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Abstract: 
This paper investigates the transfer learning mechanism to improve the prediction accuracy of the energy 
system model. Artificial intelligence techniques are increasingly being adopted in the energy domain to predict 
energy system characteristics and performance. However, in many energy systems, the relationship between 
interested variables and their distributions differs (data and concept drift) with time due to system degradation 
and aging. There is a requirement for re-training and re-testing AI models to ensure reliable performance over 
time, which may require extensive latest operational data. Transfer learning helps to confront this challenge 
by leveraging valuable knowledge from a pre-trained model and reducing the requirement of new operational 
data significantly. To address these issues, this paper focuses on a gas turbine, a critical energy system widely 
deployed in diverse applications, and shows performance degradation over its lifetime. The energy model of 
the gas turbine is a multivariate type that predicts energy efficiency, fuel consumption, and heat energy based 
on power setpoints and weather conditions. This paper examined transfer learning mechanisms that can 
capture the latest characteristics of the gas turbine and their effects on prediction accuracy. The developed 
transfer learning model predicts fuel consumption accurately above 99%, whereas the pre-trained model 
under-predicts up to 4%, which may lead to suboptimal operation decisions when employed in the scheduling 
algorithm. Some of the other targets, such as heat energy, show marginal drift, as expected from the gas 
turbine characteristics. The knowledge gained from the transfer learning mechanism and its efficacy boost 
assists operational decisions, which helps improve energy efficiency and cost savings. 
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1. Introduction 
 
Commercial buildings account for 32% of global energy consumption and are expected to face an annual 
growth of around 1.3% and 2% for the Organization for Economic Co-operation and Development (OECD) and 
non-OECD countries [1]. The building sector wastes around 20% of its energy due to faults in energy systems 
[2,3] which further emphasises the importance of assessing the operational performance of these systems. 
The increasing trend of energy consumption urges efficient monitoring to improve the efficiency and life span 
of these systems and reduce carbon footprints and unnecessary downtime. Decarbonization drives distributed 
energy resources (DER) comprising renewables and local generation to support diverse buildings and 
communities. Urban communities are moving towards local DERs to gain additional efficiency benefits and 
strengthen reliability and resilience. Advancements in smart grids, the Internet of Things (IoT) and artificial 
intelligence (AI) boost adoption to automate and optimize various energy processes. The most common 
applications in buildings are AI-based energy management systems  [4], fault detection and diagnosis [5], and 
load and renewable forecasting [6]. Traditionally, physics-based models were employed to address these 
problems and require more specific information about buildings and technologies [7,8]. Now, AI techniques cut 
short and ease the development and deployment process and offer scalability to larger problems [9] through 
generalized models. Despite the many advantages of these approaches, a major drawback is the requirement 
of sufficiently large datasets to produce accurate models [10]. For example, deep learning models not only 
require large datasets but also extensive training times and computational resources [11], and often compiling 
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such a dataset can be expensive, time-consuming, and even impractical on certain occasions[12]. This study 
focuses on developing an AI model of a gas turbine using minimal latest operational data and exploiting most 
of the information from the pre-trained model.

1.1 Importance of Learning Models
The performance of energy systems degrades over time; some of the performance losses can be recovered 
through proper maintenance, whereas the non-recoverable losses are due to system wear and tear. Such 
situations may change the characteristics and performance of the energy system, i.e., the changes in the 
outputs (dependent variables) for given inputs (independent variables). This process is often referred to as 
concept drift in literature. It is pre-eminent that predictive models operating in such settings need to account 
for these changes to retain prediction accuracy. Learning methods are widely used to address some of the 
performance drift challenges involving data shortages. The learning methods apply a knowledge transfer 
process and achieve substantial improvements in many domains, including computer vision, natural language 
processing, speech recognition, bioinformatics, and reinforcement learning [5].

