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Abstract:
The energy system of residential buildings and their impact on the transition towards an emission-free energy
supply has been a focus in a wide range of studies over recent years. For the design of energy systems, a vari-
ety of methods are used, most commonly heuristic, mathematical optimization and metaheuristic approaches.
While the strengths and weaknesses of these methods are well known, knowledge about the discrepancy in
results produced for the design of energy systems is limited. Moreover, metaheuristics have rarely been uti-
lized in the field of household energy system planning. This leads to problems whenever findings from different
studies are compared and raises the question about the optimal choice of methodology under given circum-
stances. To approach this question, we examine the energy system of a residential building with two different
methods - a mathematical optimization and a metaheuristic optimization applied to the same MILP model. The
energy system model considers a PV system, a heat pump, a heat and a battery storage system as well as
a gas boiler. The layout and size of these components along with their operation are optimized. We compare
the results regarding the difference in layout and size of individual components, investment costs, operational
costs, CO2 emissions and computational performance of the methods. In this case study, the mathematical
optimization resulted in the best Pareto front. Using the metaheuristic approaches, it is possible to compute a
Pareto front in a considerably shorter time. However, the quality of the Pareto front is significantly worse.
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1. Introduction
The design and operational optimization of energy systems, considering renewable energies and the resulting
temporal resolution, is a complex mathematical problem. The complexity of such optimization problems in-
creases strongly with an increasing number of variables, local optima, and non-linearities, which also leads to
increasing computational effort [1]. In general, global optimization algorithms can be divided into two methods:
Deterministic methods also called mathematical optimization and probability-based methods referred to as
metaheuristic optimization. In the past energy systems and especially unit commitment problems were mostly
modeled as Linear Programming (LP) or Mixed Integer Linear Programming (MILP) optimization models [2]
and solved using mathematical optimization techniques such as the branch and cut algorithm. Today, various
metaheuristics are widely used to solve unit commitment problems [3] and are even predicted to become the
standard for design optimization problems in the near future [4, 5].
While mathematical optimization is guaranteed to find the global optimum of a feasible problem, the complexity
of global optimization problems can become so large that the global optimum cannot be found within a rea-
sonable time. [6, 7] Metaheuristic methods, on the other hand, can solve complicated models in a shorter time
frame, but do not guarantee the optimality of the results [8].
Since both solution techniques have their advantages, it is important to have a decision guide when to use
which technique. Nevertheless, there is little research on how metaheuristics compare to other solution tech-
niques such as mathematical optimization and heuristics in the field of energy system optimization. This paper
aims to make a start in filling this research gap by comparing the performance of two popular metaheuristics,
the Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO) [9] and the Non-dominated Sort-
ing Genetic Algorithm II (NSGA II) [10], with the performance of classical mathematical optimization on a MILP
model for the design optimization of an energy system. The two selected metaheuristics are based on two
different approaches.The NSGA-II is based on the principle of survival of the fittest, i.e. inheritance, mutation
and selection of the best genes or, in this case, the decision variables. The SMPSO, on the other hand, is
based on the flocking behavior of birds and schools of fish, and takes into account the speed of the neighbor
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as well as a random change in the speed parameter.
There is a significant amount of papers comparing different metaheuristic algorithms [11, 12, 13, 14] but only
a little research on how different solving techniques like metaheuristics, heuristics and classical mathematical
optimization perform compared to each other, especially regarding the differences in results.
In Suh et al. [15] it is shown that metaheuristics outperform the heuristic layout of professionals by far in terms
of finding the global optimum for this case study. Here, the layout refers to building decisions such as window
area, insulation thickness and light bulbs.
In Silveira et al. [16] five different metaheuristics are compared to MILP, MINLP and MISOCP with classi-
cal optimization. As a case study, three different configurations of distribution systems are considered. The
computational time of the metaheuristic optimization was significantly shorter than that of the mathematical op-
timization. For large problems, metaheuristics even found a better solution with regard to the objective function
than classical mathematical optimization.
Stojiljković et al. [6] and Schmeling et al. [17] use a combined approach where the optimization problem is
decomposed into two new problems. The main problem is the design optimization including synthesis, which
is solved by a metaheuristic. The subproblem is the operational optimization, which is formulated as a MILP
and solved by the brunch-and-cut method. The authors did not compare the results with solving the original
problem using the branch-and-cut algorithm directly on the design optimization problem. However, it is note-
worthy that the proposed approach has the potential for a comparison between metaheuristic algorithms and
mathematical optimization, since the same constraints can be used to model the individual components of the
power system.
In the following, we will compare the decomposed metaheuristic design optimization with a mathematical de-
sign optimization also referred to as structural optimization approach using MILP only.

