2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS 2023)

St. Petersburg, Florida, USA 15-19 May 2023

Pages 1-523

IEEE Catalog Number: C ISBN: 9

CFP23023-POD 979-8-3503-3767-9

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP23023-POD
ISBN (Print-On-Demand):	979-8-3503-3767-9
ISBN (Online):	979-8-3503-3766-2
ISSN:	1530-2075

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS) **IPDPS 2023**

Table of Contents

Message from the IPDPS 2023 General Co-chairs	xix
Message from the IPDPS 2023 Program Chairs	xxi
IPDPS 2023 Technical Program	cxiii
IPDPS 2023 Organization	xxv
IPDPS 2023 Technical Program Committeex	

Keynote Talk I

Keynote: Fifty Years of Parallel Programming: Ieri, Oggi, Domani or Yesterday, Today,	
Tomorrow	1
Keshav Pingali (The University of Texas at Austin and Katana Graph	
Inc.)	

SESSION 1A: Graphs Processing

GraphTensor: Comprehensive GNN-Acceleration Framework for Efficient Parallel Processing of Massive Datasets
 GraphMetaP: Efficient MetaPath Generation for Dynamic Heterogeneous Graph Models

Traversing Large Compressed Graphs on GPUs 25 Prasun Gera (Cerebras Systems) and Hyesoon Kim (Georgia Tech)
Distributed Sparse Random Projection Trees for Constructing K-Nearest Neighbor Graphs
 Fast Deterministic Gathering with Detection on Arbitrary Graphs: The Power of Many Robots 47 Anisur Rahaman Molla (Indian Statistical Institute, India), Kaushik Mondal (Indian Institute of Technology Ropar, India), and William K. Moses Jr. (Durham University, UK)
 Accurate and Efficient Distributed COVID-19 Spread Prediction Based on a Large-Scale Time-Varying People Mobility Graph

SESSION 1B: Architectural Advances

H-Cache: Traffic-Aware Hybrid Rule-Caching in Software-Defined Networks
Accelerating Packet Processing in Container Overlay Networks via Packet-Level Parallelism
Software-Defined, Fast and Strongly-Consistent Data Replication for RDMA-Based PM Datastores
Signal Detection for Large MIMO Systems using Sphere Decoding on FPGAs
Efficient Hardware Primitives for Immediate Memory Reclamation in Optimistic Data Structures

123

(The Ohio State University, USA)

SESSION 2A: HPC Optimizations for ML

 Accelerating Distributed Deep Learning Training with Compression Assisted Allgather and Reduce-Scatter Communication
Accelerating CNN Inference on Long Vector Architectures via co-Design
 Exploiting Input Tensor Dynamics in Activation Checkpointing for Efficient Training on GPU 156 Jianjin Liao (Beihang University, China), Mingzhen Li (Beihang University, China), Hailong Yang (Beihang University, China), Qingxiao Sun (Beihang University, China), Biao Sun (Beihang University, China), Jiwei Hao (Beihang University, China), Tianyu Feng (Beihang University, China), Fengwei Yu (SenseTime Research, China), Shengdong Chen (SenseTime Research, China), Ye Tao (SenseTime Research, China), Zicheng Zhang (SenseTime Research, China), Zhongzhi Luan (Beihang University, China), and Depei Qian (Beihang University, China)
 MPipeMoE: Memory Efficient MoE for Pre-Trained Models with Adaptive Pipeline Parallelism 167 Zheng Zhang (WuHan University), Donglin Yang (Nvidia Corp.), Yaqi Xia (Wuhan University), Liang Ding (JD Explore Academy, JD.com Inc.), Dacheng Tao (JD Explore Academy, JD.com Inc.), Xiaobo Zhou (University)

of Macau), and Dazhao Cheng (Wuhan University)

