2023 IEEE 31st Annual **International Symposium on Field-Programmable Custom Computing Machines** (FCCM 2023)

Marina Del Rey, California, USA 8-11 May 2023

IEEE Catalog Number: CFP23054-POD **ISBN:**

979-8-3503-1206-5

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP23054-POD
ISBN (Print-On-Demand):	979-8-3503-1206-5
ISBN (Online):	979-8-3503-1205-8
ISSN:	2576-2613

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) FCCM 2023

Table of Contents

Message from the FCCM 2023 General and Program Chairs	xii
Organizing Committee	xiii
Program Committee	xiv
Additional Reviewers	xv
Sponsors	xvi

Session 1 – High-Level Synthesis

LightningSim: Fast and Accurate Trace-Based Simulation for High-Level Synthesis	
 PASTA: Programming and Automation Support for Scalable Task-Parallel HLS Programs on Modern Multi-Die FPGAs	-
SCCL: An open-Source SystemC to RTL Translator	
Lasa: Abstraction and Specialization for Productive and Performant Linear Algebra on FPGAs 34 Xiaochen Hao (Peking University), Mingzhe Zhang (Tsinghua University), Ce Sun (University of Science and Technology of China), Zhuofu Tao (University of California, Los Angeles), Hongbo Rong (Intel), Yu Zhang (University of Science and Technology of China), Lei He (Eastern Institute for Advanced Study, China; University of California), Eric Petit (Intel), Wenguang Chen (Tsinghua University), and Yun Liang (Peking University)	

Session 2 – Architecture and CAD

Placement Optimization for NoC-Enhanced FPGAs	1
BRAMAC: Compute-in-BRAM Architectures for Multiply-Accumulate on FPGAs	2
A Machine Learning Approach for Predicting the Difficulty of FPGA Routing Problems	3
 CXL over Ethernet: A Novel FPGA-Based Memory Disaggregation Design in Data Centers	5

Session 3 – Applications/ML

Model-Platform Optimized Deep Neural Network Accelerator Generation Through Mixed-Integer Geometric Programming
MSD: Mixing Signed Digit Representations for Hardware-Efficient DNN Acceleration on FPGA with Heterogeneous Resources
Optimizing Hybrid Binary-Unary Hardware Accelerators using Self-Similarity Measures
Efficient Implementation of Ring-Binary-LWE-Based Lightweight PQC Accelerator on the FPGA Platform

Session 4 – Applications/ML

ATHEENA: A Toolflow for Hardware Early-Exit Network Automation	121
Modular and Lean Architecture with Elasticity for Sparse Matrix Vector Multiplication on FPGAs	133
Abhishek Kumar Jain (AMD, USA), Chirag Ravishankar (AMD, USA), Hossein Omidian (AMD, USA), Sharan Kumar (AMD, USA), Maithilee Kulkarni (AMD, USA), Aashish Tripathi (AMD, USA), and Dinesh Gaitonde (AMD, USA)	
HARFLOW3D: A Latency-Oriented 3D-CNN Accelerator Toolflow for HAR on FPGA Devices 1 Petros Toupas (Imperial College London; Information Technologies Institute-CERTH), Alexander Montgomerie-Corcoran (Imperial College London), Christos-Savvas Bouganis (Imperial College London), and Dimitrios Tzovaras (Information Technologies Institute-CERTH)	44
 Power2Picture: Using Generative CNNs for Input Recovery of Neural Network Accelerators Through Power Side-Channels on FPGAs	155

Session 5 – Applications

Computing and Compressing Electron Repulsion Integrals on FPGAs
 Tensor-Product-Based Accelerator for Area-Efficient and Scalable Number Theoretic Transform
 SQL2FPGA: Automatic Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms 184 Alec Lu (Simon Fraser University) and Zhenman Fang (Simon Fraser University)
DGNN-Booster: A Generic FPGA Accelerator Framework For Dynamic Graph Neural Network Inference

Posters

Designing a Configurable IEEE-Compliant FPU that Supports Variable Precision for Soft
Chris Keilbart (Simon Fraser University, Canada), Yuhui Gao (Simon Fraser University, Canada), Martin Chua (University of British Columbia, Canada), Eric Matthews (Simon Fraser University, Canada), Steven J.E. Wilton (University of British Columbia), and Lesley Shannon (Simon Fraser University, Canada)
HyBNN: Quantifying and Optimizing Hardware Efficiency of Binary Neural Networks
Accelerating 128-bit Floating-Point Matrix Multiplication on FPGAs
Efficient Implementation of a Genetic Algorithm for the Capacitated Vehicle Routing Problem on a High-Performance FPGA
An Efficient Piecewise Linear Approximation of Non-Linear Operations for Transformer Inference
Feature Extraction Accelerator for Streaming Time Series
UPTRA: An Ultra-Parameterized Temporal CGRA Modeling and Optimization
ReLoDAQ: Resource-Efficient, Low Overhead 200 Gbit s^-1 Data Acquisition System for 6G Prototyping
Christian Karle (Karlsruhe Institut of Technology, Germany), Marc Neu (Karlsruhe Institut of Technology, Germany), Johannes Pfau (Karlsruhe Institut of Technology, Germany), Jan Sperling (Karlsruhe Institut of Technology, Germany), and Jürgen Becker (Karlsruhe Institut of Technology, Germany)

