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Abstract: 
Accurate estimations of future energy consumption are crucial for decision-makers to better plan the future 
design and operation of production and distribution systems. The existence of uncertainties in the inputs of the 
planning process can affect the quality of the model’s outcomes and potentially can lead to sub-optimal 
solutions. This work proposes an investigation of input uncertainties of an Electrical Power System Model 
(EPSM) based on dynamic linear optimal power flow. The considered model inputs are the electricity demand 
curves of the buses of the grid. A set of forecasted demand time series is used to generate a probability model 
of their variability at each time step of the period studied. This probabilistic model is applied to generate the 
uncertainty of the demand curves and the associated input macro indicators (IMI) which are used to define the 
experimental design of the sensitivity analysis. The results show that input uncertainties on the demand have 
significant effects on the results in terms of Levelized Cost of Energy (LCOE) and system design like the 
installed capacity of Wind Turbines (WT), extracted energy from Classic Generators (CGs), and Battery Energy 
Storage (BES) location and sizing. In addition, it is shown that the input demand uncertainties can affect the 
results on the distribution performance parameters like the level of saturation of the different grid branches. 
Keywords: 
Battery energy storage; Demand Uncertainties; Electrical Grid; Renewable energy sources; Sensitivity 
analysis. 

1. Introduction 
Load forecasting models are used to predict future demand behaviors to be used as input for optimal 

planning models. They rely on long-term expectations for the parameters influencing the load profile (e.g., 
temperatures, occupancy, behavior, etc.). Therefore, they are likely to give estimations of low accuracy [1].  
This could affect the accuracy is the model’s output. Thus, there is a need for robust and rigorous techniques 
that can provide quantifiable information about the impact of uncertainty on model outputs. Sensitivity Analysis 
(SA) technics incorporate a set of methods that aim to identify the most important input parameters driving the 
model output variability in addition to the non-influential parameters whose uncertainty can be safely ignored. 

In the literature, sensitivity analysis in energy models considers different uncertain input parameters e.g., 
the intermittent renewable generation, final energy demand, primary energy prices, economic growth, etc. [2]. 
These uncertain parameters are generally associated with randomness and temporal variability [3]. However, 
uncertainty in demand estimation introduces additional complexity alongside energy planning scenarios, 
including Renewable Energy Sources (RES) and Battery Energy Storage (BES) sizing and placement. Under 
such conditions, it is crucial to understand how demand curves uncertainty affects the optimal design and to 
identify the most influential uncertain parameters [4].  

For the SA of demand curves, two different approaches exist. The first one is the total demand uncertainty 
applied to the demand patterns directly measured or extracted from the load forecasting models. To assign 
uncertainty on energy demand profiles, the most commonly used approach is applying Probability Density 
Function PDF to each time step of the demand time series, like normal distribution [5], uniform distribution [6], 
etc. The second one is the model-based uncertainty in which the uncertainty is assigned to the input 
parameters of the load forecasting tool and is propagated to obtain a series of demand patterns. The model-
based uncertainty approach is applied in the literature for different types of demand patterns. In Mavromatidis 
et al. [7], using a building performance simulation tool, the uncertainties are attributed to the building material 
properties, occupancy patterns, hot water services, ventilation, and climate parameters, etc. Probability 
distributions are attributed to these parameters (normal, triangular, etc.), and the distribution parameters are 
then estimated. Thousands of profiles are then extracted and represented in the form of probability distribution 
to sample them to generate random energy demand profiles for the following study steps. The same approach 
is applied for the load forecasting model called MOSAIC in [8] developed by the principal French DSO (Enedis 
[9]), where the input variables are classified into four types: quantitative continuous (local height, coefficient of 
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performance for heater, temperatures, etc.), qualitative binary (e.g., presence of air conditioner or not), 
quantitative discrete (e.g., number of occupants) and qualitative nominal (e.g., thermal performance level). 
The variability range of the parameters are defined, and probability density distributions are attributed to 
continuous variables.  Multiple demand patterns are then extracted from MOSAIC.  