Adaptive learning techniques are applied in dynamic environments where the performance data (system 
characteristics) varies with time. Adaptive learning consists of four building modules comprising memory, 
change detection, learning, and loss estimation [13]. The memory module updates the latest information and 
simultaneously discards irrelevant old information. The change detection module characterises and quantifies 
concept drift by examining data and its distribution between two-time windows, as well as validating the 
predicted values with actual measurements. The learning module updates the prediction model through 
retraining and the incremental method. The retraining mode discards the existing model and develops a new 
model using both old and new data [14]. In contrast, incremental methods update the current model with the 
most recent data as it becomes available. The final module is loss estimation, which is related to performance 
metrics used to estimate the algorithm performance during adaptive learning. Several articles incorporated 
adaptive learning to account for degradation in their workflow, thus improving the efficiency of systems. These 
studies focus on batteries and fuel cells, which are prone to significant capacity degradation. Li et al. developed 
a fuel cell degradation model for a hybrid bus energy management system to account for different decay rates 
during varying operating conditions [15].

On the other hand, transfer learning uses the knowledge gained in one problem and applies it to a different 
but related problem, such that the development process is simple and eliminates the need for development 
from scratch and a complete dataset [16]. Lu et al. applied transfer learning to tackle limited data for improving 
the thermal load forecasting model and developed a similarity measurement index to select a source task that 
is most like the target task [17]. Chen et al. [18] proposed a neural network based on control theory for fault 
detection in actuators and utilized transfer learning to account for degradation in the system. In the context of 
degrading energy systems, transfer learning aims to update a pre-trained NN model using the latest operation 
data to capture the changes in the system's behaviour. This type of problem is categorized as domain 
adaptation, where the model inputs and outputs are still within the same space, but the distribution or system 
characteristics change due to ageing [19]. Figure 1 shows a general overview of the domain adaptation 
problem, where the neural network model is developed using a comprehensive dataset, resulting in a pre-
trained network. Later, this pre-trained model is adjusted or fine-tuned using the latest dataset to capture the 
behaviour and performance of the current state of the system. During the finetuning process, the learned 
weights and biases of the pre-trained model are further adjusted to minimize the loss function in relation to the 
latest operational data. The fine-tuning process usually leads to shorter training periods because the pre-
trained model has already learned useful features.

Figure. 1. General schematic of transfer learning for domain adaption problem
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In energy systems, transfer learning has been applied to a variety of problems. Liu et al. designed a 
convolution-based neural network (CNN) to diagnose faults in building chiller plants [5]. Besides transfer 
learning, other methods solve similar problems involving data limitations; for example, semi-supervised 
learning takes advantage of unlabeled data together with some labeled data to improve prediction performance 
[20], but both datasets are required from the same distribution. Multi-view learning leverages multiple different 
feature sets or views available for additional data description [21]. This study aims to comprehend the transfer 
learning mechanism and develop transfer learning models to improve the prediction accuracy of the energy 
system. This study investigates and compares two transfer learning mechanisms that can capture the changes 
in the energy system characteristics (referred to as data drift) with the limited latest operational data and extract 
other useful information from the pre-trained model.

2. Methodology - Transfer Learning for Degraded Energy Systems
     In degraded energy systems, the transfer learning mechanism is to improve the prediction accuracy of the 
AI model by using the latest operational data and capitalizing on useful information from the pre-trained AI 
model. To achieve this, firstly, an AI model was developed using the comprehensive dataset to depict the initial 
characteristics of the system. Later, this pre-trained model is adjusted to capture the latest characteristics as 
the performance of the system degrades. The adjusted model is often referred to as the fine-tuned model. In 
such situations, the dataset representing a degraded system may be limited; however, this requirement is 
acceptable as this data does not need to represent all characteristics of the system. Figure 2 shows the 
schematic of the transfer learning mechanism, where data processing is the starting point to extract useful 
information (i.e., features and targets) from the operational data and eliminate outliers and noise. Develop a 
multi-layer perceptron neural network (MLP-NN) model to predict energy system behaviour and performance. 
Data normalization was employed as a pre-processing step to improve model convergence and prediction 
accuracy, whilst K-Fold cross-validation was used to evaluate model performance considering the network 
architecture with different hidden units, which defines the complexities of the model that can be varied to 
achieve desired prediction accuracy. The deployment of the developed NN model in the energy management 
system supports scheduling algorithms in deriving key operation setpoints and dispatch decisions.