 FASBM: FPGA-Specific Approximate Sum-Based Booth Multipliers for Energy Efficient Hardware Acceleration of Image Processing and Machine Learning Applications
SpCNA: An FPGA-Based Accelerator for Point Cloud Convolutional Neural Networks
A Flexible and Scalable Reconfigurable FPGA Overlay Architecture for Data-Flow Processing 212 Anna Drewes (Otto-von-Guericke-Universität Magdeburg, Germany), Vitalii Burtsev (Otto-von-Guericke-Universität Magdeburg, Germany), Bala Gurumurthy (Otto-von-Guericke-Universität Magdeburg, Germany), Martin Wilhelm (Otto-von-Guericke-Universität Magdeburg, Germany), David Broneske (Otto-von-Guericke-Universität Magdeburg, Germany), Gunter Saake (Otto-von-Guericke-Universität Magdeburg, Germany), and Thilo Pionteck (Otto-von-Guericke-Universität Magdeburg, Germany)
Improving Performance of HPC Kernels on FPGAs using High-Level Resource Management 213 Antonio Filgueras (Universitat Politècnica de Catalunya; Barcelona Supercomputing Center), Miquel Vidal (Barcelona Supercomputing Center), Daniel Jiménez-González (Universitat Politècnica de Catalunya; Barcelona Supercomputing Center), Carlos Álvarez (Universitat Politècnica de Catalunya; Barcelona Supercomputing Center), and Xavier Martorell (Universitat Politècnica de Catalunya; Barcelona Supercomputing Center)
Accelerating Graph Analytics with oneAPI and Intel FPGAs
Decision Forest Training Accelerator Based on Binary Feature Decomposition
b8c: SpMV Accelerator Implementation Leveraging high Memory Bandwidth
Scalable Quantum Error Correction for Surface Codes using FPGA

MSBF-LSTM: Most-Significant Bit-First LSTM Accelerators with Energy Efficiency Optimisations
Sige Bian (Southeast University, China), He Li (Southeast University, China), Chengcheng Wang (Southeast University, China), Changjun Song (Southeast University, China), and Yongming Tang (Southeast University, China)
Accelerating FPGA-Based Wi-Fi Transceiver Design and Prototyping by High-Level Synthesis 219 Thijs Havinga (Ghent University, Belgium), Xianjun Jiao (Ghent University, Belgium), Wei Liu (Ghent University, Belgium), and Ingrid Moerman (Ghent University, Belgium)
Dynamically Scheduled Memory Operations in Static High-Level Synthesis
Transformer-OPU: An FPGA-Based Overlay Processor for Transformer Networks
Compiler-Assisted Kernel Selection for FPGA-Based Near-Memory Computing Platforms222 Veronia Iskandar (Chair of Adaptive Dynamic Systems, Technische Universität Dresden, Germany), Mohamed A. Abd El Ghany (Electronics Department/ IES Lab, German University in Cairo, Egypt/ TU Darmstadt, Germany), and Diana Goehringer (Chair of Adaptive Dynamic Systems, Technische Universität Dresden, Germany)
Clustering Classification on FPGAs for Neuromorphic Feature Extraction
Making BRAMs Compute: Creating Scalable Computational Memory Fabric Overlays
OCMGen: Extended Design Space Exploration with Efficient FPGA Memory Inference
 PRAD: A Bayesian Optimization-Based DSE Framework for Parameterized Reconfigurable Architecture Design

Moth: A Hardware Accelerator for Neural Radiance Field Inference on FPGA
PhD Student Forum
FCCM 2023 PhD Student Forum Introduction
Reformulating the FPGA Routability Prediction Problem with Machine Learning
Hardware/Software Co-design for Machine Learning Accelerators
From Acceleration to Accelerating Acceleration: Modernizing the Accelerator Landscape using High-Level Synthesis
Power Side-Channel Attacks and Defenses for Neural Network Accelerators
Enabling Elastic Resource Management in Cloud FPGAs via A Multi-layer Collaborative Approach
A Framework for Graph Machine Learning on Heterogeneous Architecture
DataMaster: A GNN-based Data Type Optimizer for Dataflow Design in FPGA

Author Index		251
--------------	--	-----