Various methods of sensitivity analysis on energy models are performed in the literature while considering 
the energy demand uncertainty; a local sensitivity analysis is used to study the demand effect on life cycle cost 
and loss of power supply in Sadeghi et al.[10].  A two-stage elementary effect - variance based technique is 
developed by Mavromatidis et al. [4] to study the effect of energy demand on the total cost of the system. Many 
other sensitivity analysis models are developed in [11], [12], [13] and [14], etc. Basically, SA models are 
classified into three major groups : 1- screening models that coarse sorting of the most influential inputs from 
a large number (e.g. Morris method [15]), 2-measure of importance or quantitative sensitivity indices (e.g. 
linear regression [16]) and 3- deep exploration of model behavior that measure the effects of inputs over their 
total range of variation (e.g., Metamodels-based SA [17]). The selection of the most appropriate method is 
based on the number of input parameters and the model’s complexity.  

This paper uses the total demand uncertainty characterization for the extracted curves using the 
probabilistic techniques presented in [18]. Then Input Macro Indicators IMI are defined to describe these 
demand curves. The electric demand curves are used as input for the energy planning model that aims to 
optimally size and place the RES and storage in the existing electrical distribution network. Different indicators 
are then defined to describe the resulted scenarios aiming to perform the sensitivity analysis.  In the studied 
case, features are assigned to the input curves as macro-parameters indicators and their correlation to the 
output indicators is studied. Based on the size (the number of model simulations is about 10 times the number 
of input parameters) and type of the data set, the linear regression (Pearson) is selected for the sensitivity 
analysis.   

2. Methodology 
The methodology summarized in Figure 1 aims to investigate the uncertainties in the Electrical Power System 
Model (EPSM). The EPSM used is the Dynamic Linearized Optimal Power Flow (DLOPF) model detailed in 
[18]. The model inputs considered are the demand curves. The uncertainties and variability of the demand are 
first characterized at each time step according to probability models which are used to generate additional 
demand curves. This set of generated demand profiles are used as inputs of the EPSM on a predefined 
distribution network to create different planning scenarios. Besides the IMI describing the patterns, output 
indicators are then determined to help measuring the sensitivity of model’s outputs to inputs uncertainties 
implied by the variability of the demand. Finally, the sensitivity analysis is implemented in order to identify the 
most effective correlations between the input and output parameters of the model.  

 

Figure 1. General workflow for uncertainty/sensitivity investigation in EPSM 

2.1. Input Data 
The electricity demand curves are the input data on which this uncertainty study is based. These curves are 
generated using a bottom-up load forecasting model called MOSAIC [19]. This tool is based on the 
characteristics of French loads built from a crossing of different databases: INSEE’s residences database 
(French National Institute on Statistics and Economical Studies; French Distribution System Operators 
databases). 
The total load curves by HTA/BT transformer are generated. For the studied area, MOSAIC simulations are 
repeated 25 times and therefore 25 curves per HTA/BT substation covering a whole year are obtained.  The 
difference between curves is due to the attributed assumptions from the input data (building parameters, 
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weather data, etc.). These assumptions contain values and associated probability laws [20]. MOSAIC uses 
these values and makes random draws, according to the assumptions, to calculate a possible scenario.     
The time-dependent uncertainties of the load curves are then characterized using the probability laws tests as 
explained in [18]. The Gamma law is proved to be the most appropriate law to describe these uncertainties. 
Then, based on the identified parameters describing the Gamma law at each time step, N=300 load curves 
are generated for each HTA/BT substation.  
The demand curves are generated for one year. Hence, to reduce the simulation time, a clustering method is 
applied to choose 9 typical days (3 periods of 3 days) representing three different demand levels (high, 
medium, and low). The variation of the total demand over the 300 cases at each time-step (t) is shown in 
Figure 2.  