The remaining sections of this paper are structured as follows: Section 2. provides an overview of the case
study used to compare the methods. Section 3. introduces the unit commitment model used for design
optimization and the corresponding metaheuristic approach. Section 4. presents and compares the results of
the case study. Finally, section 5. discusses the results and draws relevant conclusions.

2. Case Study: Residential building energy system
Decarbonizing the building stock is a major challenge. As most of the existing building heat demand is met by
fossil fuel-fired boilers, there is a high demand to find optimal solutions considering alternative technologies
that reduce local emissions at minimal cost. Therefore, in this study, a residential building is chosen to test
different approaches for designing energy systems as a problem with high practical relevance. A key strategy
for decarbonizing building energy systems is to switch from combustion-based towards electricity-based heat
supply combined with local electricity generation. Therefore, the design optimization of the energy system in
this study considers a gas boiler, an electric heat pump for heat generation combined with heat storage. Local
electricity can be provided by a photovoltaic system combined with battery storage. All components can be
considered as options for the optimization algorithm. Thus, not all components have to be part of the final
solution of the corresponding optimization problem. The full set of technology options and the possible energy
flows in the system are given in Figure 1.
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Figure 1: Schematic representation of the residential building energy system

The energy prices used in the model are form 2021. The emission data and the energy prices are listed in
Table 1.

Table 1: Energy prices and CO2 emissions

Data type Costs CO2 Emissions
Electricity 0.337[C/kWh] [18, 19] 478 [g/kWh][20]

Gas 0.083 [C/kWh] [21, 22] 247 [g/kWh] [23]
PV feed-in tariff 0.073 [C/kWh] [24] -

The investment costs for the various components are listed in Table 2.

Table 2: Investment costs of the components

Component Cvar Cfix
Photovoltaics [25] 1260[C/kWp] 258 [C]
Heat pump [20] 426 [C/kW] 7072 [C]
Gasboiler[20] 445 [C/kW] 724 [C]

Heatstorage[26] 1000[C/kWh] 600 [C]
Battery (capacity)[27] 432 [C/kWh] 2130 [C]
Battery (inverter)[28] 150[C/kW] -

The demands are modeled by using the open source tool districtgenerator [29] released by E.ON Energy
Research Center, RWTH Aachen which is based on validated models from other research projects. It offers
the possibility to define residential districts by specifying archetype buildings and generating building-specific
energy demand profiles. The occupancy and corresponding electricity profiles are generated by a stochastic
model based on [30]. The occupancy data is used to model the heating demand by modeling the domestic
hot water consumption based on [31]. The space heating demand calculations are based on a 5R1C model
according to EN ISO 13790 [32], where the corresponding building parameters are given by TABULA archetype
buildings [33]. For this study a single building is defined. The building type is defined as a multi family house.
The construction year is set to 1990 and the retrofit state according to TABULA [33] is a assumed to be in
an usual refurbishment state. The reference floor area is defined as 778 m2. The location is set to Potsdam
(Germany) and the corresponding TRY dataset is used for the weather profiles.
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3. Optimization models
In this section, the energy system model is described, starting with the unit commitment model for energy
system operation, which forms the basis for both mathematical optimization and metaheuristic approaches.
Next, the extensions to the unit commitment model necessary for design optimization are presented. Then, the
modifications made to the unit commitment model in order to use the model with the metaheuristic algorithms
are summarized. Finally, the metaheuristic method and the optimization setup are described.
3.1. Model for energy system operation
A mixed-integer linear unit commitment model is used as the base model for both the mathematical design
optimization and the metaheuristic optimization. The model is implemented using the energy system optimiza-
tion framework oemof. The household demand for electricity, heat, and hot water are modeled as sinks. The
gas and electricity grids are represented as sources. The PV generation profile is simulated using a PVLib [34]
model. For all other energy system components, we used the base class Transformer to write our own models.
These models are briefly described below:
Let T be the set of all time steps that are considered in the optimization.
All components are limited by a maximum power rating Pel/th,max , either electric power or heat. Except for the
heat pump and the gas boiler, all components are allowed to operate between 0 and this maximum power
rating.

