# **2023 IEEE Symposium on Security** and Privacy (SP 2023)

# San Francisco, California, USA 22-25 May 2023

**Pages 1-754** 



IEEE Catalog Number: CFP23020-POD **ISBN:** 

978-1-6654-9337-6

#### **Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved**

*Copyright and Reprint Permissions*: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

#### \*\*\* This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

| IEEE Catalog Number:    |  |
|-------------------------|--|
| ISBN (Print-On-Demand): |  |
| ISBN (Online):          |  |
| ISSN:                   |  |

CFP23020-POD 978-1-6654-9337-6 978-1-6654-9336-9 1081-6011

#### Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com



# 2023 IEEE Symposium on Security and Privacy (SP) **SP 2023**

## **Table of Contents**

| Message from the General Chair  | xxxi  |
|---------------------------------|-------|
| Message from the Program Chairs | xxxiv |
| Organizing Committee            | xxxvi |

#### Session 1A: Infrastructure security

| Space Odyssey: An Experimental Software Security Analysis of Satellites                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>SCAPHY: Detecting Modern ICS Attacks by Correlating Behaviors in SCADA and PHYsical</li></ul>                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Shedding Light on Inconsistencies in Grid Cybersecurity: Disconnects and Recommendations 38</li> <li>Brian Singer (Carnegie Mellon University), Amritanshu Pandey (Carnegie</li> <li>Mellon University), Shimiao Li (Carnegie Mellon University), Lujo</li> <li>Bauer (Carnegie Mellon University), Craig Miller (Carnegie Mellon</li> <li>University), Lawrence Pileggi (Carnegie Mellon University), and Vyas</li> <li>Sekar (Carnegie Mellon University)</li> </ul> |
| <ul> <li>Red Team vs. Blue Team: A Real-World Hardware Trojan Detection Case Study Across Four</li> <li>Modern CMOS Technology Generations</li></ul>                                                                                                                                                                                                                                                                                                                            |

#### Session 1B: Blockchain 1

| SoK: Distributed Randomness Beacons<br>Kevin Choi (New York University, USA), Aathira Manoj (New York<br>University, USA), and Joseph Bonneau (New York University, USA and<br>a16z crypto research, USA)                                                                                                                                 | . 75 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| WeRLman: To Tackle Whale (Transactions), Go Deep (RL)<br>Roi Bar-Zur (Technion, IC3), Ameer Abu-Hanna (Technion), Ittay Eyal<br>(Technion, IC3), and Aviv Tamar (Technion)                                                                                                                                                                | . 93 |
| Three Birds with One Stone: Efficient Partitioning Attacks on Interdependent<br>Cryptocurrency Networks<br><i>Muhammad Saad (PayPal) and David Mohaisen (University of Central</i><br><i>Florida)</i>                                                                                                                                     | 111  |
| Bitcoin-Enhanced Proof-of-Stake Security: Possibilities and Impossibilities<br>Ertem Nusret Tas (Stanford University), David Tse (Stanford<br>University), Fangyu Gai (BabylonChain Inc.), Sreeram Kannan<br>(University of Washington, Seattle), Mohammad Ali Maddah-Ali<br>(University of Minnesota), and Fisher Yu (BabylonChain Inc.) | 126  |

## Session 1C: Cryptographic attacks

| MEGA: Malleable Encryption Goes Awry<br>Matilda Backendal (ETH Zurich), Haller Miro (ETH Zurich), and Kenneth<br>G. Paterson (ETH Zurich)                                                                                                                                                                                | 146 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Practically-exploitable Cryptographic Vulnerabilities in Matrix<br>Martin R. Albrecht (King's College London), Sofía Celi (Brave<br>Software), Benjamin Dowling (Security of Advanced Systems Group,<br>University of Sheffield), and Daniel Jones (Information Security<br>Group, Royal Holloway, University of London) | N/A |
| DBREACH: Stealing from Databases Using Compression Side-Channels<br>Mathew Hogan (Stanford University), Yan Michalevsky (Anjuna Security,<br>Inc and Cryptosat, Inc.), and Saba Eskandarian (UNC Chapel Hill)                                                                                                            | 182 |
| Weak Fiat-Shamir Attacks on Modern Proof Systems<br>Quang Dao (Carnegie Mellon University), Jim Miller (Trail of Bits),<br>Opal Wright (Trail of Bits), and Paul Grubbs (University of Michigan)                                                                                                                         | 199 |

## Session 2A: Trust and safety

| Attitudes towards Client-Side Scanning for CSAM, Terrorism, Drug Trafficking, Drug Use and |       |
|--------------------------------------------------------------------------------------------|-------|
| Tax Evasion in Germany                                                                     | . 217 |
| Lisa Geierhaas (University of Bonn), Fabian Otto (OmniQuest),                              |       |
| Maximilian Häring (University of Bonn), and Matthew Smith (University                      |       |
| of Bonn, Fraunhofer FKIE)                                                                  |       |

| Deep perceptual hashing algorithms with hidden dual purpose: when client-side scanning<br>does facial recognition | 234 |
|-------------------------------------------------------------------------------------------------------------------|-----|
| Public Verification for Private Hash Matching                                                                     | 253 |
| Is Cryptographic Deniability Sufficient? Non-Expert Perceptions of Deniability in Secure<br>Messaging             | 274 |
| On the Evolution of (Hateful) Memes by Means of Multimodal Contrastive Learning                                   | 293 |
| LAMBRETTA: Learning to Rank for Twitter Soft Moderation                                                           | 311 |

