2020 IEEE/ACM 28th International Conference on Program Comprehension (ICPC 2020)

Seoul, South Korea 5-11 October 2020

IEEE Catalog Number: CFP20009-POD **ISBN:**

979-8-3503-1850-0

Copyright © 2020, Association for Computing Machinery All Rights Reserved

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number: ISBN (Print-On-Demand): ISBN (Online): ISSN: CFP20009-POD 979-8-3503-1850-0 978-1-4503-7958-8 2643-7147

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2020 IEEE/ACM 28th International Conference on Program Comprehension (ICPC) ICPC 2020

Table of Contents

Message from ICPC 2020 Chairs	. xii
Conference Organization	. xiv

On the Equivalence of Information Retrieval Methods for Automated Traceability Link	
Recovery: A Ten-Year Retrospective	1
Rocco Oliveto (University of Molise), Malcom Gethers (The College of	
William and Mary), Denys Poshyvanyk (The College of William and Mary),	
and Andrea De Lucia (University of Salerno)	

Research

 A Human Study of Comprehension and Code Summarization
A Literature Review of Automatic Traceability Links Recovery for Software Change Impact Analysis
A Model to Detect Readability Improvements in Incremental Changes
A Self-Attentional Neural Architecture for Code Completion with Multi-Task Learning

Adaptive Deep Code Search
An Empirical Study of Quick Remedy Commits
An Empirical Study on Critical Blocking Bugs
 An Empirical Study on Dynamic Typing Related Practices in Python Systems
 Bugsum: Deep Context Understanding for Bug Report Summarization
Deep-Diving into Documentation to Develop Improved Java-to-Swift API Mapping
Duplicate Bug Report Detection Using Dual-Channel Convolutional Neural Networks
Evaluating a Visual Approach for Understanding Javascript Source Code
GGF: A Graph-Based Method for Programming Language Syntax Error Correction

 How Does Incomplete Composite Refactoring Affect Internal Quality Attributes?
How Graduate Computing Students Search When Using an Unfamiliar Programming Language 160 Gina R. Bai (North Carolina State University, USA), Joshua Kayani (North Carolina State University, USA), and Kathryn T. Stolee (North Carolina State University, USA)
 How are Deep Learning Models Similar? An Empirical Study on Clone Analysis of Deep Learning Software
Improved Code Summarization via a Graph Neural Network
 Improving Code Search with Co-Attentive Representation Learning
Investigating Near-Miss Micro-Clones in Evolving Software
Exploiting Code Knowledge Graph for Bug Localization via Bi-Directional Attention
 Knowledge Transfer in Modern Code Review
 Measuring Software Testability Modulo Test Quality

On Combining Ir Methods to Improve Bug Localization	<u>)</u>
Performing Tasks Can Improve Program Comprehension Mental Model of Novice Developers 263 Amal Shargabi (Qassim University, Saudi Arabia), Syed Ahmad Aljunid (Universiti Teknologi MARA, Malaysia), Muthukkaruppan Annamalai (Universiti Teknologi MARA, Malaysia), and Abdullah Mohd Zin (Universiti Kebangsaan Malaysia, Malaysia)	3
SrcClone: Detecting Code Clones via Decompositional Slicing	ł
Supporting Program Comprehension through Fast Query Response in Large-Scale Systems 285 Jinfeng Lin (University of Notre Dame, US), Yalin Liu (University of Notre Dame, US), and Jane Cleland-Huang (University of Notre Dame, US)	5
 Testing of Mobile Applications in the Wild: A Large-Scale Empirical Study on Android Apps 296 Fabiano Pecorelli (SeSa Lab - University of Salerno, Italy), Gemma Catolino (SeSa Lab - University of Salerno, Italy), Filomena Ferrucci (SeSa Lab - University of Salerno, Italy), Andrea De Lucia (SeSa Lab - University of Salerno, Italy), and Fabio Palomba (SeSa Lab - University of Salerno, Italy) 	5
The Secret Life of Commented-Out Source Code	3
Ui Screens Identification and Extraction from Mobile Programming Screencasts	•
Unified Configuration Setting Access in Configuration Management Systems	l
 What Drives the Reading Order of Programmers? An Eye Tracking Study	<u>}</u>
 When are Smells Indicators of Architectural Refactoring Opportunities? a Study of 50 Software Projects	£