SESSION 2B: I/O Optimizations

Mimir: Extending I/O Interfaces to Express User Intent for Complex Workloads in HPC 178 Hariharan Devarajan (Lawrence Livermore National Laboratory) and Kathryn Mohror (Lawrence Livermore National Laboratory)

Drill: Log-Based Anomaly Detection for Large-Scale Storage Systems using Source Code	189
Analysis Di Zhang (University of North Carolina at Charlotte), Chris Egersdoerfer (University of North Carolina at Charlotte), Tabassum Mahmud (Iowa State University), Mai Zheng (Iowa State University), and Dong Dai (University of North Carolina at Charlotte)	. 109
FaultyRank: A Graph-Based Parallel File System Checker	. 200
Evaluating Asynchronous Parallel I/O on HPC Systems John Ravi (North Carolina State University), Suren Byna (Lawrence Berkeley National Laboratory), Quincey Koziol (Lawrence Berkeley National Laboratory), Houjun Tang (Lawrence Berkeley National Laboratory), and Michela Becchi (North Carolina State University)	211

SESSION 3A: Large Scale ML

An Efficient 2D Method for Training Super-Large Deep Learning Models <i>Qifan Xu (University of California, USA) and Yang You (National University of Singapore, Singapore)</i>	.222
Dynasparse: Accelerating GNN Inference Through Dynamic Sparsity Exploitation Bingyi Zhang (University of Southern California, USA) and Viktor Prasanna (University of Southern California, USA)	233
Exploiting Sparsity in Pruned Neural Networks to Optimize Large Model Training Siddharth Singh (University of Maryland, USA) and Abhinav Bhatele (University of Maryland, USA)	245
Asynch-SGBDT: Train Stochastic Gradient Boosting Decision Trees in an Asynchronous Parallel Manner Daning Cheng (Tsinghua University, China), Shigang Li (Beijing University of Posts and Telecommunications, China), and Yunquan Zhang (Chinese Academy of Sciences, China)	256

SESSION 3B: New Systems for Storage

SRC: Mitigate I/O Throughput Degradation in Network Congestion Control of Disaggregated	
Storage Systems	. 268
Danlin Jia (Samsung Semiconductor Inc., USA), Yiming Xie (Northeastern	
University, USA), Li Wang (Northeastern University, ŬSA), Xiaoqian	
Zhang (University of Massachusetts Boston, USA), Allen Yang	
(University of Massachusetts Boston, USA), Xuebin Yao (Samsung	
Semiconductor Inc., USA), Mahsa Bayati (Samsung Semiconductor Inc.,	
USA), Pradeep Subedi (Samsung Semiconductor Inc., USA), Bo Sheng	
(University of Massachusetts Boston, USA), and Ningfang Mi	
(Northeastern University, USA)	

Boosting Multi-Block Repair in Cloud Storage Systems with Wide-Stripe Erasure Coding 279
Qi Yu (Huazhong University of Science and Technology), Lin Wang
(Huazhong University of Science and Technology), Yuchong Hu (Huazhong
University of Science and Technology), Yumeng Xu (Huazhong University
of Science and Technology), Dan Feng (Huazhong University of Science
and Technology), Jie Fu (Huawei Technologies Co., Ltd., China), Xia
Zhu (Huawei Technologies Co., Ltd., China), Zhen Yao (Huawei
Technologies Co., Ltd., China), and Wenjia Wei (Huawei Technologies
Co., Ltd., China)
UnifyFS: A User-Level Shared File System for Unified Access to Distributed Local Storage
Michael J. Brim (Oak Ridge National Laboratory, USA), Adam T. Moody
(Lawrence Livermore National Laboratory, USA), Seung-Hwan Lim (Oak
Ridge National Laboratory, USA), Ross Miller (Oak Ridge National
Laboratory, USA), Swen Boehm (Oak Ridge National Laboratory, USA),
Cameron Stanavige (Lawrence Livermore National Laboratory, USA),
Kathryn M. Mohror (Lawrence Livermore National Laboratory, USA), and
Sarp Oral (Oak Ridge National Laboratory, USA)