# Session 2B: Machine learning privacy

| SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine<br>Learning                                                                                                                                                                                                                                                                  | 327 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>Analyzing Leakage of Personally Identifiable Information in Language Models</li> <li>Nils Lukas (University of Waterloo), Ahmed Salem (Microsoft Research),</li> <li>Robert Sim (Microsoft Research), Shruti Tople (Microsoft Research),</li> <li>Lukas Wutschitz (Microsoft Research), and Santiago Zanella-Béguelin</li> <li>(Microsoft Research)</li> </ul> | 346 |
| Accuracy-Privacy Trade-off in Deep Ensemble: A Membership Inference Perspective<br>Shahbaz Rezaei (University of California at Davis), Zubair Shafiq<br>(University of California at Davis), and Xin Liu (University of<br>California at Davis)                                                                                                                         | 364 |

| D-DAE: Defense-Penetrating Model Extraction Attacks<br>Yanjiao Chen (Zhejiang University), Rui Guan (Wuhan University),<br>Xueluan Gong (Wuhan University), Jianshuo Dong (Wuhan University), and<br>Meng Xue (Wuhan University)                                                                                      | 382 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SNAP: Efficient Extraction of Private Properties with Poisoning<br>Harsh Chaudhari (Northeastern University), John Abascal (Northeastern<br>University), Alina Oprea (Northeastern University), Matthew Jagielski<br>(Google Research), Florian Tramèr (ETH Zurich), and Jonathan Ullman<br>(Northeastern University) | 400 |
| On the (In)security of Peer-to-Peer Decentralized Machine Learning<br>Dario Pasquini (SPRING Lab; EPFL, Switzerland), Mathilde Raynal<br>(SPRING Lab; EPFL, Switzerland), and Carmela Troncoso (SPRING Lab;<br>EPFL, Switzerland)                                                                                     | 418 |

#### Session 2C: SMC

| Vectorized Batch Private Information Retrieval<br>Muhammad Haris Mughees (University of Illinois Urbana-Champaign, USA)<br>and Ling Ren (University of Illinois Urbana-Champaign, USA)                                                                                                                                                                                 | 437 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| RoFL: Robustness of Secure Federated Learning<br>Hidde Lycklama (ETH Zurich), Lukas Burkhalter (ETH Zurich), Alexander<br>Viand (ETH Zurich), Nicolas Küchler (ETH Zurich), and Anwar Hithnawi<br>(ETH Zurich)                                                                                                                                                         | 453 |
| <ul> <li>Flamingo: Multi-Round Single-Server Secure Aggregation with Applications to Private</li> <li>Federated Learning</li></ul>                                                                                                                                                                                                                                     | 477 |
| SoK: Cryptographic Neural-Network Computation<br>Lucien K. L. Ng (Georgia Institute of Technology, USA) and Sherman S.<br>M. Chow (The Chinese University of Hong Kong, Hong Kong)                                                                                                                                                                                     | 497 |
| FLUTE: Fast and Secure Lookup Table Evaluations<br>Andreas Brüggemann (Technical University of Darmstadt), Robin Hundt<br>(Technical University of Darmstadt), Thomas Schneider (Technical<br>University of Darmstadt), Ajith Suresh (Technical University of<br>Darmstadt), and Hossein Yalame (Technical University of Darmstadt)                                    | 515 |
| Bicoptor: Two-round Secure Three-party Non-linear Computation without Preprocessing for<br>Privacy-preserving Machine Learning<br>Lijing Zhou (Huawei Technology, China), Ziyu Wang (Huawei Technology,<br>China), Hongrui Cui (Shanghai Jiao Tong University, China), Qingrui<br>Song (Huawei Technology, China), and Yu Yu (Shanghai Jiao Tong<br>University, China) | 534 |

## Session 3A: Authentication

| Investigating the Password Policy Practices of Website Administrators                                                                                                                                                          | 552 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| "In Eighty Percent of the Cases, I Select the Password for Them": Security and Privacy<br>Challenges, Advice, and Opportunities at Cybercafes in Kenya                                                                         | 570 |
| Perceptions of Distributed Ledger Technology Key Management – An Interview Study with<br>Finance Professionals                                                                                                                 | N/A |
| Towards a Rigorous Statistical Analysis of Empirical Password Datasets                                                                                                                                                         | 606 |
| Confident Monte Carlo: Rigorous Analysis of Guessing Curves for Probabilistic Password<br>Models<br>Peiyuan Liu (Purdue University, USA), Jeremiah Blocki (Purdue<br>University, USA), and Wenjie Bai (Purdue University, USA) | 626 |
| Not Yet Another Digital ID: Privacy-preserving Humanitarian Aid Distribution                                                                                                                                                   | 645 |

# Session 3B: Machine learning backdoors

| Disguising Attacks with Explanation-Aware Backdoors<br>Maximilian Noppel (KASTEL Security Research Labs, Karlsruhe Institute<br>of Technology, Germany), Lukas Peter (KASTEL Security Research Labs,<br>Karlsruhe Institute of Technology, Germany), and Christian Wressnegger<br>(KASTEL Security Research Labs, Karlsruhe Institute of Technology,<br>Germany) | 664 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Selective Amnesia: On Efficient, High-Fidelity and Blind Suppression of Backdoor Effects                                                                                                                                                                                                                                                                         |     |
| in Trojaned Machine Learning Models                                                                                                                                                                                                                                                                                                                              | 682 |
| Rui Zhu (Indiana University Bloomington), Di Tang (Indiana University                                                                                                                                                                                                                                                                                            |     |
| Bloomington), Siyuan Tang (Indiana University Bloomington), XiaoFeng                                                                                                                                                                                                                                                                                             |     |
| Wang (Indiana University Bloomington), and Haixu Tang (Indiana                                                                                                                                                                                                                                                                                                   |     |
| University Bloomington)                                                                                                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                                                                                                                                  |     |

| AI-Guardian: Defeating Adversarial Attacks using Backdoors<br>Hong Zhu (Chinese Academy of Sciences, China; University of Chinese<br>Academy of Sciences, China), Shengzhi Zhang (Boston University, USA),<br>and Kai Chen (Chinese Academy of Sciences, China; University of<br>Chinese Academy of Sciences, China)                                                                                                                                                                                                                                                                                                                                                                              | 701 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Jigsaw Puzzle: Selective Backdoor Attack to Subvert Malware Classifiers<br>Limin Yang (University of Illinois at Urbana-Champaign), Zhi Chen<br>(University of Illinois at Urbana-Champaign), Jacopo Cortellazzi<br>(King's College London and University College London), Feargus<br>Pendlebury (University College London), Kevin Tu (University of<br>Illinois at Urbana-Champaign), Fabio Pierazzi (King's College London),<br>Lorenzo Cavallaro (University College London), and Gang Wang<br>(University of Illinois at Urbana-Champaign)                                                                                                                                                   | 719 |
| BayBFed: Bayesian Backdoor Defense for Federated Learning<br>Kavita Kumari (Technical University of Darmstadt, Germany), Phillip<br>Rieger (Technical University of Darmstadt, Germany), Hossein<br>Fereidooni (Technical University of Darmstadt, Germany), Murtuza<br>Jadliwala (The University of Texas at San Antonio, United States), and<br>Ahmad-Reza Sadeghi (Technical University of Darmstadt, Germany)                                                                                                                                                                                                                                                                                 | 737 |
| REDEEM MYSELF: Purifying Backdoors in Deep Learning Models using Self Attention<br>Distillation<br>Xueluan Gong (School of Computer Science, Wuhan University, China),<br>Yanjiao Chen (College of Electrical Engineering, Zhejiang University,<br>China), Wang Yang (School of Cyber Science and Engineering, Wuhan<br>University, China), Qian Wang (School of Cyber Science and<br>Engineering, Wuhan University, China), Yuzhe Gu (School of Cyber<br>Science and Engineering, Wuhan University, China), Huayang Huang<br>(School of Cyber Science and Engineering, Wuhan University, China),<br>and Chao Shen (School of Cyber Science and Engineering, Xi'an Jiaotong<br>University, China) | 755 |