Early Research Achievements

Combining Biometric Data with Focused Document Types Classifies a Success of Program Comprehension	366
Detecting Code Comment Inconsistency Using Siamese Recurrent Network	371
Improving the Accuracy of Spectrum-Based Fault Localization for Automated Program Repair3 Tetsushi Kuma (Osaka University), Yoshiki Higo (Osaka University), Shinsuke Matsumoto (Osaka University), and Shinji Kusumoto (Osaka University)	376
Inheritance Software Metrics on Smart Contracts	81
Linguistic Documentation of So!Ware History	386
 Program Comprehension in Virtual Reality	91
Staged Tree Matching for Detecting Code Move across Files	\$96
 Automatic Android Deprecated-API Usage Update by Learning from Single Updated Example 4 Stefanus A. Haryono (Singapore Management University), Ferdian Thung (Singapore Management University), Hong Jin Kang (Singapore Management University), Lucas Serrano (Sorbonne University/Inria/LIP6), Gilles Muller (Inria), Julia Lawall (Inria), David Lo (Singapore Management University), and Lingxiao Jiang (Singapore Management University) 	01

Industry

Ownership at Large – Open Problems and Challenges in Ownership Management	406
John Ahlgren (Facebook Inc.), Maria Eugenia Berezin (Facebook Inc.),	
Kinga Bojarczuk (Facebook Inc.), Elena Ďulskyte (Facebook Inc.), Inna	
Dvortsova (Facebook Inc.), Johann George (Facebook Inc.), Natalija	
Gucevska (Facebook Inc.), Mark Harman (Facebook Inc.), Shan He	
(Facebook Inc.), Ralf Lämmel (Facebook Inc.), Erik Meijer (Facebook	
Inc.), Silvia Sapora (Facebook Inc.), and Justin Spahr-Summers	
(Facebook Inc.)	

- Understanding What Software Engineers are Working on the Work-Item Prediction Challenge ... 416 Ralf Lämmel (Facebook Inc.), Alvin Kerber (Facebook Inc.), and Liane Praza (Facebook Inc.)

Programming Education

Tool Demonstration

BugVis: Commit Slicing for Defect Visualisation David Bowes (Lancaster University), Jean Petrić (Lancaster University), and Tracy Hall (Lancaster University)	436
Just-in-Time Test Smell Detection and Refactoring: The DARTS Project Stefano Lambiase (SeSa Lab - University of Salerno, Italy), Andrea Cupito (SeSa Lab - University of Salerno, Italy), Fabiano Pecorelli (SeSa Lab - University of Salerno, Italy), Andrea De Lucia (SeSa Lab - University of Salerno, Italy), and Fabio Palomba (SeSa Lab - University of Salerno, Italy)	441
OpenSZZ: A Free, Open-Source, Web-Accessible Implementation of the SZZ Algorithm Valentina Lenarduzzi (LUT University), Fabio Palomba (SeSa Lab - University of Salerno), Davide Taibi (Tampere University), and Damian Andrew Tamburri (Jheronimus Academy of Data Science)	446
Refactoring Android-Specific Energy Smells: A Plugin for Android Studio Emanuele Iannone (SeSa Lab - University of Salerno, Italy), Fabiano Pecorelli (SeSa Lab - University of Salerno, Italy), Dario Di Nucci (JADE Lab - University of Tilburg/JADS 's-Hertogenbosch, The Netherlands), Fabio Palomba (SeSa Lab - University of Salerno, Italy), and Andrea De Lucia (SeSa Lab - University of Salerno, Italy)	451

SimplyHover: Improving Comprehension of Else Statements	456
Ahmad Jbara (Augusta University, GA, USA and Netanya Academic College,	
Israel), Or Shacham (Netanya Academic College, Israel), Bar Ben	
Michael (Netanya Academic College, Israel), and Omer Tavor (Netanya	
Academic College, Israel)	
Academic College, Israel)	

Author Index	