ArkFS: A Distributed File System on Object Storage for Archiving Data in HPC Environment 301 *Kyu-Jin Cho (Seoul National University, South Korea), Injae Kang (Seoul National University, South Korea), and Jin-Soo Kim (Seoul National University, South Korea)*

Best Paper Nominees - Plenary

On Doorway Egress by Autonomous Robots Rory Hector (Louisiana State University, USA), Ramachandran Vaidyanathan (Louisiana State University, USA), Gokarna Sharma (Kent State University, USA), and Jerry L. Trahan (Louisiana State University, USA)	312
PAQR: Pivoting Avoiding QR Factorization	322
Wissam Sid-Lakhdar (University of Tennessee), Sebastien Cayrols	
(University of Tennessee), Daniel Bielich (University of Tennessee),	
Ahmad Abdelfattah (University of Tennessee), Piotr Luszczek	
(University of Tennessee), Mark Gates (University of Tennessee),	
Stanimire Tomov (University of Tennessee), Hans Johansen (Lawrence	
Berkeley National Laboratory), David Williams-Young (Lawrence Berkeley	
National Laboratory), Timothy Davis (Texas A&M University), Jack	
Dongarra (University of Tennessee; Oak Ridge National Laboratory), and	
Hartwig Anzt (University of Tennessee)	
DeepThermo: Deep Learning Accelerated Parallel Monte Carlo Sampling for Thermodynamics	222
Evaluation of High Entropy Alloys	.333
Junqi Yin (Oak Ridge National Laboratory), Feiyi Wang (Oak Ridge	
National Laboratory), and Mallikarjun Shankar (Oak Ridge National	
Laboratory)	

Keynote Talk II

Keynote: The Adventurous Life of a System Software Researcher	356
Dilma Da Silva (National Science Foundation & Texas A&M University)	

SESSION 4A: Linear Algebra Algorithms

On the Arithmetic Intensity of Distributed-Memory Dense Matrix Multiplication Involving a Symmetric Input Matrix (SYMM)	57
A Novel Triangular Space-Filling Curve for Cache-Oblivious In-Place Transposition of	
Square Matrices	58
 Memory-Aware Optimization for Sequences of Sparse Matrix-Vector Multiplications	°9
 Data Distribution Schemes for Dense Linear Algebra Factorizations on Any Number of Nodes 39 Olivier Beaumont (Inria Center of the University of Bordeaux, France), Jean-Alexandre Collin (Inria Center of the University of Bordeaux, France), Lionel Eyraud-Dubois (Inria Center of the University of Bordeaux, France), and Mathieu Vérité (Inria Center of the University of Bordeaux, France) 	90
Dynamic Tensor Linearization and Time Slicing for Efficient Factorization of Infinite Data Streams)2
Yongseok Soh (University of Oregon), Ahmed E. Helal (Intel Labs), Fabio Checconi (Intel Labs), Jan Laukemann (University of Erlangen-Nürnberg), Jesmin Jahan Tithi (Intel Labs), Teresa Ranadive (Laboratory for Physical Sciences), Fabrizio Petrini (Intel Labs), and	_

Jee W. Choi (University of Oregon)

SESSION 4B: Resource Management

Scheduling with Many Shared Resources
 Chic-Sched: a HPC Placement-Group Scheduler on Hierarchical Topologies with Constraints 424 Laurent Schares (IBM Thomas J. Watson Research Center, USA), Asser Tantawi (IBM Thomas J. Watson Research Center, USA), Pavlos Maniotis (IBM Thomas J. Watson Research Center, USA), Ming-Hung Chen (IBM Thomas J. Watson Research Center, USA), Claudia Misale (IBM Thomas J. Watson Research Center, USA), Seetharami Seelam (IBM Thomas J. Watson Research Center, USA), seetharami Seelam (IBM Thomas J. Watson Research Center, USA), and Hao Yu (IBM Thomas J. Watson Research Center, USA)
 Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs
RLP: Power Management Based on a Latency-Aware Roofline Model
 SLAP: An Adaptive, Learned Admission Policy for Content Delivery Network Caching
Proactive SLA-Aware Application Placement in the Computing Continuum