# Session 3C: Cryptographic protocols

| Threshold BBS+ Signatures for Distributed Anonymous Credential Issuance<br>Jack Doerner (Technion), Yashvanth Kondi (Aarhus University), Eysa Lee<br>(Northeastern University), Abhi Shelat (Northeastern University), and<br>LaKyah Tyner (Northeastern University) | .773 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| zk-creds: Flexible Anonymous Credentials from zkSNARKs and Existing Identity<br>Infrastructure                                                                                                                                                                       | .790 |
| Michael Rosenberg (University of Maryland), Jacob White (Purdue<br>University), Christina Garman (Purdue University), and Ian Miers<br>(University of Maryland)                                                                                                      |      |
| Private Access Control for Function Secret Sharing<br>Sacha Servan-Schreiber (MIT CSAIL), Simon Beyzerov (MIT PRIMES), Eli<br>Yablon (MIT PRIMES), and Hyojae Park (MIT PRIMES)                                                                                      | 809  |
| MPCAuth: Multi-factor Authentication for Distributed-trust Systems<br>Sijun Tan (UC Berkeley), Weikeng Chen (UC Berkeley), Ryan Deng (UC<br>Berkeley), and Raluca Ada Popa (UC Berkeley)                                                                             | 829  |

#### **Session 4A: Biometric security**

| SoK: Anti-Facial Recognition Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Spoofing Real-world Face Authentication Systems through Optical Synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| <ul> <li>ImU: Physical Impersonating Attack for Face Recognition System with Natural Style Changes 899<br/>Shengwei An (Purdue University, USA), Yuan Yao (Nanjing University,<br/>China), Qiuling Xu (Purdue University, USA), Shiqing Ma (Rutgers<br/>University, USA), Guanhong Tao (Purdue University, USA), Siyuan Cheng<br/>(Purdue University, USA), Kaiyuan Zhang (Purdue University, USA),<br/>Yingqi Liu (Purdue University, USA), Guangyu Shen (Purdue University,<br/>USA), Ian Kelk (Clarifai Inc., USA), and Xiangyu Zhang (Purdue<br/>University, USA)</li> </ul> |   |
| DepthFake: Spoofing 3D Face Authentication with a 2D Photo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • |
| <ul> <li>Understanding the (In)Security of Cross-side Face Verification Systems in Mobile Apps: A</li> <li>System Perspective</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Breaking Security-Critical Voice Authentication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |

#### Session 4B: Web security

| <ul> <li>Fashion Faux Pas: Implicit Stylistic Fingerprints for Bypassing Browsers'</li> <li>Anti-Fingerprinting Defenses</li></ul>              |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Polakis (University of Illinois Chicago, United States)</li> <li>Robust Multi-tab Website Fingerprinting Attacks in the Wild</li></ul> |
| Only Pay for What You Leak: Leveraging Sandboxes for a Minimally Invasive Browser<br>Fingerprinting Defense                                     |
| It's (DOM) Clobbering Time: Attack Techniques, Prevalence, and Defenses                                                                         |
| Scaling JavaScript Abstract Interpretation to Detect and Exploit Node.js Taint-style<br>Vulnerability                                           |

# Session 4C: Cryptographic proof techniques

| <ul> <li>Sound Verification of Security Protocols: From Design to Interoperable Implementations</li></ul> | 177 |
|-----------------------------------------------------------------------------------------------------------|-----|
| Typing High-Speed Cryptography against Spectre v1                                                         | 94  |
| Less is more: refinement proofs for probabilistic proofs                                                  | 12  |

| <ul> <li>OWL: Compositional Verification of Security Protocols via an Information-Flow Type System1<br/>Joshua Gancher (Carnegie Mellon University, USA), Sydney Gibson<br/>(Carnegie Mellon University, USA), Pratap Singh (Carnegie Mellon<br/>University, USA), Samvid Dharanikota (Carnegie Mellon University,<br/>USA), and Bryan Parno (Carnegie Mellon University, USA)</li> </ul> | 130 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| AUC: Accountable Universal Composability                                                                                                                                                                                                                                                                                                                                                  | 148 |
| High-Order Masking of Lattice Signatures in Quasilinear Time                                                                                                                                                                                                                                                                                                                              | 168 |

## Session 5A: Software security

| Practical Timing Side-Channel Attacks on Memory Compression                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>TEEzz: Fuzzing Trusted Applications on COTS Android Devices</li></ul>                                                       |
| <ul> <li>Half&amp;Half: Demystifying Intel's Directional Branch Predictors for Fast, Secure Partitioned</li> <li>Execution</li></ul> |
| <ul> <li>Improving Developers' Understanding of Regex Denial of Service Tools through Anti-Patterns and Fix Strategies</li></ul>     |
| Practical Program Modularization with Type-Based Dependence Analysis                                                                 |
| <ul> <li>WarpAttack: Bypassing CFI through Compiler-Introduced Double-Fetches</li></ul>                                              |