 

Figure 2. Ranges of variation of the generated energy demand curves 

Several input macro indicators can be defined to describe load variation. The chosen parameters are detailed 
in the followings: 

2.1.1. Peak demand values 
The peak demand represents the higher demand value recorded in a time frame. The peak demands in each 
bus  are collected for the  cases  using the following equation (1) where the number of buses , 
the time steps , and the number of cases . 

                                                 (1)   

2.1.2. Standardized Variances 
The variances ( ) in load demand curves designates the spread between demand values in each curve. 
More specifically, variance measures how far each value number in the curve is from the mean (average). The 
variances are calculated using Eq. (2) 

 
       (2) 

2.1.3. Duration of maximum loads  
The maximum demands are defined here as demands higher than 95% of the total peak demand. The number 
of hours during which these demands are encountered are defined as maximum durations . 

2.1.4. Total energy demand variation 
For that, three different parameters are defined summarizing the total demand in each clustered period (low, 
medium, and high).  
These parameters are calculated using the following formulas Eq. (3) 

 
(3) 

 

Where  is the demand level and  is the time period corresponding to the 
demand level . 
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2.1.5. Simultaneity factor (Load coincidence)  
The simultaneity factor represents how much consumers tend to consume simultaneously. The maximum 
demand for each bus may not occur at the same time. The ratio of the aggregated maximum demand of the 
whole network during a particular time to the sum of the maximum demand of individual consumers is called 
simultaneity factor eq. (4). 

 
(4) 

Where   is the total load maximum value and  is the maximum value of bus . ranges between 0 
and 1 if all peak demands occur at the same time. 

2.2. DLOPF model used. 
Performing uncertainty and sensitivity analysis requires many simulations (300 in our case). An electrical 
planning model is used. This DLOPF model takes as initial conditions the Photovoltaic (PV), Wind Turbines 
(WT), and BES available surfaces and possible locations. The main outputs are the optimal scenario for sizing 
and placement of PV, WT, and BES in addition to the network simulation with time series variables.   
 

 (5) 

Such that  

 (6) 

 
(7) 

 

 (8) 

 (9) 

 (10) 

 (11) 

 (12) 

 (13) 
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 (14) 

 (15) 

The optimization model used aims to minimize the Levelized Cost of Energy (LCOE) of the system. The 
objective function is presented by (eq.(5)). It includes the total investment cost ( ), production cost ( ) 
and operation & maintenance cost ( ). This sum is divided by the sum of demand ( ) (in all buses / 

) for the defined period ( ) in years / t: time index ) over a function of the discount rate of 
the project ( ). 
The total investment cost ( ) presented by (eq. (6)) considers: 

 The batteries investment cost ( ) in (eq. (7) where is the maximum energy and  is the battery 
investment cost . 

 The PVs investment cost ( ) in (eq. (8) where   is the installed area of PVs is an optimization 
and  is the PV investment cost per unit of surface . 

 The WTs investment cost ( ) in (eq. (9) where  is the continuous design variable that defines 
the ratio of installed power capacity to a maximum installable capacity ( ) of local wind energy 
and   is WT the investment cost of   

The total actualized operational costs ( ) is represented by Eq. (10).  The  is the actualized operational 
cost of the Classic Generators (CG)s and  is the actualized operational cost of Virtual Generators1 (VG)s.  
Solar and wind power operational costs ( ) are supposed to have very low values since they are clean 
energy sources. The total operational cost for CGs ( ) is given by eq.(11) where both the sum of active ( ) 
and reactive ( ) produced power are multiplied by their corresponding costs (  for active and  for 
reactive). Like Eq.(11), Eq.(12) gives the virtual generation cost ( ).  In each bus, virtual generators have 
generation costs significantly higher than other generators (both  and ). The total operational costs 
of WTs ( ) and PVs ( ) are represented respectively by Eq.(13) and Eq.(14).  is variable according to 
the energy consumed. 

Actualized operation and maintenance cost  is given by Eq.(15). It is dependent on the sizing of WTs, PVs 
and the existing CGs. and their O&M costs  in addition to the existing CGs maintenance costs ( ) 
multiplied by the total installed power of CGs ( ). This cost is a fixed cost for the year regardless of the 
amount of production. The other equations that form the EPSM model are the linearized power flow equations 
of the DLOPF. These equations are the same presented in [21] and [18].   

