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Abstract: 
Decision-making for distributed energy systems (DES) is subject to significant uncertainties. Therefore, 
assuming perfect foresight for long-term system planning might result in suboptimal decisions. Long time 
horizons result in a variety of possible scenarios. One way of considering uncertainty in DES design is Monte 
Carlo analysis (MCA). However, MCA suffers from the computational burden of repeatedly evaluating energy 
system models. Furthermore, MCA is sensitive to distribution assumptions of uncertain parameters.  In this 
work, we combine linear regression and systematic uncertainty modeling in MCA to consider uncertainty 
effectively. 
 
We propose a method for comparing different DES designs regarding total annualized cost (TAC) while 
reflecting uncertain parameters. We model uncertainties by introducing a small number of representative 
factors that scale reference parameters. We distinguish between constant and long-term uncertainties 
increasing over time. We use mixed-integer linear programs (MILPs) to minimize yearly costs of DES. We 
solve the burdensome MILPs only for Latin Hypercube samples to parameterize linear surrogate models. We 
use the obtained linear surrogate models during MCA to accelerate the computation of the TAC. 
 
We apply our method to a case study adapted from the literature to compare promising DES designs while 
considering multiple sources of uncertainty. We compute the TAC of the DES designs for thousands of long-
term scenarios and identify the design, which results most frequently in the lowest costs. We show that using 
linear regression can reduce the computational time by more than 99 %, while maintaining a high accuracy 
measured by the goodness of fit of the linear regression. 
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1. Introduction 
Designing industrial energy systems given a multi-year planning horizon is challenging yet crucial for achieving 
a sustainable energy supply [1]. Energy systems are commonly designed to minimize total annualized cost 
(TAC), the global warming impact, or both. Long planning horizons suffer from a lack of good forecasts and 
also involve inherent uncertainties, which are recommended to be considered [1,2]. Optimization-based 
techniques for identifying the optimal energy system configuration under uncertainty include robust 
optimization, stochastic optimization, or chance-constrained optimization [3,4]. Here, the consideration of 
uncertainties lead to complex optimization problems that are challenging to solve resulting in a tradeoff 
between solution quality and computational tractability [3]. The presence of multiple uncertain factors, e.g., 
arising from the long-term evolution of energy prices and demand, adds further complexity in identifying the 
best suited design [3]. Energy system optimization under uncertainty can also be addressed using Monte Carlo 
analysis (MCA), where computation time is independent of the number of uncertain parameters for a single 
scenario [4,5]. However, MCA typically requires evaluating hundreds of scenarios while the computational time 
still increases linearly with the number of scenarios and thus can become prohibitively high, particularly when 
complex models are involved [5]. A promising approach is to use approximation methods involving sampling 
techniques like Latin hypercube sampling, which can facilitate the consideration of a wide range of scenarios 
[6,7]. Furthermore, MCA can be quite sensitive to probability distributions for uncertain parameters [5]. Even 
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though only a few parameters might be influential, the specification of uncertainties is challenging and should 
be done systematically [2]. Overall, the issue of efficiently incorporating multiple sources of uncertainties into 
the energy system design process for industrial systems with a multi-year planning horizon is challenging and 
needs to be addressed. 
In this work, we propose a method that helps to make informed decisions regarding the selection of the optimal 
distributed energy system (DES) design from a set of promising designs considering long time horizons and 
multiple sources of uncertainty. This so-called Rapid Monte Carlo analysis (RMCA) incorporates uncertainty 
and surrogate modeling. The economic metric TAC is used to rank the designs. As a first step, we define the 
procedure of calculating TAC. Determining TAC for a design involves estimating operational expenditures by 
solving operational optimizations and using investment cost correlations. Accordingly, the metric depends on 
a variety of uncertain parameters that may influence the results. To model uncertainties, the full set of uncertain 
parameters is reduced to a few representative factors. Each factor is classified and parameterized to define 
the probability distributions of the long planning horizon. Next, computationally burdensome relationships 
between these representative factors and the TAC are replaced by linear surrogate models. The uncertainty 
and surrogate models allow a large number of long-term scenarios to be considered. Finally, a statistical 
analysis of the TAC of the DES designs is conducted to serve as a foundation for selecting a final design. 
The paper is structured as follows. Section 2 presents the proposed method in detail by first providing an 
overview, then presenting the uncertainty parameterization and modeling as well as the linear surrogate model 
generation, and finally the RMCA. Section 3 applies the method to a case study adapted from the literature 
and discusses the results. Finally, in Section 4 conclusions are drawn. 

2. Rapid Monte Carlo analysis via uncertainty and surrogate modeling 
2.1. Method overview 
We propose a method to analyze a set of promising DES design alternatives to identify the best design given 
a multi-year planning horizon and multiple sources of uncertainty. To rate a system’s performance, we use the 
total annualized cost (TAC) as assessment metric. The given design alternatives can be, for example, user-
defined or the result of an optimization-based design method. Figure 1 shows the four main steps of using our 
method. 
 