## Session 5B: Machine learning assurance

| SoK: Certified Robustness for Deep Neural Networks                                                                                                                        | 289 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| RAB: Provable Robustness Against Backdoor Attacks                                                                                                                         | 311 |
| ObjectSeeker: Certifiably Robust Object Detection against Patch Hiding Attacks via<br>Patch-agnostic Masking                                                              | 329 |
| <ul> <li>PublicCheck: Public Integrity Verification for Services of Run-time Deep Models</li></ul>                                                                        | 348 |
| FedRecover: Recovering from Poisoning Attacks in Federated Learning using Historical<br>Information                                                                       | 366 |
| Xiaoyu Cao (Duke University), Jinyuan Jia (Duke University), Zaixi<br>Zhang (University of Science and Technology of China), and Neil<br>Zhenqiang Gong (Duke University) |     |
| <ul> <li>On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against Realistic</li> <li>Adversarial Attacks</li></ul>                                     | 384 |

## Session 5C: Applied cryptography

| Rethinking Searchable Symmetric Encryption                             | 1401 |
|------------------------------------------------------------------------|------|
| Rethinking Searchable Symmetric Encryption                             |      |
| Switzerland), and Sikhar Patranabis (IBM Research, India)              |      |
| Private Collaborative Data Cleaning via Non-Equi PSI1                  | 1419 |
| Erik-Oliver Blass (Airbus, Germany) and Florian Kerschbaum (University |      |
| of Waterloo, Canada)                                                   |      |

| SPHINCS+C: Compressing SPHINCS+ With (Almost) No Cost                                                                                                                                                                                                                                                                                                                                                            | 435 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Threshold Signatures in the Multiverse       14         Leemon Baird (Swirlds Labs), Sanjam Garg (University of California,       14         Berkeley&NTT Research), Abhishek Jain (Johns Hopkins University),       17         Pratyay Mukherjee (Supra Oracles), Rohit Sinha (Meta), Mingyuan Wang       (University of California, Berkeley), and Yinuo Zhang (University of California, Berkeley)            | 454 |
| FIDO2, CTAP 2.1, and WebAuthn 2: Provable Security and Post-Quantum Instantiation                                                                                                                                                                                                                                                                                                                                | 471 |
| Token meets Wallet: Formalizing Privacy and Revocation for FIDO2       14         Lucjan Hanzlik (CISPA Helmholtz Center for Information Security,       14         Germany), Julian Loss (CISPA Helmholtz Center for Information       16         Security, Germany), and Benedikt Wagner (CISPA Helmholtz Center for       17         Information Security, Germany and Saarland University, Germany)       17 | 491 |

# Session 6A: Software supply chains

| SoK: Taxonomy of Attacks on Open-Source Software Supply Chains                             | 509 |
|--------------------------------------------------------------------------------------------|-----|
| It's like flossing your teeth: On the Importance and Challenges of Reproducible Builds for |     |
| Software Supply Chain Security                                                             | 527 |
| Marcel Fourné (Max Planck Institute for Security and Privacy, Bochum,                      |     |
| Germany), Dominik Wermke (CISPA Helmholtz Center for Information                           |     |
| Security, Germany), William Enck (North Carolina State University,                         |     |
| Raleigh, North Carolina, USA), Sascha Fahl (CISPA Helmholtz Center for                     |     |
| Information Security, Germany), and Yasemin Acar (Paderborn                                |     |
| University, Germany, George Washington University, USA)                                    |     |
| "Always Contribute Back": A Qualitative Study on Security Challenges of the Open Source    |     |
|                                                                                            | 545 |
| Dominik Wermke (CISPA Helmholtz Center for Information Security), Jan                      |     |
| H. Klemmer (Leibniz University Hannover), Noah Wöhler (CISPA Helmholtz                     |     |
| Center for Information Security), Juliane Schmüser (CISPA Helmholtz                        |     |
| Center for Information Security), Harshini Sri Ramulu (Paderborn                           |     |
| University), Yasemin Acar (Paderborn University, George Washington                         |     |
| University), and Sascha Fahl (CISPA Helmholtz Center for Information                       |     |
| Security, Leibniz University Hannover)                                                     |     |

| Continuous Intrusion: Characterizing the Security of Continuous Integration Services |
|--------------------------------------------------------------------------------------|
| Yacong Gu (Qi An Xin Technology Research Institute, China), Lingyun                  |
| Ying (Qi An Xin Technology Research Institute, China), Huajun Chai (Qi               |
| An Xin Technology Research Institute, China), Chu Qiao (University of                |
| Delaware, USA), Haixin Duan (Tsinghua University; Tsinghua                           |
| University-QI-ANXIN Group JCNS, China), and Xing Gao (University of                  |
| Delaware, USA)                                                                       |
| Investigating Package Related Security Threats in Software Registries                |
| Yacong Gu (QI-ANXIN Technology Research Institute, China), Lingyun                   |
| Ying (QI-ANXIN Technology Research Institute, China), Yingyuan Pu                    |
| (Ocean University of China; QI-ANXIN Technology Research Institute,                  |
| China), Xiao Hu (QI-ANXIN Technology Research Institute, China),                     |
| Huajun Chai (QI-ANXIN Technology Research Institute, China), Ruimin                  |
| Wang (Southeast University; QI-ANXIN Technology Research Institute,                  |
| China), Xing Gao (University of Delaware, USA), and Haixin Duan                      |
| (Tsinghua University; Tsinghua University-QI-ANXIN Group JCNS, China)                |

#### Session 6B: ML attacks

| ShadowNet: A Secure and Efficient On-device Model Inference System for Convolutional<br>Neural Networks                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Deepfake Text Detection: Limitations and Opportunities</li></ul>                                                                   |
| <ul> <li>StyleFool: Fooling Video Classification Systems via Style Transfer</li></ul>                                                       |
| <ul> <li>GeeSolver: A Generic, Efficient, and Effortless Solver with Self-Supervised Learning for</li> <li>Breaking Text Captchas</li></ul> |

#### Session 6C: Rowhammer and spectre

| REGA: Scalable Rowhammer Mitigation with Refresh-Generating Activations                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSI:Rowhammer - Cryptographic Security and Integrity against Rowhammer                                                                                                                                                                                                                                |
| Jolt: Recovering TLS Signing Keys via Rowhammer Faults                                                                                                                                                                                                                                                |
| Hide and Seek with Spectres: Efficient discovery of speculative information leaks with         random testing       1737         Oleksii Oleksenko (Microsoft Research), Marco Guarnieri (IMDEA         Software Institute), Boris Kopf (Microsoft Research), and Mark         Silberstein (Technion) |
| <ul> <li>Spectre Declassified: Reading from the Right Place at the Wrong Time</li></ul>                                                                                                                                                                                                               |