Figure. 2. Schematic of Transfer Learning Mechanism

The performance or prediction accuracy of the developed model is expected to drop over time due to changes 
in the actual system. Eventually, this model will become obsolete and not useful. Transfer learning helps to 
revitalise the prediction model using the latest operational (limited) data and critically utilize the useful 
information from the pre-trained model. Transfer learning can be carried out in different fashions, such as 
finetuning or updating the coefficients of the output layer or the whole pre-trained NN model using the latest 
operation data. This mechanism requires less data compared to the NN model developed from scratch. The 
transfer learning mechanism also helps to include or exclude targets to support any changes in the prediction 
model requirements. The next section will describe the workability and benefits of the transfer learning 
mechanism for the energy system application.

3. Case Study – Gas Turbine and Performance Prediction
Generators, renewables, and energy storage are the key distributed energy systems that help to generate, 
store, and support various forms of electrical and thermal energy. In the long run, some of the DERs show 
performance degradation due to wear and tear, especially those types of equipment with rotation or fast-
moving parts. Even a non-rotating system such as solar PV and batteries shows performance degradation due 
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to ageing and depreciation of internal components. Interestingly, the solar PV manufacturer provides the 
expected performance degradation, whereas for other DERs, equipment usage and operation patterns play a 
dominant role in the performance degradation. This study focuses on gas turbines' critical distributed energy 
resources, categorized as a dispatchable system where the operation can be easily controlled based on the 
power requirements to fill the power deficit and synchronize with the grid frequency to absorb the fluctuations. 
This section will describe the necessity of a transfer learning algorithm for the gas turbine model and its 
benefits.

Figure. 3. Schematic of Gas turbine and AI-based prediction model

Gas turbines are widely employed to generate electrical power using clean fossil fuels such as natural gas, 
and even the waste heat available in the exhaust gas is recovered to support thermal loads. Figure 3 shows 
the schematic of a gas turbine, where fuel and air drive the turbine to generate power and exhaust gas. The 
heat energy in the exhaust gas has the potential to produce steam or hot water when diverted through boilers 
or heat exchangers. The recovered heat energy can be utilized in exhaust-driven absorption chillers to produce 
chilled water for air conditioning purposes [22]. Gas turbines are available in diverse capacities, ranging from 
a few kW to over hundred MW scale. Like any other system, a gas turbine provides high efficiency at rated 
conditions and low efficiency during off-load conditions. The life of the gas turbine is around 150000–200000 
hours, or 20 years with regular maintenance and overhauls. Experts and manufacturers confirm that this 
system shows performance degradation over time; some degradation effects are recoverable through proper 
and regular maintenance [23], whereas performance degradation due to ageing (due to wear and tear) are 
permanent and cannot be recovered. Any degradation in performance could result in sub-optimal operation 
conditions, affect the energy cost, and incur the risk of supply shortages. Therefore, actual performance needs 
to be accurately accounted for to understand the operation cost of the gas turbine and decide on the right 
combination of systems for dispatching purposes. 

Commonly, performance charts or technical data were widely used to gauge power output, fuel consumption, 
and fuel cost. Unfortunately, it is quite abstract and covers design conditions at standard temperature and 
pressure. Experts exploit physics-based models to generate performance charts for diverse conditions [24], 
this study utilized the gas turbine simulator adapted from TRNSYS to generate the performance data and 
understand the effect of degradation on the performance factors. TRNSYS is a state-of-the-art commercial 
simulation tool for industry and academia, based on an object-oriented approach that enables the simulation 
of the transient behaviour of systems focused on assessing the performance of thermal and electrical energy 
systems. The software is made up of two main parts: a simulation engine to solve the dynamic mathematical 
problem and a large library of built-in components or types (e.g., gas turbines, compressors, pumps, mixers, 
diverters, heat exchangers, etc.), often validated by experimental data. Type 625 has been adopted, utilizing 
technical data and performance maps of 3.5 MW gas turbines [25]. Exploiting the Type 625 model, the gas 
turbine performance parameters are derived for diverse output power and inlet air temperatures. Figure 4 
shows the performance characteristics of a new gas turbine, where the fuel consumption increases with the 
output power and the air intake temperature. The air temperature and output power also show an effect on the 
exhaust gas flow and temperature.
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(a) Variation in the exhaust gas temperature (b) Variation in the exhaust gas flow 