 
Figure 1.  Energy system planning under long-term uncertainty: Steps for preparing and applying the 
proposed rapid Monte Carlo analysis (RMCA) via uncertainty and surrogate modeling for analyzing promising 
distributed energy system (DES) design alternatives to identify the best system according to an assessment 
metric. 

Section 2.2 discusses the calculation of the assessment metric TAC and the involved optimization models. 
TAC depends not only on parameters such as investment costs but also on the operational 
expenditure (OPEX) including energy costs occurring within the multi-year planning horizon. Here, we consider 
the OPEX for each year of the planning horizon individually rather than resorting to only one year that is 
assumed to be representative for the whole horizon. We formulate mixed-integer linear programs (MILPs) for 
each DES design to determine the energy costs of each year. Each MILP depends on a large number of 
parameters (e.g., component efficiencies, heating demand for each hour of the year). As a result, the 
assessment metric depends on many potentially uncertain parameters.  
In Section 2.3 we show, how we address uncertainties. We first identify a small number of representative 
factors that scale reference parameters to define the parameters of the assessment metric. We model the 
time-dependent development of these representative factors using probability distributions. After modeling 
uncertainties, probability distributions for all parameters of the TAC are defined. A direct calculation of the TAC 
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involves solving a MILP for each year of the multi-year planning horizon. Thus, calculating the TAC directly is 
computationally burdensome. Instead of solving multiple MILPs to obtain the energy costs for each year, we 
employ linear surrogate models.  
Section 2.4 shows how we first generate Latin hypercube samples (LHS) of representative factor combinations 
to obtain the energy costs of representative years. We then use each combination to parameterize and solve 
MILPs. Afterwards, we use the LHS to parameterize linear surrogate models. These linear surrogate models 
allow approximating the energy costs of a single year given the representative factors specifying the respective 
year. The surrogate model generation is conducted for each DES design. As a result, we can approximate the 
TAC for long-term scenarios without solving additional MILPs. After following these three preparation steps, 
the RMCA is carried out. 
In Section 2.5, we present the steps of conducting our RMCA. It relies on the probability distributions 
determined for uncertainty modeling and approximates the TAC using the generated surrogate models for 
evaluating the long-term scenarios. The RMCA provides decision support by evaluating a large number of 
multi-year scenarios and conducting a subsequent statistical analysis. 
2.2. Assessment metric and energy system modeling 
We evaluate DES design alternatives using the TAC as a metric where we consider the OPEX of each year 
individually, rather than using one representative year. The DES to be evaluated involve different technologies 
for converting and storing energy. The TAC of an energy system  is calculated as follows:  

 (1) 

with the net present value factor , the investment costs  of the energy system , the operational 
expenditures  of energy system  occurring in year , the time horizon length of  years, 
and the interest rate . We determine the net present value factor as follows [8]: 

 (2) 

We estimate the investment costs  using cost correlations (e.g., cf. [9]). The OPEX  encompasses 
energy costs  as well as maintenance costs : 

 (3) 
The maintenance costs  of energy system  are determined in accordance to [9]. To compute the 
energy costs  of energy system  in year , we utilize MILPs to determine the cost-optimal energy 
system operation to fulfil the energy demand. The objective function of each MILP is defined as the sum of 
costs for purchasing energy carriers in year . Here, we assume that the costs of each year can be computed 
independently and obtain the energy costs  by solving the respective MILP. We model the energy 
systems using quasi-stationary component models as used by [9] and consider part-load behavior as in [10]. 
As a result, the MILPs comprise equations for the objective function, energy balances, the conversion units, 
and the energy storage. The models for the operational optimization of energy systems encompass a variety 
of parameters (e.g., hourly-resolved heating demands, components’ efficiencies).  of each energy 
system  can be determined if the parameters are known; however, some parameters like energy prices can 
be subject to uncertainty. 
2.3. Uncertainty parameterization and long-term uncertainty modeling 
The assessment metric usually depends on a large number of parameters which are potentially uncertain. We 
reduce the number of potentially uncertain parameters by first screening and then grouping them. Specifically, 
we first identify the parameters that can be assumed as constant. Afterward, we group the remaining 
parameters and assign each group to a representative factor that captures the shared variability. This 
screening and grouping, to which we refer to as uncertainty parameterization, results in a low number of 
representative factors. For each representative factor, we then conduct the long-term uncertainty modeling by 
choosing one of three uncertainty types and defining a permitted range for each representative factor. 
Thereafter, the uncertainty modeling is complete. The proposed procedure guides the uncertainty modeling 
steps (i.e., how uncertainty is modeled) and leaves case specific decisions to the user (e.g., which sources of 
uncertainty should be considered). 
We start the uncertainty parameterization with a preliminary screening by first listing all parameters of the 
assessment metric. Next, parameters with known values, with negligible influence on the assessment metric, 
or with negligible uncertainty are set as constant. At this point, the risk of excluding influential parameters 
should be considered carefully and expert knowledge about characterizing uncertainty can be incorporated. 
For parameters assumed to be uncertain, we determine reference parameters. Following that, the uncertain 
parameters that are expected to be correlated (e.g., all hourly demands of one year) are grouped and assigned 
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to the representative factor of that group. As soon as all parameters of the assessment metric are either set 
as constant or assigned to a representative factor, the uncertainty parameterization is complete.  
For the long-term uncertainty modeling, we distinguish three types of long-term uncertainty. The three types 
are adapted from [2]. Figure 2 illustrates the three types of uncertain parameter developments. 