0 ≤ Pel/th(t) ≤ Pel/th,max for all t ∈ T (1)

For the heat pump and the gas boiler a minimum part load MPL is set as a percentage of the maximum power
rating. To allow the output power to be zero, the binary variable Yop is introduced.

Yop(t) · MPL · Pel/th,max ≤ Pel/th(t) ≤ Pel/th,max for all t ∈ T (2)

The COP of the heat pump is modeled as ambient temperature dependent:

Pth(t) = Pel (t) · cop(T (t)) for all t ∈ T . (3)

The efficiencies of the boiler and the battery storage are modeled as constant. The storage level is limited by
a maximum storage capacity for both the battery and the thermal storage. The battery has no self-discharge,
while the thermal storage has both temperature-dependent and level-dependent losses, which are calculated
using the volume, the volumetric thermal transmittance and the density of the storage medium. The objective
function of the model is to minimize the operating costs of the energy system, consisting of fuel and electricity
costs for purchasing gas and electricity from the respective grid. Electricity produced by the PV system that
is not consumed but fed back into the grid is compensated by the respective feed-in tariff. CO2 emissions are
calculated using constant emission factors assigned to the consumption of gas and electricity from the grid.
3.2. Design optimization model for the mathematical optimization
To transform the unit commitment model into a design optimization model constraints regarding the sizing of
the components are added to the optimization problem. Additionally, the maximum power rating parameter
Pel/th,max of the unit commitment problem becomes a variable in the design optimization problem. To limit the
solution space the maximum power rating is limited by PMAX .

0 ≤ Pel/th,max ≤ PMAX (4)

In order to limit the solution space and thus the computation time, lower and upper bounds for the parameter
PMAX are introduced. The lower bound is set to zero and the upper bounds are determined by analyzing the
energy demand, such as the maximum required heat output. For the PV system, the available roof area is
used as the limit. When Pel/th,max is zero the component is not built.
In both storage models, not only the capacity but also the maximum electrical/thermal power is optimized. For
the battery, a power-to-energy ratio is implemented, to ensure a realistic battery layout. Furthermore, the total
charged energy is limited according to cycle and calendar lifetimes.

∑
t∈T

Pin(t) ≤ Capacity · Lifetimecycle

Lifetimecalender
(5)
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We perform a multi-objective optimization with two objectives, the total annual cost of the system and the
annual CO2 emissions, to compute a Pareto front. For this purpose, the energy system is first optimized with
respect to costs only. Here the objective function is the systems total annual costs (TOTEX ).

TOTEXannual = CAPEXannual + OPEXannual . (6)

with OPEXannual the grid energy costs and maintenance costs for one year and CAPEXannual the investment
costs annualized over the lifetime of the technology. Since the relation between the size of a component and
its price is not linear, the CAPEX is calculated using a fixed Cfix and a variable Cvar price component.

CAPEX = Cfix + Pel/th,max · Cvar (7)

To build the Pareto front, an epsilon constraint is added to the optimization problem. This constraint limits the
total annual CO2 emissions of the system to x percent of the CO2 emitted in the cost optimal case.

CO2total ,annual ≤ CO2total ,annual ,costoptimal ·
x

100
(8)

In our case, x is decreased in steps of 2.5 starting at 100 (the cost optimal case) and stopping at 50 (a near
CO2 optimal case). No exclusively CO2 optimization is carried out.
3.3. Metaheuristic optimization
The optimization problem has been decomposed into two subproblems, as proposed in [17]. The selection
and sizing of the technologies here referred to as metaheuristic design optimization and the operational opti-
mization of the resulting energy system (cf. Figure 2). The design optimization passes a set of variables to the
operational optimization which returns the annual costs and emissions for each set of variables. Afterwards,
the metaheuristic design optimization selects a new set of variables according to the KPIs, here CO2 emis-
sions and TOTEX, and passes it back to the operation optimization. The process ends when the termination
criterion, here the computation time limit, is reached.