## Session 7A: Physical channel attacks

| <ul> <li>Volttack: Control IoT Devices by Manipulating Power Supply Voltage</li></ul>                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inducing Wireless Chargers to Voice Out for Inaudible Command Attacks                                                                                                                                                                                                                                                                                                                                                                                                  |
| mmSpoof: Resilient Spoofing of Automotive Millimeter-wave Radars using Reflect Array                                                                                                                                                                                                                                                                                                                                                                                   |
| PLA-LiDAR: Physical Laser Attacks against LiDAR-based 3D Object Detection in Autonomous<br>Vehicle                                                                                                                                                                                                                                                                                                                                                                     |
| Zizhi Jin (Zhejiang University), Ji Xiaoyu (Zhejiang University),<br>Yushi Cheng (Tsinghua University), Bo Yang (Zhejiang University), Chen<br>Yan (Zhejiang University), and Wenyuan Xu (Zhejiang University)                                                                                                                                                                                                                                                         |
| mmEcho: A mmWave-based Acoustic Eavesdropping Method                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Side Eye: Characterizing the Limits of POV Acoustic Eavesdropping from Smartphone Cameras</li> <li>with Rolling Shutters and Movable Lenses</li> <li>Yan Long (University of Michigan, USA), Pirouz Naghavi (University of</li> <li>Florida, USA), Blas Kojusner (University of Florida, USA), Kevin</li> <li>Butler (University of Florida, USA), Sara Rampazzi (University of</li> <li>Florida, USA), and Kevin Fu (University of Michigan, USA)</li> </ul> |

#### Session 7B: ML Security and Privacy

| ADI: Adversarial Dominating Inputs in Vertical Federated Learning Systems                   | 1875 |
|---------------------------------------------------------------------------------------------|------|
| 3DFed: Adaptive and Extensible Framework for Covert Backdoor Attack in Federated Learning 1 | 1893 |
| Haoyang LI (The Hong Kong Polytechnic University), Qingqing Ye (The                         |      |
| Hong Kong Polytechnic University), Haibo Hu (The Hong Kong Polytechnic                      |      |
| University), Jin Li (Guangzhou University), Leixia Wang (Renmin                             |      |
| University of China), Chengfang Fang (Huawei International,                                 |      |
|                                                                                             |      |

Singapore), and Jie Shi (Huawei International, Singapore)

| <ul> <li>Scalable and Privacy-Preserving Federated Principal Component Analysis</li></ul>                                                                                                                                                                                                                                                                                              | 3 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>Private, Efficient, and Accurate: Protecting Models Trained by Multi-party Learning with</li> <li>Differential Privacy</li> <li>Wenqiang Ruan (Fudan University, China), Mingxin Xu (Fudan University,</li> <li>China), Wenjing Fang (Ant Group, China), Li Wang (Ant Group, China),</li> <li>Lei Wang (Ant Group, China), and Weili Han (Fudan University, China)</li> </ul> | 5 |
| Spectral-DP: Differentially Private Deep Learning through Spectral Perturbation and<br>Filtering                                                                                                                                                                                                                                                                                       | ł |
| ELSA: Secure Aggregation for Federated Learning with Malicious Actors                                                                                                                                                                                                                                                                                                                  | l |

#### **Session 7C: Human factors**

| No One Drinks From the Firehose: How Organizations Filter and Prioritize Vulnerability<br>Information                                        | 0 |
|----------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>Vulnerability Discovery for All: Experiences of Marginalization in Vulnerability Discovery</li></ul>                                | 7 |
| "We are a startup to the core": A qualitative interview study on the security and privacy development practices in Turkish software startups | 5 |

| "How technical do you get? I'm an English teacher": Teaching and Learning Cybersecurity |    |
|-----------------------------------------------------------------------------------------|----|
| and AI Ethics in High School                                                            | 52 |
| Zachary Kilhoffer (University of Illinois at Urbana-Champaign, USA),                    |    |
| Zhixuan Zhou (University of Illinois at Urbana-Champaign, USA),                         |    |
| Firmiana Wang (University of Illinois Laboratory High School, USA),                     |    |
| Fahad Tamton (University of Illinois at Urbana-Champaign, USA), Yun                     |    |
| Huang (University of Illinois at Urbana-Champaign, USA), Pilyoung Kim                   |    |
| (University of Denver, USA), Tom Yeh (University of Colorado Boulder,                   |    |
| USA), and Yang Wang (University of Illinois at Urbana-Champaign, USA)                   |    |
| Skilled or Gullible? Gender Stereotypes Related to Computer Security and Privacy        | 50 |
| Everybody's Got ML, Tell Me What Else You Have: Practitioners' Perception of ML-Based   |    |
| Security Tools and Explanations                                                         | 98 |
| Jaron Mink (University of Illinois at Urbana-Champaign), Hadjer                         |    |
| Benkraouda (University of Illinois at Urbana-Champaign), Limin Yang                     |    |
| (University of Illinois at Urbana-Champaign), Arridhana Ciptadi                         |    |
| (Truera), Ali Ahmadzadeh (Blue Hexagon), Daniel Votipka (Tufts                          |    |
| University), and Gang Wang (University of Illinois at                                   |    |
| Urbana-Champaign)                                                                       |    |
|                                                                                         |    |

## Session 8A: Low-level software security

| Precise Detection of Kernel Data Races with Probabilistic Lockset Analysis                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEGFUZZ: Segmentizing Thread Interleaving to Discover Kernel Concurrency Bugs through<br>Fuzzing                                                                                                                                                                                                    |
| Dae R. Jeong (School of Computing, KAIST), Byoungyoung Lee (Department<br>of Electrical and Computer Engineering, Seoul National University),<br>Insik Shin (School of Computing, KAIST), and Youngjin Kwon (School of<br>Computing, KAIST)                                                         |
| AEM: Facilitating Cross-Version Exploitability Assessment of Linux Kernel Vulnerabilities 2122<br>Zheyue Jiang (Fudan University), Yuan Zhang (Fudan University), Jun Xu<br>(University of Utah), Xinqian Sun (Fudan University), Zhuang Liu<br>(Fudan University), and Min Yang (Fudan University) |
| When Top-down Meets Bottom-up: Detecting and Exploiting Use-After-Cleanup Bugs in Linux<br>Kernel                                                                                                                                                                                                   |
| Lin Ma (Zhejiang University, China), Duoming Zhou (Zhejiang                                                                                                                                                                                                                                         |
| University, China), Hanjie Wu (Carnegie Mellon University, USA), Yajin                                                                                                                                                                                                                              |
| Zhou (Zhejiang University, China), Rui Chang (Zhejiang University,                                                                                                                                                                                                                                  |
| China), Hao Xiong (Zhejiang University, China), Lei Wu (Zhejiang                                                                                                                                                                                                                                    |
| University, China), and Kui Ren (Zhejiang University, China)                                                                                                                                                                                                                                        |