 

 
 

(c) Variation in the fuel consumption 

Figure. 4. Performance characteristics of Gas Turbine (without degradation) with reference to part-load 
behaviour and air intake (ambient) temperature 
 

Model GTD is a multi-layer perceptron (MLP-NN)-based neural network architecture prediction model 
developed using the performance data (17x15 = 256 data points covering 17 part loads and 15 air 
temperatures) representing a new gas turbine. Data normalization is applied explicitly to ease the convergence 
process and prevent any bias due to different data scales. Due to a smaller number of data po ints, K-Fold 
cross-validation was employed during training to obtain a more accurate estimate of the model's performance. 
The model GTD was trained using an ADAM (Adaptive Moment Estimation) optimizer with mean squared error 
as a loss function. The training epochs and the model complexity (hidden units of 8, 16, 32, and 64 units) are 
varied to identify the right architecture that provides acceptable accuracy during training and validation. Finally, 
the Model GTD with 64 hidden units was able to predict the gas turbine outputs with the required accuracy of 
0.998 R2 on the validation set. 
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Figure. 5. Actual Exhaust Gas and Model GTD predictions (R2: 99.8%)

Figure. 6. Actual Fuel consumption and Model GTD predictions (R2: 99.8%)

The accuracy of the developed Model GTD model is shown in Figures 5 and 6. This model helps the scheduling 
algorithm make optimal operational decisions on an hourly or sub-hourly basis. The normalizers and 
coefficients, or weights, of the prediction model are preserved for later use.

4. Performance of Pretrained and Transfer Learning Models
The Model GTD prediction is expected to deviate over time because the actual gas turbine 

characteristics drift due to ageing and degradation. Any inaccuracy in the prediction could lead to suboptimal 
or inferior scheduling or operation decisions that may result in high energy costs or a potential supply risk. To 
retain prediction accuracy, a new prediction model needs to be developed from scratch using the latest 
operational data. In a real application, the gas turbine's operation depends on the loads and operation of other 
integrated energy systems. Therefore, it is challenging to get the latest performance data over a wide range. 
The possible collection of real-time operational data is limited and not comprehensive. In such cases, the 
transfer learning algorithm helps to develop the prediction model for the degraded system by capitalizing on 
the available information in the pre-trained model and the limited new performance data. This study leverages 
TRNSYS software to derive the performance data of the degraded gas turbine by applying reported 
recoverable and non-recoverable performance losses [28]. To account for the practical situation, only a few 
operational data points (roughly 10% of the 256 data points) of the degraded system were randomly selected 
for transfer learning.
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Previously trained Model GTD (with the same architecture and coefficients) are employed in transfer 
learning. The key advantage is that the preserved coefficients of the pre-trained model were adjusted instead 
of learning from a fresh start. 

  Model TL1 is the transfer learning model developed by updating the coefficient of the whole pre-
trained model (Model GTD) using the latest available operational data.  

 Model TL 2 is the transfer learning model developed by updating the output layer coefficient of the 
pre-trained model using the latest available operational data.  

Interestingly, transfer learning requires less effort at around 100 epochs for coefficient adjustment to achieve 
reasonable predictions. 
 