3. Case study 
A theoretical case study is selected. The chosen topology is a Medium-voltage rural distribution 

benchmark network shown in  
Figure 3. The benchmarking network comprises two separate subnetworks supplied by classic generators 
located in buses 1 and 12. These subnetworks are connected by buses 8 and 14. In this case, WTs, PVs and 
BESs could be added to specified buses concerning available surfaces for PVs and the existing potential of 
WTs. BES systems could also be added within the limit of maximum allowed capacities. This information is 
detailed in Table 1 with the corresponding costs. 

3.1. Output 
For the uncertainty analysis step, 300 simulations of the EPSM are performed. Four different types of output 
indicators are studied:  
 

 Technical indicators of energy production and storage technologies: energy extracted from CG – 
Installed PVs, WTs capacities – Total produced energy – Batteries capacities.  

 Technical grid indicators: branches’ saturation levels – Duration in which this percentage is less 
than 10%   

 
 
1 1Virtual Generators are defined as producers supposed to be added to all the buses to guarantee a feasible 
solution 
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Losses

Figure 3: Medium voltage rural distribution benchmark network [22]

Table 1. Summary of buses specifications

Production 
type Buses Maximum capacity

Costs [23]

Production 
($/MWh fuel) Investment O & M ($/MW/yr)

PV 3,4,7,11,13
=205 W/m²

0 178 ($/m²) 8000

WT 2,3,4,5,10,14
=1000 KW

0 997 000 
$/MW 33000

CG 1, 12 20 MW 36
0 (already 
installed) 10500

VG 10000 KW 109 0 0

BES
2,3,4,5,7,9,
10,11,13,14

100 kWh 0 =350 $/kWh 0

3.1.1.Impact on the economic indicator: LCOE
The impact of load data uncertainty on the economic indicator is important since the objective function here is 
initially based on minimizing the LCOE. The violin plot of Figure 4 represents the shape of the LCOE results 
from the 300 cases generated above. 

Figure 4. Violin plot for the variation of the 
levelized cost of energy in the different cases

Figure 5. Cost details over the lifetime
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The results are centered around the median value (white point) and are almost symmetrically distributed in 
within -15% and +20% of the variation around the median value. The LCOE analysis revealed that the 
randomness of the input variables significantly impacts the LCOE and results in a variation of 28 $/MWh which 
represents millions of dollars over the project lifespan.  
The variation in the LCOE is a combination of variations between the investment, production, and O&M costs. 
These variations are presented in Figure 5. The LCOE variation is mainly due to the investment cost (between 
25$/MWh and 51$/MWh) since this includes the investment in WTs, PVs, and batteries. This LCOE is affected 
to a minor extent by the production cost which is based on the CG production. The O&M cost variation is 
insignificant compared to others and has a negligible effect on the LCOE.   

3.1.2. Technical system indicators 
The impact of uncertainties affects the technical indicators of energy production and storage technologies 
differently. These indicators include the extracted energy from the existing CGs, the installation surface of PVs, 
the fraction of installed WTs, and the total energy produced in addition to the total installed capacity of the 
batteries. The results are summarized in the parallel coordinate plots of Figure 6. 

 

Figure 6. Parallel coordinate plots for the different cases results 

The quality of the input data has no effect on the investment cost of the PVs. The installed area is constant at 
the maximum level for all cases (4000 m²), which means that the model always prioritizes the investment in 
the cheapest production technology compared to the other sources (CGs and WTs) so that the variations in 
investment and production amounts will be concentrated in the CGs and WTs. Moreover, substantial variations 
(16.6%) are shown in the energy extracted from the classic generators (up to 40 MWh) as well as in the 
installation of WTs (50.2%). The variation in the total production (5.94%) is less important than in the WT and 
CG since the sum contains both, and this balances the total variation because tracking the extreme points, we 
notice a maximum energy extracted from CG (225 MWh) that corresponds to a minimum installed WT power 
(4.6 MW) and a minimum CG (187.6 MWh) corresponds to a significant WT (8.6 MW). The variation in the 
WTs and PVs that produce intermittent energy induces the variation in the dimensioning of the batteries that 
aim to compensate for this intermittence. As long as the installed power of PV does not vary, the installed 
power of WT causes this important variation in the battery installation (62.13%).  