SESSION 5A: Federated and Graph Learning

PFedSA: Personalized Federated Multi-Task Learning via Similarity Awareness	480
Chuyao Ye (Central South University, China), Hao Zheng (Central South	
University, China), Zhigang Hu (Central South University, China), and	
Meiguang Zheng (Central South University, China)	

 FedBIAD: Communication-Efficient and Accuracy-Guaranteed Federated Learning with Bayesian Inference-Based Adaptive Dropout
 Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
Communication Optimization for Distributed Execution of Graph Neural Networks

SESSION 5B: Systems and ML

A Machine Learning Approach Towards Runtime Optimisation of Matrix Multiplication Yufan Xia (Australian National University, Australia), Marco De La Pierre (Pawsey Supercomputing Centre, Australia), Amanda S. Barnard (Australian National University, Australia), and Giuseppe Maria Junior Barca (Australian National University, Australia)	.524
Power Constrained Autotuning using Graph Neural Networks Akash Dutta (Iowa State University, USA), Jee Choi (University of Oregon, USA), and Ali Jannesari (Iowa State University, USA)	. 535
SCONNA: A Stochastic Computing Based Optical Accelerator for Ultra-Fast, Energy-Efficient Inference of Integer-Quantized CNNs Sairam Sri Vatsavai (University of Kentucky, USA), Venkata Sai Praneeth Karempudi (University of Kentucky, USA), Ishan Thakkar (University of Kentucky, USA), Ahmad Salehi (University of Kentucky, USA), and Todd Hastings (University of Kentucky, USA)	546
HyScale-GNN: A Scalable Hybrid GNN Training System on Single-Node Heterogeneous Architecture	557

SESSION 6A: Scientific Applications

Optimizing Cloud Computing Resource Usage for Hemodynamic Simulation	3
 Predictive Analysis of Code Optimisations on Large-Scale Coupled CFD-Combustion Simulations using the CPX Mini-App)
 Scalable Adaptive Algorithms for Next-Generation Multiphase flow Simulations)
 Porting a Computational Fluid Dynamics Code with AMR to Large-Scale GPU Platforms	2
Neural Network Compiler for Parallel High-Throughput Simulation of Digital Circuits	;

SESSION 6B: Performance Engineering

Opportunities and Limitations of Hardware Timestamps in Concurrent Data Structures
 Harnessing the Crowd for Autotuning High-Performance Computing Applications
Designing and Optimizing GPU-Aware Nonblocking MPI Neighborhood Collective Communication for PETSc

 SW-LCM: A Scalable and Weakly-Supervised Land Cover Mapping Method on a New Sunway Supercomputer
 Feature-Based SpMV Performance Analysis on Contemporary Devices
An Experimental Study of Two-Level Schwarz Domain-Decomposition Preconditioners on GPUs . 680 Ichitaro Yamazaki (Sandia National Laboratories, USA), Alexander Heinlein (Delft University of Technology, Netherlands), and

Sivasankaran Rajamanickam (Sandia National Laboratories, USA)

Keynote Talk III

Keynote: Future Workloads Drive the Need for High Performant and Adaptive Computing Hardware	690
Ivo Bolsens (Adaptive and Embedded Computing Group, AMD)	