 
 

Figure. 7. The actual and predicted gas turbine outputs (exhaust gas temperature, exhaust flow and fuel 
consumption)  

Figure 7 shows the accuracy of three prediction models, Model GTD, Model TL1, and Model TL2, with 
reference to the latest operational data comprising 256 points. Model GTD failed to predict the gas turbine 
performance accurately, and it deviates significantly in the fuel consumption estimation (as shown in Figure 8). 
Even the predicted exhaust temperature values deviated moderately from the actual values. The Model TL1 
provides better performance than the Model GTD, and interestingly, the predicted fuel consumption and 
exhaust gas flow are within the acceptable range. On the other hand, the predicted exhaust gas temperature 
deviates to a certain extent, especially at partial loads. Model TL2 provides superior performance over Model 
GTD and Model TL1. The prediction accuracy is around 99.5% (R2), within acceptable limits. Generally, Model 
TL2 is preferred when the user requirement (output variable or number of output variables) changes or its 
distribution changes. Consequently, Model TL1 is expected to perform better because all coefficients are 
adjusted using the latest operational data. Some of the deviations could be due to limited data. 

  

Figure. 8. Error distribution in the predicted gas turbine outputs (exhaust gas temperature, exhaust flow and 
fuel consumption) 
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Fuel consumption is the key variable that greatly reflects the operation cost of the gas turbine. Regarding fuel 
consumption, the performance of Model TL1 and 2 are similar, showing marginal differences at certain data 
points. Deploying Model TL1 or 2 in the scheduling algorithm can improve operational decisions that lead to 
improvements in energy efficiency and a reduction in energy costs. Applying transfer learning regularly (once 
or twice) in a year is important to prevent plant-model mismatches by retaining the accuracy of the prediction 
model and safeguarding optimal operation decisions. Through careful deployment, this process can be 
automated to reduce manual involvement by predefining the data extraction, training, and update rules. This 
approach can be applied to other energy systems, especially those subjected to performance degradation over 
time, such as chiller systems, heat exchange equipment, etc. In summary, the performance of certain energy 
systems degrades significantly over time. Not accounting for the performance degradation could lead to 
suboptimal or inefficient operations of energy systems. While deriving the operational decision, the actual 
performance characteristics are essential to derive optimal operation set points. Therefore, the prediction 
model needs to be updated regularly to capture changes in the energy system's characteristics. In this context, 
transfer learning could assist in retraining or updating the prediction model with the limited operational data to 
capture and predict the performance of the degrading energy systems.  
 

Conclusion 
This study developed transfer learning models for the gas turbine system to improve prediction accuracy by 
eliminating plant-model mismatch and supporting operational decisions to gain energy and cost savings 
through efficient operations. The pretrained model cannot predict the degraded system performance and 
shows significant deviation, which highlights the need for transfer learning. Two transfer learning mechanisms 
were explored: Model TL1 was obtained by tweaking the coefficients of the whole pre-trained model, and 
Model TL2 was developed by tweaking the coefficients of the output layer alone. Both mechanisms utilized the 
latest (and limited) operational data and capitalized on most of the information from the pre-trained model. 
Interestingly, both models provide better accuracy than the pre-trained model. Comparing transfer learning 
models, TL2 outperforms TL1, which could be due to limited data availability to fine-tune all coefficients. 
Deploying Model TL1 or 2 in the scheduling algorithm could reflect the actual performance of the gas turbine 
and improve the operational or economic dispatch decisions for high energy efficiency and optimal energy 
cost. This approach can be applied to other energy systems whose performance characteristics are expected 
to change over time due to ageing and degradation. 

 
Nomenclature 
Abbreviations 
ADAM adaptive moment estimation 
AI artificial intelligence 
CNN convolution neural network 
DER distributed energy resources 
IoT internet of things 
MLP multi-layer perceptron 
Model GTD gas turbine model at design condition 
Model TL1 transfer learned model by updating the coefficient of the whole pre-trained model 
Model TL2 transfer learned model by updating the output layer coefficient of the pre-trained model 
NN neural network 
OECD organization for economic co-operation and development 
PV photovoltaic  
R2 coefficient of determination   
TL transfer learning 
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