3.1.3. Technical grid indicators 
To focus on the network itself, technical indicators are used related to the grids, especially the amount of power 
flowing in the branches. The first indicator is the percentage of saturation of the branches ( ) and the second 
is the time ( ) during which the saturation is low and does not exceed 10%.   

 The percentage of saturation ( ) in apparent power is calculated using eq.(16)  

 (16) 

The power flow behavior is depicted in Erreur ! Source du renvoi introuvable.Erreur ! Source du renvoi in
trouvable. for four different branches of one of the 300 simulated cases during the three typical days.  In the 
high demand period, some branches are almost fully saturated, like branch 3-4; this branch also reaches a 
complete saturation in specific hours in medium (72h to 75h) and low (190h-195h) demand periods. Since this 
branch transmits power to several other branches, it affects the power delivery to the succeeding buses during 
these saturation periods, and therefore, it may influence the installation of generation sources to compensate 
for the lack of power delivery.  
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Other branches do not reach a saturation point that exceeds 60% of their capacity (e.g., branches 11-4). The 
maximum  reached are identified for each branch in the 300 cases. The boxplots of Figure 7 show the 
repartition of the 300 values attributed to each branch. The uncertainties in input demand do not affect the 
maximum saturations of the first four branches. The first 3 branches are saturated most of the time because 
they are responsible for the delivery of energy to other branches. Full saturation is noticed in branches 6-7 
also, and it comes back to the non-possibility of installation of RES and BES on bus 6.  However, the maximum 
saturation rates achieved in the other branches vary by ranges of about 5% (12-13, 13-14, etc.).  

 

Figure 7. Boxplots of the apparent power saturations (a) and the duration of low saturation (less 
than 10 %) (b) in each branch 

 The duration with very low branch saturation is expressed in eq.(17) 

              (17) 

The time during which the branches are within 10% of their saturations over the defined duration is considered 
as a technical indicator for the grid since it concerns the grid’s branches dimensioning and their maximum 
apparent power. The results of the 300 cases are presented in the boxplots of Erreur ! Source du renvoi i
ntrouvable. for each branch.  

 is varying more in the branches where its values are more significant than in those where  is about few 
hours that corresponds to the branches with higher maximum  . The more the branches are saturated, the 
less they reach saturation less than 10%. For better understanding, we select the most critical branches (with 

> 80% and  < 25 hours). The selected branches are, therefore (1-2, 2-3, 3-4, 6-7 and 8-9). The first branch 
(1-2) is critical since it is one of the main branches importing power from the classic generators to an important 
part of the network. The other two branches (2-3 and 3-4) are part of the branch (1-12) that will feed an 
important part of the network; in addition, they contain RES and BES that satisfy their demands first and 
transmit as much as possible for the rest of the network. Branches 6-7 and 8-9 are critical because they are 
connected to buses 6 and 8, where no installation is possible (neither RES nor BES) as shown in Table 1. 
Therefore, these branches deliver power with their maximum capacity to be able to saturate the demand for 
these buses. 

 The grid losses  

The grid losses are estimated by calculating the difference between production and demand. The results are 
presented in the following Erreur ! Source du renvoi introuvable..  In most cases, losses have less than 1% o
f differences since they vary between 7.1 % and 7.8%. In some cases, losses are at the level of 9.8 %, while 
minimum observed losses are around 4%. 

4. Sensitivity Analysis 
The objective of sensitivity analysis is to determine which model parameters are important and their relative 

impact on the results. This gives insights about the efforts or resources needed to reduce the total uncertainty 
of the system's forecasts. Among the different SA technics presented in the literature, quantitative tests are 
made for sensitivity analysis using correlation analysis. 