Figure 2: Two-level design optimization

The operation optimization is performed with the same unit commitment model described in 3.1.. The MILP
is solved with Gurobi using a branch-and-cut algorithm. The emissions during the operation are limited by an
emission factor to achieve comparable results to the MILP design optimization, which indirectly optimizes the
operation to meet the global emission limit.
The main problem of design optimization is solved by a metaheuristic algorithm. The algorithm can determine
the dimensions and capacity of the technologies and limit the emissions of the operation by an emission factor.
The upper and lower bounds are set exactly as described in 3.2.
Analogous to mathematical optimization, two objective functions are used for metaheuristic optimization: The
total annual costs and the total annual CO2 emissions.
The metaheuristic optimization is done with the python package jmetalpy which uses the java-based framework
jmetal.
3.4. Optimization Setup
In this section we give some insight into our setup and the software and settings we used. The calculations
were performed on a computer with an Intel(R) Xeon(R) W-1390P @ 3.50Ghz and 128 GB RAM.
The design optimization MILP is solved with Gurobi Optimizer version 9.1.1 using up to 16 threads. A mipgap
of 0.01 and a time limit of 6 hours per optimization is used. If the time limit is exceeded, the best solution and
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the resulting mipgap are saved and the epsilon constraint method is continued.
The operation optimization MILP is solved with the same solver and solver settings except for the time limit,
which is set to 5 minutes. The metaheuristic design optimization uses the default settings of the respective
algorithms as presented in jmetalpy. In contrast to mathematical optimization, in metaheuristic optimization, it
is not clear whether the global optimum has been found. Therefore, a termination criterion is needed. In order
to be able to compare the results of the two methods, a time limit is set as the termination criterion. To make
the results of the metaheuristic optimization reproducible, the same random seed is used for all algorithms and
runs. All optimizations are computed for a whole year with a time resolution of one hour, i.e. 8760 time steps.

4. Results and Comparison
In this section, we analyze the results of the case study. We begin by examining the metadata of the algorithms
used, followed by a comparison of the Pareto fronts. We then take a closer look at the actual energy systems
built for the Pareto solutions.

Table 3 summarizes metadata such as the number of non-dominated solutions and the total computation time.
A time limit of 20.15 hours and 5 hours was implemented for the metaheuristic methods, as well as a vari-
ation of the population or swarm size of 10 and 100. It can be seen that the termination criterion was not
exactly met. Both NSGA-II and SMPSO exceeded the time limit. The population and swarm size appear to
have a direct influence on the time limit violation. It seems that the termination criterion is applied only after
the total generation has been computed. Mathematical optimization using the epsilon constraint produced 19
non-dominated solutions and two dominated solutions. The observed phenomenon is a direct consequence
of the results reported in the recent research [35], which concluded that the epsilon constraint approach fails
to accurately compute the true Pareto front. As a result, the use of lexicographic optimization is proposed to
compute the true Pareto front. The metaheuristic methods found significantly more non-dominated solutions
and total feasible solutions than mathematical optimization with the 20-hour time limit. Reducing the popula-
tion/swarm size resulted in more optimizations and feasible solutions for both algorithms. For NSGA-II, the
number of non-dominated solutions also increased significantly. For SMPSO, the number of non-dominated
solutions decreased from 48 to 46.

Table 3: Meta data of the optimization

Method MILP NSGA-II NSGA-II NSGA-II SMPSO SMPSO SMPSO
time limit [h] N/A 20.15 5 20.15 20.15 5 20.15
total time [h] 20.15 21.40 5.40 20.19 21.66 5.55 20.18

population/swarm size [-] N/A 100 100 10 100 100 10
generations [n] N/A 12 3 140 10 3 121

total optimizations [n] 22 1200 300 1400 1000 300 1210
time limit reached [n] 0 11 5 1 11 5 10

infeasible [n] 1 259 91 226 279 94 470
feasible [n] 21 930 204 1173 710 201 730

non-dominated solutions [n] 19 38 14 85 48 22 46

Figure 3 shows the Pareto front of the different design optimization methods. The mathematical optimization
Pareto front, hereafter referred to as the MILP Pareto front, is used as a reference in all subsequent figures.
The computation time of the methods in this figure is about 20.15 hours (see Table 3) and the population and
swarm size is set to 100. The solutions of the mathematical optimization for the case study lead to the best
Pareto front in both dimensions. This implies that the Pareto front contains the most cost-optimal and CO2
efficient Pareto points, in terms of all three algorithms. In this example, we observe that the SMPSO algorithm
outperforms the NSGA-II algorithm in terms of finding the cost-optimal solution. However, we found that the
NSGA-II algorithm was closer to the MILP front at the bending point of the Pareto curve. In other words,
NSGA-II comes closer to the ideal point in Figure 3 than SMPSO. On the other hand, the emission-optimal
point found by the SMPSO algorithm is more cost-optimal and has lower emissions than the one found by
the NSGA-II algorithm. The emission-optimal solutions found by the metaheuristic methods are much more
expensive than the emission-optimal solution of the MILP solution. In addition, the metaheuristic Pareto fronts
continue to separate from the MILP Pareto front as emissions decrease.
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Figure 3: Pareto MILP, NSGA-II and SMPSO (20h time limit and population/swarm size of 100)