SESSION 7A: Combinatorial Algorithms

Engineering Massively Parallel MST Algorithms Peter Sanders (Karlsruhe Institute of Technology, Germany) and Matthias Schimek (Karlsruhe Institute of Technology, Germany)	. 691
Engineering a Distributed-Memory Triangle Counting Algorithm Peter Sanders (Karlsruhe Institute of Technology, Germany) and Tim Niklas Uhl (Karlsruhe Institute of Technology, Germany)	702
PRF: A Fast Parallel Relaxed Flooding Algorithm for Voronoi Diagram Generation on GPU Jue Wang (Osaka University, Japan), Fumihiko Ino (Osaka University,	713

Japan), and Jing Ke (Shanghai Jiao Tong University, China)

 Satellite Collision Detection using Spatial Data Structures	24
 AnyQ: An Evaluation Framework for Massively-Parallel Queue Algorithms	6
Kunstliche Intelligenz (DFKI), Saarland Informatics Campus; Graz University of Technology; Saarland University)	

SESSION 7B: Emerging Technology

Towards Faster Fully Homomorphic Encryption Implementation with Integer and Floating-Point

romanas raster ran	j montonio prine Enterj	p non mp tonicitation	with here get with the	
Computing Power o	of GPUs			798

Guang Fan (Institute of Information Engineering, China; University of Chinese Academy of Sciences, China; Chinese Academy of Sciences, China), Fangyu Zheng (Institute of Information Engineering, China; University of Chinese Academy of Sciences, China; Chinese Academy of Sciences, China), Lipeng Wan (Institute of Information Engineering, China; University of Chinese Academy of Sciences, China; Chinese Academy of Sciences, China), Lily Gao (Nanjing University of Information Science and Technology, China), Yuan Zhao (Ant Group, China), Jiankuo Dong (Nanjing University of Posts and Telecommunications, China), Yixuan Song (Ant Group, China), Yuewu Wang (University of Chinese Academy of Sciences, China), and Jingqiang Lin (University of Science and Technology of China, China)

SESSION 8A: Data-Intensive Algorithms

 FedTrip: A Resource-Efficient Federated Learning Method with Triplet Regularization
A Guaranteed Approximation Algorithm for Scheduling Fork-Joins with Communication Delay 820 Pierre-François Dutot (Univ. Grenoble Alpes, CNRS, Inria, France), Yeu-Shin Fu (University of Auckland, New Zealand), Nikhil Prasad (University of Auckland, New Zealand), and Oliver Sinnen (University of Auckland, New Zealand)
SelB-k-NN: A Mini-Batch K-Nearest Neighbors Algorithm on AI Processors
Exact Fault-Tolerant Consensus with Voting Validity
k-Center Clustering with Outliers in the MPC and Streaming Model

SESSION 8B: Serverless/Cloud Computing Systems

 FIRST: Exploiting the Multi-Dimensional Attributes of Functions for Power-Aware Serverless Computing	54
Duo: Improving Data Sharing of Stateful Serverless Applications by Efficiently Caching Multi-Read Data 87 Zhuo Huang (Huazhong University of Science and Technology, China), Hao 87 Fan (Huazhong University of Science and Technology, China), Chaoyi 87 Cheng (Huazhong University of Science and Technology, China), Chaoyi 87 (Huazhong University of Science and Technology, China), Song Wu 87 (Huazhong University of Science and Technology, China), Song Wu 87 (Huazhong University of Science and Technology, China), Song Wu 87 (Huazhong University of Science and Technology, China), and Hai Jin 10 (Huazhong University of Science and Technology, China) 10	'5
 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows	\$6
rFaaS: Enabling High Performance Serverless with RDMA and Leases	17
 Alioth: A Machine Learning Based Interference-Aware Performance Monitor for Multi-Tenancy Applications in Public Cloud)8
GPU-Enabled Function-as-a-Service for Machine Learning Inference	.8

SESSION 9A: Optimizations for New Applications

Lyra: Fast and Scalable Resilience to Reordering Attacks in Blockchains Pouriya Zarbafian (University of Sydney, Australia) and Vincent Gramoli (University of Sydney, Australia)	929
Smart Redbelly Blockchain: Reducing Congestion for Web3	940
Deepal Tennakoon (University of Sydney, Australia), Yiding Hua (ETH	
Zurich, Switzerland), and Vincent Gramoli (University of Sydney,	
Australia)	

