2023 IEEE International Symposium on Performance **Analysis of Systems and Software (ISPASS 2023)**

Raleigh, North Carolina, USA 23 – 25 April 2023

IEEE Catalog Number: CFP23PER-POD ISBN:

979-8-3503-9740-6

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP23PER-POD

 ISBN (Print-On-Demand):
 979-8-3503-9740-6

 ISBN (Online):
 979-8-3503-9739-0

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

ISPASS 2023

Table of Contents

Message from the General Chair	xi
Organizing Committee	xii
Program Committee	xiii
Steering Committee	xiv
Sponsors	xv
Best Paper Session	
Characterization of Data Compression in Datacenters	1
PES: An Energy and Throughput Model for Energy Harvesting IoT Systems	13
PyTFHE: An End-to-End Compilation and Execution Framework for Fully Homomorpl Applications	
Evaluating Machine Learning Workloads on Memory-Centric Computing Systems Juan Gomez Luna (ETH Zürich), Yuxin Guo (ETH Zürich), Sylvan Brocard (UPMEM), Julien Legriel (UPMEM), Remy Cimadomo (UPMEM), Geraldo F. Oliveira (ETH Zürich), Gagandeep Singh (ETH Zürich), and Onur Mutlu (ETH Zürich)	35
MQL: ML-Assisted Queuing Latency Analysis for Data Center Networks Shruti Yadav Narayana (University of Wisconsin-Madison, USA), Jie Tong (University of Wisconsin-Madison, USA), Anish Krishnakumar (University of Wisconsin-Madison, USA), Nuriye Yildirim (University of Wisconsin-Madison, USA), Emily Shriver (Intel Labs, USA), Mahesh Ketkar (Intel Labs, USA), and Umit Y. Ogras (University of Wisconsin-Madison, USA)	50

CPU Microarchitecture

A Characterization of the Effects of Software Instruction Prefetching on an Aggressive Front-end Gino Chacon (Texas A&M University, USA), Nathan Gober (Texas A&M University, USA), Krishnendra Nathella (Arm, USA), Paul V. Gratz (Texas A&M University, USA), and Daniel A. Jiménez (Texas A&M University, USA) University, USA)	61
MBPlib: Modular Branch Prediction Library Emilio Domínguez-Sánchez (University of Murcia, Spain) and Alberto Ros (University of Murcia, Spain)	71
Evaluating the Impact of Optimizations for Dynamic Binary Modification on 64-bit RISC-V John Alistair Kressel (University of Manchester, United Kingdom), Guillermo Callaghan (University of Manchester, United Kingdom), Cosmin Gorgovan (University of Manchester, United Kingdom), and Mikel Luján (University of Manchester, United Kingdom)	81
An Application-Oriented Approach to Designing Hybrid CPU Architectures	92
Exploring Simulations	
Profiling gem5 Simulator	.103
A Novel Simulation Methodology for Silicon Photonic Switching Fabrics	. 114
Simulating Wrong-Path Instructions in Decoupled Functional-First Simulation Stijn Eyerman (Intel, Belgium), Sam Van den Steen (Intel, Belgium), Wim Heirman (Intel, Belgium), and Ibrahim Hur (Intel, USA)	. 124
s the Future Cold or Tall? Design Space Exploration of Cryogenic and 3D Embedded Cache Memory	134

Machine Learning 1

MergePath-SpMM: Parallel Sparse Matrix-Matrix Algorithm for Graph Neural Network Acceleration
CFU Playground: Full-Stack Open-Source Framework for Tiny Machine Learning (TinyML) Acceleration on FPGAs
Characterizing the Scalability of Graph Convolutional Networks on Intel® PIUMA
Genomics-GPU: A Benchmark Suite for GPU-Accelerated Genome Analysis
Exploring the Efficiency of Data-Oblivious Programs
Redwood: Flexible and Portable Heterogeneous Tree Traversal Workloads 201 Yanwen Xu (University of California, Santa Cruz), Ang Li (Princeton University), and Tyler Sorensen (University of California, Santa Cruz)
Community-Based Matrix Reordering for Sparse Linear Algebra Optimization

Accelerators

Sieve: Stratified GPU-Compute Workload Sampling
TransPimLib: Efficient Transcendental Functions for Processing-in-Memory Systems
Early-Adaptor: An Adaptive Framework for Proactive UVM Memory Management
Sunstone: A Scalable and Versatile Scheduler for Mapping Tensor Algebra on Spatial
Accelerators
RPU: The Ring Processing Unit
Machine Learning 2
ASTRA-sim2.0: Modeling Hierarchical Networks and Disaggregated Systems for Large-Model Training at Scale

Boreas: A Cost-Effective Mitigation Method for Advanced Hotspots Using Machine Learning and Hardware Telemetry
AMPeD: An Analytical Model for Performance in Distributed Training of Transformers
Poster Session
LoopTree: Enabling Exploration of Fused-Layer Dataflow Accelerators
Degree-Aware Kernel Mapping for Graph Processing on GPUs
Ifbench: A Lock-Free Microbenchmark Suite
A Benchmark Suite for Improving Performance Portability of the SYCL Programming Model 325 Zheming Jin (Oak Ridge National Laboratory) and Jeffrey Vetter (Oak Ridge National Laboratory)
Impact of Optimal Design Point on Performance Metrics of DNN Accelerators in FPGA
Workload Characterization Using Hierarchical PC
Analyzing Energy Efficiency of a Server with a SmartNIC Under SLO Constraints

KORDI: A Framework for Real-Time Performance and Cost Optimization of Apache Spark Streaming
Athanasios Kordelas (Vrije Universiteit Brussel, Belgium; University of Patras, Greece), Thanasis Spyrou (n/a), Spyros Voulgaris (Athens University of Economics and Business, Greece), Vasileios Megalooikonomou (University of Patras, Greece), and Nikos Deligiannis (Vrije Universiteit Brussel, Belgium)
Enabling Design Space Exploration of DRAM Caches for Emerging Memory Systems
A Regression-Based Model for End-to-End Latency Prediction for DNN Execution on GPUs 343 Ying Li (William & Mary, USA), Yifan Sun (William & Mary, USA), and Adwait Jog (William & Mary, USA; University of Virginia, USA)
A Survey and Comparison of Consistent Hashing Algorithms
Analysis of Conventional, Near-Memory, and In-Memory DNN Accelerators
RAINBOW: Multi-Dimensional Hardware-Software Co-Design for DL Accelerator On-Chip Memory . 352
Stavroula Zouzoula (Chalmers University of Technology), Muhammad Waqar Azhar (Chalmers University of Technology), and Pedro Trancoso (Chalmers University of Technology)
Stream: A Modeling Framework for Fine-Grained Layer Fusion on Multi-Core DNN Accelerators . 355 Arne Symons (KU Leuven, Belgium), Linyan Mei (KU Leuven, Belgium), Steven Colleman (KU Leuven, Belgium), Pouya Houshmand (KU Leuven, Belgium), Sebastian Karl (TU Munich, Germany; KU Leuven, Belgium), and Marian Verhelst (KU Leuven, Belgium)
Author Index