In Figure 4, the Pareto front of the MILP mathematical optimization from Figure 3 with a computation time of 20
hours is compared to the metaheuristic methods with a computation time of about 5 hours. The metaheuristic
solutions are now much further away from the MILP Pareto front. For the same CO2 emissions, the meta-
heuristics incur significantly higher total annual costs than the MILP Pareto solutions. This effect increases
significantly with decreasing CO2 emissions. The SMPSO, in contrast to the NSGA-II, found a point particu-
larly close to the MILP Pareto front. Compared to the NSGA-II, the SMPSO found the solution with the lowest
emissions and the solution with the lowest total annual cost.

Figure 4: Pareto MILP, NSGA-II and SMPSO (5h time limit and and population/swarm size of 100)

In Figure 5 the population/swarm parameter was set to 10. The time limit here is 20.15 hours, as in Figure
3. The Pareto fronts of the NSGA-II and the SMPSO are close. The Pareto front of NSGA-II covers a smaller
solution space than that of SMPSO. Compared to Figure 4, the Pareto front of the metaheuristics is much
smoother. The NSGA-II and SMPSO perform slightly better with a swarm/population size of 10 in the emission
optimal range. This could be due to the significantly higher number of generations. Compared to Figure 3, the
algorithms perform better in some parts of the Pareto front and worse in others.
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Figure 5: Pareto MILP, NSGA-II and SMPSO (20h time limit and population/swarm size of 10)

Closer examination of the energy systems built for the Pareto optimal solutions for the 20h mathematical
optimization and the 20h metaheuristics with a population/swarm size of 100 reveals significant differences
between the mathematical optimization and the metaheuristics. Figure 6 show the components and their sizes
for all Pareto optimal results. The plots are sorted from cost optimality on the left to CO2 optimality on the right
.
Regarding the mathematical optimization, the capacity of the heat producers increases moderately across all
solutions, as shown in 6a. It is noteworthy that only in the cost-optimal case no heat pump is built. For the next
Pareto point, the gas boiler capacity decreases slightly and a heat pump is installed. Interestingly, the boiler
and heat pump capacities remain almost constant for ten Pareto points until a tipping point is reached where
no gas boiler is installed and the heat pump provides the whole heat demand.
Conversely, for both metaheuristics, a gas boiler is built for all Pareto optimal solutions.
For the NSGA-II algorithm, the gas boiler capacity initially decreases as emissions decrease, but then in-
creases significantly for the last eight CO2 optimal solutions, so that the gas boiler capacity for the cost-optimal
and emission-optimal cases are nearly equal.
On the other hand, for the SMPSO algorithm, the gas boiler size remains nearly constant for the more cost-
optimal Pareto points until a tipping point where only a very small gas boiler is built. But similar to the NSGA-II
algorithm, the gas boiler size increases again for more emission-optimal solutions.
When analyzing the operation of the boiler over the course of a year for the SMPSO and NSGA-II algorithms
for the emission-optimal solution, it can be observed that the boiler was rarely used, running only 54 hours
and 249 hours, respectively, throughout the year. The installation of the boiler despite its limited use can be
attributed to the absence of indirect emissions which are not included in this anaylsis. In fact, there are no
"investment emissions" for the components. Similar to the mathematical optimization, figures 6b and 6c show
that the heat pump size increases towards the CO2 optimal solutions. However, in contrast to the mathematical
optimization, the overall installed capacity of heat producers is higher for the metaheuristic algorithms.
Regarding the installed photovoltaic capacity, a constant growth along the Pareto front towards the CO2 optimal
solution is observed for both the mathematical optimization and the metaheuristics.
Despite an overall increase in storage capacity towards the CO2 optimal solution for all three algorithms,
significant differences in storage capacity are observed between the mathematical optimization and the meta-
heuristics.
The most notable difference is the approximately twofold increase in total storage capacity for the metaheuris-
tics compared to the mathematical optimization. In the mathematical optimization, only the thermal storage is
built in the cost-optimal case, and its size increases along the Pareto front until an additional battery is installed.
At this juncture, the size of the heat storage drops before increasing again. Furthermore, the size of the battery
increases steadily until the point where no gas boiler is installed. At this point, the size of the battery decreases
to zero before increasing again toward the emission-optimal solution.
Similarly, both metaheuristics build thermal storage for all Pareto points. The NSGA II algorithm maintains a
relatively constant heat storage capacity for most of the Pareto front. However, for more CO2 optimal cases,
the heat storage doubles in size. The battery size increases moderately toward the CO2 optimal solution until
a tipping point where the battery capacity increases dramatically to over 230 kWh.
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(a) mathematical optimization (MILP)