Tests based on correlation analysis. 
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The Pearson correlation coefficient is widely used in the literature. It measures the association between each 
input considered separately and the output. A number between -1 and 1 measures the strength and direction 
of the relationship between two variables. The correlation is given by the eq.(18). 

 
  (18) 

 

Where  is the number of samples.  
The values of  are interpreted as follows [24]: 

 Between 0 and 1: a positive correlation exists between variables (strong  > 0.5, moderate 0.3<  < 
0.5 and weak 0 <  < 0.3) – when one variable changes, the other variable changes in the same 
direction. 

 0: No correlation (there is no relationship between the variables) 
 Between 0 and -1: a negative correlation exists between variables (strong  < -0.5, moderate -0.3>  

> -0.5 and weak 0 >  > -0.3) – when one variable changes, the other variable changes in the opposite 
direction. 

To perform the Pearson correlation test, both variables should be quantitative. They should be normal or a 
little non-normally distributed. In the studied case, this distribution is visualized by the diagonal of Figure 10. 
In Pearson correlation tests, choosing a sample size of up to 258 variables means a correlation test with a 
power 90%, an error 5% and an alternative correlation 0.2 as detailed in the sample size guideline for 
correlation analysis [25].   
The input parameters are therefore , ,  , , ,  and . The output indicators 
are , , , ,  ,  and  with : bus index, : case index and : branch 
index. The results of the test of linear relationships between the parameters ( , ) and indicators are 
presented respectively in the following Erreur ! Source du renvoi introuvable. and Erreur ! Source du re
nvoi introuvable.. The Pearson correlation index  is calculated for the remaining parameters and 
represented in Figure 10. The indicator of PVs is excluded since it is demonstrated that the uncertainties do 
not affect this investment.  
From Erreur ! Source du renvoi introuvable., it can be noticed that 4 buses (1,3,10 and 14) have marked a
n effect of variances on the output indicators. The increased standardized variances of buses 1, 10 and 14 
cause an increase in the installed WT power and a decrease in the extracted CG energy. The batteries are 
affected by the variances in buses 3 and 14. The LCOE increases with the increase of standardized variances 
of buses 3, 10 and 14. Even if the correlation exists, it is considered weak (  < 0.3). The most influencing bus 
based on variances is the last one (bus 14) since the increase of load variance in bus 14 also causes an 
increase in the duration of minor saturations, and a decrease in losses.  

 

 

 

 

Figure 8. r values resulted from Pearson correlations 
tests of standardized variances ( ) on each bus 
with the output indicators 

Figure 9.  r values resulted from Pearson 
correlations tests of  on each bus with the 
output indicators 

In Erreur ! Source du renvoi introuvable., the results show that 4 buses (1,4,8 and 14) could affect the i
ndicators but also with weak correlations (  < 0.15). An increase in the peak power of bus 1 leads to an increase 
in WT investment and a decrease in CG extraction because this bus conveys power to other buses; when the 
demand increases, the saturation effect of the branch decreases the quantity conveyed, and consequently the 
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system invests more in WTs. Increasing the peak power of bus 8 leads to an increase in battery investment 
since this bus does not contain a RES or BES and is fed from the grid. This increase in peak demand will be 
compensated by the storage of the power injected into the network, and then more investment in batteries.  
The five input macro-parameters correlations with output indicators are displayed in Figure 10. The increase 
of the first parameter (the maximum duration parameter ( )) leads to a decrease in the duration with very low 
branch saturation  (  = -0.15). By the fact that as long as the maximum demand values are reached, the low 
saturations of the branches appear less. 