RSFuzzer: Discovering Deep SMI Handler Vulnerabilities in UEFI Firmware with Hybrid

## Session 8B: Privacy and covert channels

| A Theory to Instruct Differentially-Private Learning via Clipping Bias Reduction                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------|
| Continual Observation under User-level Differential Privacy                                                                            |
| Locally Differentially Private Frequency Estimation Based on Convolution Framework                                                     |
| TELEPATH: A Minecraft-based Covert Communication System       2223         Zhen Sun (Cornell Tech) and Vitaly Shmatikov (Cornell Tech) |

#### Session 8C: Side-channel attacks

| SQUIP: Exploiting the Scheduler Queue Contention Side Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2256 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Scatter and Split Securely: Defeating Cache Contention and Occupancy Attacks<br>Lukas Giner (Graz University of Technology, Austria), Stefan<br>Steinegger (Graz University of Technology, Austria), Antoon Purnal (Ku<br>Leuven, Belgium), Maria Eichlseder (Graz University of Technology,<br>Austria), Thomas Unterluggauer (Intel Corporation), Stefan Mangard<br>(Graz University of Technology, Austria), and Daniel Gruss (Graz<br>University of Technology, Austria)                                                                                                           | 2273 |
| DEVIOUS: Device-Driven Side-Channel Attacks on the IOMMU<br>Taehun Kim (Korea University, Republic of Korea), Hyeongjin Park<br>(Korea University, Republic of Korea), Seokmin Lee (Korea University,<br>Republic of Korea), Seunghee Shin (The State University of New York at<br>Binghamton, USA), Junbeom Hur (Korea University, Republic of Korea),<br>and Youngjoo Shin (Korea University, Republic of Korea)                                                                                                                                                                     | 2288 |
| <ul> <li>DVFS Frequently Leaks Secrets: Hertzbleed Attacks Beyond SIKE, Cryptography, and CPU-Only Data</li> <li>Yingchen Wang (University of Texas at Austin), Riccardo Paccagnella (University of Illinois Urbana-Champaign, USA), Alan Wandke (University of Illinois Urbana-Champaign), Zhao Gang (University of Texas at Austin), Grant Garrett-Grossman (University of Illinois Urbana-Champaign), Christopher W. Fletcher (University of Illinois Urbana-Champaign), David Kohlbrenner (University of Washington), and Hovav Shacham (University of Texas at Austin)</li> </ul> | 2306 |
| A Security RISC: Microarchitectural Attacks on Hardware RISC-V CPUs<br>Lukas Gerlach (CISPA Helmholtz Center for Information Security),<br>Daniel Weber (CISPA Helmholtz Center for Information Security), Ruiyi<br>Zhang (CISPA Helmholtz Center for Information Security), and Michael<br>Schwarz (CISPA Helmholtz Center for Information Security)                                                                                                                                                                                                                                  | 2321 |

# Session 9A: Model-based software security

| Examining Zero-Shot Vulnerability Repair with Large Language Models                                        |
|------------------------------------------------------------------------------------------------------------|
| Callee: Recovering Call Graphs for Binaries with Transfer and Contrastive Learning                         |
| XFL: Naming Functions in Binaries with Extreme Multi-label Learning                                        |
| D-ARM: Disassembling ARM Binaries by Lightweight Superset Instruction Interpretation and<br>Graph Modeling |
| GraphSPD: Graph-Based Security Patch Detection with Enriched Code Semantics                                |
| Effective ReDoS Detection by Principled Vulnerability Modeling and Exploit Generation                      |

## Session 9B: Blockchain 2

| <ul> <li>SoK: Decentralized Finance (DeFi) Incidents</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BlindHub: Bitcoin-Compatible Privacy-Preserving Payment Channel Hubs Supporting Variable       2462         Amounts       2462         Xianrui Qin (The University of Hong Kong), Shimin Pan (The University       2462         of Hong Kong), Arash Mirzaei (Monash University), Zhimei Sui (Monash       2462         University), Oguzhan Ersoy (Radboud University and Delft University of       2462         Technology), Amin Sakzad (Monash University), Muhammed Esgin (Monash       2462         University and CSIRO's Data61), Joseph K. Liu (Monash University),       362         Jiangshan Yu (Monash University), and Tsz Hon Yuen (The University of       363         Hong Kong)       363 |
| Optimistic Fast Confirmation While Tolerating Malicious Majority in Blockchains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Clockwork Finance: Automated Analysis of Economic Security in Smart Contracts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tyr: Finding Consensus Failure Bugs in Blockchain System with Behaviour Divergent Model 2517<br>Yuanliang Chen (Tsinghua University), Fuchen Ma (Tsinghua University),<br>Yuanhang Zhou (Tsinghua University), Yu Jiang (Tsinghua University),<br>Ting Chen (University of Electronic Science and Technology of China),<br>and Jiaguang Sun (Tsinghua University)                                                                                                                                                                                                                                                                                                                                           |
| Leaking Arbitrarily Many Secrets: Any-out-of-Many Proofs and Applications to RingCT<br>Protocols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## Session 9C: Malware and malicious sites