SBGT: Scaling Bayesian-Based Group Testing for Disease Surveillance	951
Weicong Chen (Case Western Reserve University, USA), Hao Qi	
(University of California Merced, USA), Xiaoyi Lu (University of	
California Merced, USA), and Curtis Tatsuoka (University of	
Pittsburgh, USA)	
RT-DBSCAN: Accelerating DBSCAN using Ray Tracing Hardware Vani Nagarajan (Purdue University, USA) and Milind Kulkarni (Purdue University, USA)	963
Distributing Simplex-Shaped Nested for-Loops to Identify Carcinogenic Gene Combinations Sajal Dash (Oak Ridge National Laboratory, USA), Mohammad Alaul Haque Monil (Oak Ridge National Laboratory, USA), Junqi Yin (Oak Ridge National Laboratory, USA), Ramu Anandakrishnan (The Edward Via College of Osteopathic Medicine, USA), and Feiyi Wang (Oak Ridge National Laboratory, USA)	974

SESSION 9B: Big Data Management

LowFive: In Situ Data Transport for High-Performance Workflows Tom Peterka (Argonne National Laboratory, USA), Dmitriy Morozov (Lawrence Berkeley National Laboratory, USA), Arnur Nigmetov (Lawrence Berkeley National Laboratory, USA), Orcun Yildiz (Argonne National Laboratory, USA), Bogdan Nicolae (Argonne National Laboratory, USA), and Philip E. Davis (University of Utah, USA)	985
MCR-DL: Mix-and-Match Communication Runtime for Deep Learning Quentin Anthony (The Ohio State University, USA), Ammar Ahmad Awan (Microsoft Corporation, USA), Jeff Rasley (Microsoft Corporation, USA), Yuxiong He (Microsoft Corporation, USA), Aamir Shafi (The Ohio State University, USA), Mustafa Abduljabbar (The Ohio State University, USA), Hari Subramoni (The Ohio State University, USA), and Dhabaleswar Panda (The Ohio State University, USA)	
Lossy Scientific Data Compression With SPERR Shaomeng Li (Nat'l Center for Atmospheric Research), Peter Lindstrom (Lawrence Livermore Nat'l Laboratory), and John Clyne (Nat'l Center for Atmospheric Research)	1007
 Fast and Automatic Floating Point Error Analysis With CHEF-FP Garima Singh (European Council for Nuclear Research, Switzerland; Princeton University, USA), Baidyanath Kundu (European Council for Nuclear Research, Switzerland; Princeton University, USA), Harshitha Menon (Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, USA), Alexander Penev (University of Plovdiv, Bulgaria), David J. Lange (Princeton University, USA), and Vassil Vassilev (Princeton University, USA; European Council for Nuclear Research, Switzerland) 	1018

DAOS as HPC Storage: a View From Numerical Weather Prediction	1029
Nicolau Manubens (European Centre for Medium-Range Weather Forecasts,	
Germany), Tiago Quintino (European Centre for Medium-Range Weather	
Forecasts, United Kingdom), Simon D. Smart (European Centre for	
Medium-Range Weather Forecasts, United Kingdom), Emanuele Danovaro	
(European Centre for Medium-Range Weather Forecasts, United Kingdom),	
and Adrian Jackson (The University of Edinburgh, United Kingdom)	
ZFP-X: Efficient Embedded Coding for Accelerating Lossy Floating Point Compression Bing Lu (Hunan University, China), Yida Li (Hunan University, China),	1041

Junqi Wang (Beijing Institute for General Artificial Intelligence (BIGAI), China), Huizhang Luo (Hunan University, China), and Kenli Li

(Hunan University, China)

Author Index