Figure 10. Tests on the different input parameters correlations with the output 

 
The total energy demands at each demand level calculated by eq.(3) are expressed in Figure 10 respectively 
by  for ,  for  and  for . The values of LCOE increase with the high demand total 
energies  increasing. Thus, E1 has a strong effect (  = 0.56) on the LCOE, while others have moderate 
effects (  = -0.04) for E2 and (  = 0.03) for E3. When the total low demand energy  increases, the extracted 
energy from CGs increases also (  = 0.13) which means that this low-level energy is mainly extracted from 
CGs. This returns to the grid behaviour in the low-demand period when the branch limits are not reached, and 
the energy from the classic generators can be continuously transmitted. In addition, E2 coincides with a period 
where renewable energy is less present and therefore increased use of batteries which is less competitive with 
classic generators. The increasing in  also results in a decrease in the  ( ) because this demand 
period is the one with a high occurrence of the hours of less than 10% of . So, a decrease in the demand 
increases these durations. 
High total energy demand  is the most impactful parameter. An increase in    leads to a strong increase 
in investment in WTs ( ) and, therefore, an increase in battery dimensioning ( ). This leads to a 
decrease in CGs energy extraction ( ) and a significant decrease of the LCOE ( ).  An 
increase in duration is observed ( ). This is because of decentralization of producers (WTs and BES) 
and the limitation of the transition of the power from CGs, which reduces the saturation of the nearest branches 
to CGs after recourse to renewables and batteries.  
The simultaneity factor ( ) has very weak influences on the indicators (  < 0.1).  
The distribution of the parameters is shown in the diagonal of Figure 10. The Gamma test is applied to the 
output indicators distribution, and the results give p-values lower than 0.05, so the hypothesis of this law is 
rejected this means that the probabilities of accepting the hypothesis (the data are gamma-distribut) are less 
than 5% [26].The difference in distributions between the input parameters and the output indicators means 
that the model does not propagate uncertainties in a linear way between inputs and outputs. The distribution 
of most parameters is close to a normal distribution as shown in the distributions of E1, E2, E3, SF, CG, 
Losses, etc. Therefore, the use of Pearson correlations is validated. 

5. Conclusions 
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This paper uses an EPSM model to perform uncertainty and sensitivity analyses. Input macro-parameters 
were defined to describe an quantify the model’s inputs uncertainties. A sensitivity analysis is performed using 
the correlations between the input parameters and the output indicators to identify the most influential 
parameters. The results show that the uncertainties have considerable effects on the results. In economic 
terms, uncertainties lead to a 35% variation range of the LCOE. In terms of system design, there is a need to 
increase the installed capacity of wind turbines, extract more energy from power plants, and/or install more 
BES depending on the case. Uncertainties also affect grid saturation in the branches. The analysis enabled 
the identification of the most important parameter which is the total energy demand during the high demand 
period (winter), as this parameter strongly affects the defined indicators. This makes this parameter a key 
parameter in the sizing of RES, BES and thus in the network planning. 

Nomenclature 
Variables 

 Active power [MW] 
 Reactive power [MVAr] 
 Objective function 
 /  Total operational/investment cost by production 
 Total cost by category 

 Capital Cost 
 Installed surface of PV [m²] 

R Ratio of installed WT capacity [MW] 
 Active energy  
 Correlation parameter 

 Variances 
 Duration of maximum loads  
 Simultaneity factor 

 Percentage of brunch saturation 
 Duration of less than 10% of brunch saturation 

Parameters 
 Elementary operational cost 

 Elementary investment cost  
O Elementary O&M cost 

 Lifetime  
 Lifetime of the overall system 
 Discount rate of the project 

Indices and sets 
 Set of buses,   

 Set of all times,  
 Set of batteries 

Nb Number of batteries 
/  /  /  Indices of buses with CG/VG/PV/WT 
 Iteration number in DLOPF 

 Investment 
 Operation and maintenance 

 Operational 
 Case index 

Upper-scripts 
 /   Classic generator/virtual generator 
 /  / Photovoltaic/wind turbines/Storage 

 BES index  
 Load index at a bus 
 /  Active/reactive power 

 Maximum value for the upper limit 
 Low energy levels 

 Medium energy levels 
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 High energy levels 
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