| Could you clean up the Internet with a Pit of Tar? Investigating tarpit feasibility on<br>Internet worms<br>Harm Griffioen (Hasso Plattner Institute for Digital Engineering,<br>University of Potsdam) and Christian Doerr (Hasso Plattner Institute<br>for Digital Engineering, University of Potsdam) | 2551 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Beyond Phish: Toward Detecting Fraudulent e-Commerce Websites at Scale<br>Marzieh Bitaab (Arizona State University), Haehyun Cho (Soongsil                                                                                                                                                               | 2566 |
| University), Adam Oest (PayPal, Inc.), Zhuoer Lyu (Arizona State<br>University), Wei Wang (Palo Alto Networks), Jorij Abraham (Scam                                                                                                                                                                      |      |
| Adviser), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona                                                                                                                                                                                                                                    |      |
| State University), Yan Shoshitaishvili (Arizona State University), and                                                                                                                                                                                                                                   |      |
| Adam Doupé (Arizona State University)                                                                                                                                                                                                                                                                    |      |

| Limits of I/O Based Ransomware Detection: An Imitation Based Attack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From Grim Reality to Practical Solution: Malware Classification in Real-World Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SoK: History is a Vast Early Warning System: Auditing the Provenance of System Intrusions 2620<br>Muhammad Adil Inam (University of Illinois at Urbana-Champaign),<br>Yinfang Chen (University of Illinois at Urbana-Champaign), Akul Goyal<br>(University of Illinois at Urbana-Champaign), Jason Liu (University of<br>Illinois at Urbana-Champaign), Jaron Mink (University of Illinois at<br>Urbana-Champaign), Noor Michael (University of Illinois at<br>Urbana-Champaign), Sneha Gaur (University of Illinois at<br>Urbana-Champaign), Adam Bates (University of Illinois at<br>Urbana-Champaign), and Wajih Ul Hassan (University of Virginia) |
| Collaborative Ad Transparency: Promises and Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Session 10A: Fuzzing

| <ul> <li>Toss a Fault to Your Witcher: Applying Grey-box Coverage-Guided Mutational Fuzzing to</li> <li>Detect SQL and Command Injection Vulnerabilities</li></ul> | .658 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ul> <li>UTOPIA: Automatic Generation of Fuzz Driver using Unit Tests</li></ul>                                                                                    | 676  |
| SelectFuzz: Efficient Directed Fuzzing with Selective Path Exploration                                                                                             | 693  |

| Finding Specification Blind Spots via Fuzz Testing                                                                                                                                                                                                                                                                                                      | ; |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>ODDFUZZ: Discovering Java Deserialization Vulnerabilities via Structure-Aware Directed</li> <li>Greybox Fuzzing</li></ul>                                                                                                                                                                                                                      |   |
| Session 10B: Web security                                                                                                                                                                                                                                                                                                                               |   |
| The Leaky Web: Automated Discovery of Cross-Site Information Leaks in Browsers and the Web. 2744<br>Jannis Rautenstrauch (CISPA Helmholtz Center for Information Security,<br>Germany), Giancarlo Pellegrino (CISPA Helmholtz Center for Information<br>Security, Germany), and Ben Stock (CISPA Helmholtz Center for<br>Information Security, Germany) |   |
| WebSpec: Towards Machine-Checked Analysis of Browser Security Mechanisms                                                                                                                                                                                                                                                                                |   |
| Detection of Inconsistencies in Privacy Practices of Browser Extensions                                                                                                                                                                                                                                                                                 | ) |
| TeSec: Accurate Server-side Attack Investigation for Web Applications                                                                                                                                                                                                                                                                                   | , |
| RuleKeeper: GDPR-Aware Personal Data Compliance for Web Frameworks                                                                                                                                                                                                                                                                                      | , |

## Session 10C: Human factors 2

| Characterizing Everyday Misuse of Smart Home Devices<br>Phoebe Moh (University of Maryland, USA), Pubali Datta (University of<br>Illinois Urbana-Champaign, USA), Noel Warford (University of Maryland,<br>USA), Adam Bates (University of Illinois Urbana-Champaign, USA),<br>Nathan Malkin (University of Maryland, USA), and Michelle Mazurek<br>(University of Maryland, USA)                                                                                                                                         | . 2835 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| "It's up to the Consumer to be Smart": Understanding the Security and Privacy Attitudes of<br>Smart Home Users on Reddit<br>Jingjie Li (University of Wisconsin-Madison, USA), Kaiwen Sun<br>(University of Michigan, USA), Brittany Skye Huff (University of<br>Wisconsin-Madison, USA), Anna Marie Bierley (University of<br>Wisconsin-Madison, USA), Younghyun Kim (University of<br>Wisconsin-Madison, USA), Florian Schaub (University of Michigan, USA),<br>and Kassem Fawaz (University of Wisconsin-Madison, USA) | 2850   |
| User Perceptions and Experiences with Smart Home Updates<br>Julie Haney (National Institute of Standards and Technology, USA) and<br>Susanne Furman (National Institute of Standards and Technology, USA)                                                                                                                                                                                                                                                                                                                 | . 2867 |
| Design and Evaluation of Inclusive Email Security Indicators for People with Visual<br>Impairments                                                                                                                                                                                                                                                                                                                                                                                                                        | . 2885 |
| <ul> <li>When and Why Do People Want Ad Targeting Explanations? Evidence from a Four-Week,</li> <li>Mixed-Methods Field Study</li></ul>                                                                                                                                                                                                                                                                                                                                                                                   | 2903   |
| Hao-Ping Lee (Carnegie Mellon University, USA), Jacob Logas (Georgia<br>Institute of Technology, USA), Stephanie Yang (Georgia Institute of<br>Technology, USA), Zhouyu Li (North Carolina State University, USA),<br>Natã Barbosa (University of Illinois at Urbana-Champaign, USA), Yang<br>Wang (University of Illinois at Urbana-Champaign, USA), and Sauvik Das                                                                                                                                                      |        |

## Session 11A: Software isolation

| SecureCells: A Secure Compartmentalized Architecture<br>Atri Bhattacharyya (EPFL), Florian Hofhammer (EPFL), Yuanlong Li<br>(EPFL), Siddharth Gupta (EPFL), Andres Sanchez (EPFL), Babak Falsafi<br>(EPFL), and Mathias Payer (EPFL)                                                                                                                                                                | 2921 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ul> <li>WaVe: A Verifiably Secure WebAssembly Sandboxing Runtime</li> <li>Evan Johnson (UC San Diego, USA), Evan Laufer (Stanford, USA), Zijie</li> <li>Zhao (UIUC, USA), Dan Gohman (Fastly Labs, USA), Shravan Narayan (UC</li> <li>San Diego, USA), Stefan Savage (UC San Diego, USA), Deian Stefan (UC</li> <li>San Diego, USA), and Fraser Brown (Carnegie Mellon University, USA)</li> </ul> | 2940 |

| uSWITCH: Fast Kernel Context Isolation with Implicit Context Switches                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Flow and Pointer Integrity Enforcement in a Secure Tagged Architecture                                                                                                                                           |
| EC: Embedded Systems Compartmentalization via Intra-Kernel Isolation                                                                                                                                                     |
| Low-Cost Privilege Separation with Compile Time Compartmentalization for Embedded Systems<br>3008<br><i>Arslan Khan (Purdue University), Dongyan Xu (Purdue University), and</i><br><i>Dave Tian (Purdue University)</i> |