(b) metaheuristic optimization (NSGA-II)

(c) metaheuristic optimization (SMPSO)

Figure 6: Energy systems from the pareto optimal results for different algorithms
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In contrast to the NSGA-II algorithm, the heat storage capacity fluctuates significantly throughout the Pareto
front of the SMPSO algorithm, peaking in the middle. In addition, the SMPSO algorithm does not install a
battery until almost the middle of the Pareto front. Then the battery capacity increases steadily.
The higher costs associated with the emission-optimal solutions generated by the metaheuristics, as observed
in Figures 3-5, can be attributed to the substantially higher storage and producer capacities employed by
these algorithms. The reason for this could be that metaheuristics are severely penalized for choosing infea-
sible solutions or reaching the time limit in operations optimization. Therefore, the trained behavior of these
metaheuristics is biased toward quickly producing feasible solutions, which results in larger capacities. This is
probably the cause of the unexpected behavior of the metaheuristics in constructing a boiler for all solutions.
This behavior can be reduced by allowing a higher time limit for operations optimization and more time overall
for the computations, so that the metaheuristics can compute more generations.
Another notable characteristic of metaheuristics is the greater fluctuation in capacity sizing, as opposed to the
smoother trend observed in mathematical optimization. This fluctuation can be explained by the random nature
of the metaheuristics. This effect should be further investigated in future studies.

5. Conclusion
This paper compares two methods and their results for the design optimization of a residential building. A
multiobjective mathematical design optimization approach and a two-stage metaheuristic design optimization
approach using the metaheuristics SMPSO and NSGA-II were described, and the Pareto fronts and energy
system designs of the Pareto solutions generated by each algorithm were analyzed.
In our case study, the mathematical optimization resulted in the best Pareto front. However, it should be noted
that the calculation time was quite extensive at 20 hours. To reduce the computation time of the mathematical
design optimization, a larger step size of the epsilon constraint could be applied. This would reduce the number
of optimizations but at the same time the resolution of the Parteo front. Additionally, a lexicographic optimization
approach can be used to compute the real Pareto front, which could lead to more accurate and efficient results
and avoids caluating dominated solutions. Further research is needed to fully explore these possibilities and
improve the efficiency of the optimization process.
Furthermore, our study has shown that the choice of parameters such as swarm/population size has a strong
influence on the optimality of the results. Depending on the choice of metaheuristic parameters, either the
NSGA-II or the SMPSO performed better. Therefore our optimization results do not allow a conclusion which
of the two metaheuristic algorithms is better suited for the design optimization of residential buildings. In
addition, it was shown that it is possible to compute a Pareto front with the metaheuristic approaches in shorter
time frames, but this results in a significantly worse Pareto front compared to the MILP and 20 h metaheuristic
solutions. For this reasons, further studies are necessary.
As mentioned above, the parameter settings of metaheuristic algorithms have a large influence on the quality of
the results. For this reason, guidelines for the parameterization of metaheuristic design optimizations for energy
systems would be beneficial. In order to ensure the comparability of the results of the different methods, a time
limit was used as a stopping criterion in this study. However, when metaheruistic methods are used to obtain
results in practice, a termination criterion is needed that allows a statement to be made about the quality
of the solution or the convergence of the algorithm. Since one of the main advantages of metaheuristics is
their computational efficiency compared to mathematical optimization, it would be worthwhile to investigate
how solution-quality-oriented termination criteria such as the hypervolume could enhance performance. In
addition, a warm start, i.e. the implementation of coherent start variables such as a standard desgin according
to DIN norms, could make the solution process more efficient and robust. The factor that metaheuristics are not
limited to MILP problems, like mathematical optimization, but can also be used with Non Linear Programming
or simulation was not considered in this study. Hence it would be interesting to investigate a single-stage
metaheuristic optimization instead of the two-stage approach used in this paper.
Lastly, additional case studies involving more complex energy systems and a wider range of scenarios are
required to develop a reliable guideline for selecting an appropriate design optimization method.
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