Secure Interval Membership Testing and Applications to Secure Comparison	57
Careful with MAc-then-SIGn: A Computational Analysis of the EDHOC Lightweight Authenticated Key Exchange Protocol	73
Proof-of-Learning is Currently More Broken Than You Think)7
Certifiably Vulnerable: Using Certificate Transparency Logs for Target Reconnaissance	.7

Web and social media

Chrowned by an Extension: Abusing the Chrome Dev 1901s Protocol through the Debugger AP1 . José Miguel Moreno (Universidad Carlos III de Madrid, Spain), Narseo Vallina-Rodriguez (IMDEA Networks Institute, Spain), and Juan Tapiador (Universidad Carlos III de Madrid, Spain)	832
DarkDialogs: Automated Detection of 10 Dark Patterns on Cookie Dialogs	847
SoK: Content Moderation in Social Media, from Guidelines to Enforcement, and Research to Practice	868
SMART Credentials in the Multi-Queue of Slackness	896
Been Here Already? Detecting Synchronized Browsers in the Wild	913
Crypto + formal methods III	
Asynchronous Remote Key Generation for Post-Quantum Cryptosystems from Lattices	928
Revelio: A Network-Level Privacy Attack in the Lightning Network	942
Conjunctive Searchable Symmetric Encryption from Hard Lattices	958
Provable Adversarial Safety in Cyber-Physical Systems John H. Castellanos (CISPA Helmholtz Center for Information Security, Germany), Mohamed Maghenem (University of Grenoble Alpes, CNRS, France), Alvaro A. Cárdenas (University of California, USA), Ricardo G. Sanfelice (University of California, USA), and Jianying Zhou (Singapore University of Technology and Design, Singapore)	979
Privately Evaluating Region Overlaps with Applications to Collaborative Sensor Output Validation	. 1013

Analyzing attacks on things

Exploring Smart Commercial Building Occupants' Perceptions and Notification Preferences of nternet of Things Data Collection in the United States)
AoT - Attack on Things: A Security Analysis of IoT Firmware Updates	7
Comprehensively Analyzing the Impact of Cyberattacks on Power Grids	5
SoK: Rethinking Sensor Spoofing Attacks against Robotic Vehicles from a Systematic View	2
NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs	1
Trusted computing and defenses	
aulTPM: Exposing AMD fTPMs' Deepest Secrets	3
CHERI-TrEE: Flexible Enclaves on Capability Machines	3

SOK: Side Channel Monitoring for Additive Manufacturing - Bridging Cybersecurity and	
Quality Assurance Communities	1160
Muhammad Ahsan (Virginia Commonwealth University, USA), Muhammad Haris	
Rais (Virginia Commonwealth University, USA), and Irfan Ahmed	
(Virginia Commonwealth University, USA)	
Watermarking Graph Neural Networks based on Backdoor Attacks	1179
Jing Xu (Delft University of Technology, Netherlands), Stefanos Koffas	
(Delft University of Technology, Netherlands), Oğuzhan Ersoy (Radboud	
University, Netherlands), and Stjepan Picek (Radboud University,	
Netherlands)	

Author Index