## Session 11B: IoT security

| One Key to Rule Them All: Secure Group Pairing for Heterogeneous IoT Devices                    |
|-------------------------------------------------------------------------------------------------|
| Optimistic Access Control for the Smart Home                                                    |
| Protected or Porous: A Comparative Analysis of Threat Detection Capability of IoT<br>Safeguards |
| LazyTAP: On-Demand Data Minimization for Trigger-Action Applications                            |
| Blue's Clues: Practical Discovery of Non-Discoverable Bluetooth Devices                         |

#### Session 11C: Network security

| IPvSeeYou: Exploiting Leaked Identifiers in IPv6 for Street-Level Geolocation                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From 5G Sniffing to Harvesting Leakages of Privacy-Preserving Messengers                                                                                                                                                                                                                                                                                           |
| Man-in-the-Middle Attacks without Rogue AP: When WPAs Meet ICMP Redirects                                                                                                                                                                                                                                                                                          |
| Mew: Enabling Large-Scale and Dynamic Link-Flooding Defenses on Programmable Switches 3178<br>Huancheng Zhou (Texas A&M University), Sungmin Hong (Texas A&M<br>University), Yangyang Liu (The Hong Kong Polytechnic University),<br>Xiapu Luo (The Hong Kong Polytechnic University), Weichao Li (Peng<br>Cheng Laboratory), and Guofei Gu (Texas A&M University) |
| PCspooF: Compromising the Safety of Time-Triggered Ethernet                                                                                                                                                                                                                                                                                                        |
| <ul> <li>BLEDiff : Scalable and Property-Agnostic Noncompliance Checking for BLE Implementations 3209</li> <li>Imtiaz Karim (Purdue University), Abdullah Al Ishtiaq (Pennsylvania</li> <li>State University), Syed Rafiul Hussain (Pennsylvania State</li> <li>University), and Elisa Bertino (Purdue University)</li> </ul>                                      |

#### Session 12A: Bug finding

| VIDEZZO: Dependency-aware Virtual Device Fuzzing<br>Qiang Liu (Zhejiang University, China; EPFL, Switzerland), Flavio<br>Toffalini (EPFL, Switzerland), Yajin Zhou (Zhejiang University,<br>China), and Mathias Payer (EPFL, Switzerland) | . 3228 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| DEVFUZZ: Automatic Device Model-Guided Device Driver Fuzzing<br>Yilun Wu (Stony Brook University), Tong Zhang (Samsung Electronics),                                                                                                      | . 3246 |
|                                                                                                                                                                                                                                           |        |
| DEVFUZZ: Automatic Device Model-Guided Device Driver Fuzzing                                                                                                                                                                              | . 3246 |

| SyzDescribe: Principled, Automated, Static Generation of Syscall Descriptions for Kernel         Drivers |
|----------------------------------------------------------------------------------------------------------|
| QueryX: Symbolic Query on Decompiled Code for Finding Bugs in COTS Binaries                              |
| PyFET: Forensically Equivalent Transformation for Python Binary Decompilation                            |

#### Session 12B: Election and device recycling security

| Adaptive Risk-Limiting Comparison Audits                                                                    |  |
|-------------------------------------------------------------------------------------------------------------|--|
| Blue Is the New Black (Market): Privacy Leaks and Re-Victimization from Police-Auctioned         Cellphones |  |
| No Privacy in the Electronics Repair Industry                                                               |  |
| How IoT Re-using Threatens Your Sensitive Data: Exploring the User-Data Disposal in Used<br>IoT Devices     |  |

#### Session 12C: Physical channels 2

| Privacy Leakage via Unrestricted Motion-Position Sensors in the Age of Virtual Reality: A<br>Study of Snooping Typed Input on Virtual Keyboards                                                                                                                    | 2  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Uncovering User Interactions on Smartphones via Contactless Wireless Charging Side                                                                                                                                                                                 |    |
| Channels                                                                                                                                                                                                                                                           | 19 |
| Tao Ni (City University of Hong Kong), Xiaokuan Zhang (George Mason                                                                                                                                                                                                |    |
| University), Chaoshun Zuo (The Ohio State University), Jianfeng Li                                                                                                                                                                                                 |    |
| (The Hong Kong Polytechnic University), Zhenyu Yan (The Chinese                                                                                                                                                                                                    |    |
| University of Hong Kong), Wubing Wang (DBAPPSecurity Co., Ltd), Weitao                                                                                                                                                                                             |    |
| Xu (City University of Hong Kong), Xiapu Luo (The Hong Kong<br>Polytechnic University), and Qingchuan Zhao (City University of Hong                                                                                                                                |    |
| Kong)                                                                                                                                                                                                                                                              |    |
| MagBackdoor: Beware of Your Loudspeaker as a Backdoor for Magnetic Injection Attacks                                                                                                                                                                               | 6  |
| Private Eye: On the Limits of Textual Screen Peeking via Eyeglass Reflections in Video<br>Conferencing                                                                                                                                                             | 2  |
| Yan Long (University of Michigan, USA), Chen Yan (Zhejiang University,<br>China), Shilin Xiao (Zhejiang University, China), Shivan Prasad<br>(University of Michigan, USA), Wenyuan Xu (Zhejiang University,<br>China), and Kevin Fu (University of Michigan, USA) | ~  |
| Low-effort VR Headset User Authentication Using Head-reverberated Sounds with Replay<br>Resistance                                                                                                                                                                 | 60 |
| Ruxin Wang (Louisiana State University), Long Huang (Louisiana State<br>University), and Chen Wang (Louisiana State University)                                                                                                                                    |    |