 
Figure 2.  Three types of long-term uncertainty. Type I: Random scalar (e.g., investment costs, life expectancy 
of equipment). Type II: Constant long-term uncertainty (e.g., energy prices). Type III: Increasing long-term 
uncertainty (e.g., energy demand). The exemplary realizations (orange dots) of the representative factors ( ,

) lay within the permitted range which is defined by its bounds ( , ). 

For each representative factor , first, an appropriate long-term uncertainty type needs to be 
chosen. Second, a range of permitted scaling factor values needs to be selected. To parameterize the 
permitted range, an upper bound  and a lower bound  need to be selected. These bounds can, for 
example, be derived from historical data or forecasts.  
We derive the probability distributions of the representative factors as follows. We use normal (Gaussian) 
distributions, which are one of the most frequently used distributions [11], to model the uncertain parameters. 
The expected value  of the normal distribution is assumed for all representative factors  as 

 (4) 

The standard deviation  is determined such that the permitted range matches the two-sigma interval: 

 (5) 

For type I factors , we define the normal random variable  that serves as an auxiliary variable: 
 (6) 

Analogously, for type II factors , we define for each year  an auxiliary variable : 
 (7) 

We project these auxiliary variables to values within the permitted range. Thus, we obtain the probability 
distributions for the representative factors  as follows: 

 (8) 

An analogous formulation for  (i.e., one where the index  is dropped) is used for type I parameters. The 
increasing uncertainty of type III factors  is modeled using 

 (9) 

year

year

type I (scalar)

type II (constant)

type III (increasing)
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with  and the random variable  which corresponds to 
the difference of consecutive factor values. We determine the standard deviation  as follows. If random 
variables are uncorrelated, the variance of their sum equals the sum of their variances [11]. To approximate 
the variance  for the final parameter , we set the variance of each step to -th of the final, desired 
variance. Thus, we determine the respective standard deviations using . After assigning 
each uncertain factor to an uncertainty type and parameterizing it, long-term scenarios can be generated, and 
the respective TAC can be computed. 
2.4. Surrogate modeling via Latin hypercube sampling and linear regression 
We use linear surrogate models to speed up the calculation of the assessment metric by replacing 
computational burdensome operations with linear approximations. For determining the TAC of a DES design, 
the energy costs need to be calculated for each year of the multi-year time horizon of length . As a result,  
optimization problems need to be solved for each long-term scenario. After introducing the representative 
factors in Section 2.3, which includes setting parameters to constant values and determining reference 
parameters, each optimization problem is fully defined by a small set of parameters: 

 (10) 

For each DES design, we obtain a linear surrogate model by first solving the respective MILP for a 
representative set of sampling points. We select these sampling points using Latin hypercube sampling and 
solve the MILPs for  combinations of representative factors. Afterwards, we use ordinary least 
squares [12] to parameterize the linear surrogate models which have the following form:  

 (11) 

where  is the linear approximation of the energy costs  of DES design  in year  and  is a 
surrogate model parameter. We assess the quality of fit using the coefficient of determination  defined 
as [13]: 

 (12) 

where  is the value of the observed data (i.e., the result of an optimization),  is the value predicted by a 
linear surrogate model,   is the mean of the observed data, and  corresponds to the number of Latin 
hypercube samples. The coefficient of determination can take values  and positive values of  can be 
linked to the percentage of correctness of a regression [13]. However, a high value of  cannot guarantee 
whether the linear surrogate model is an appropriate approximation. After having generated linear surrogate 
models, we approximate the TAC as follows: 

 (13) 

2.5. Rapid Monte Carlo analysis 
Our rapid Monte Carlo analysis (RMCA) allows to analyze and compare promising DES design alternatives 
with a reduced computation burden considering multiple sources of uncertainty and long planning horizons. 
The RMCA is enabled by defining an assessment metric (Section 2.2), conducting uncertainty 
parameterization as well as long-term uncertainty modeling (Section 2.3), and generating surrogate models 
(Section 2.4). Our RMCA involves the typical steps of a MCA [5]. First, probability distributions are defined. 
Second, random values, i.e., long-term scenarios, are sampled. We use long-term uncertainty models to 
generate multi-year scenarios defined by a set of representative factors. Third, the samples are evaluated 
using approximations for the TAC. By using linear surrogate models, the computational burden of 
approximating the TAC can be neglected. After generating and evaluating a sufficiently large number of long-
term scenarios, we conduct a statistical analysis to identify the best DES design alternative. 

3. Case study and results 
3.1. Distributed energy system design alternatives for a research campus 
We apply our method in a case study adopted from the literature. In our case study, we seek to find the best 
DES design from a set of promising candidates to fulfill energy demands, i.e., the heating and electricity 
demands given in [9].  
Figure 3 shows three user-defined DES design alternatives (i.e., ES1, ES2, ES3) which are to be analyzed. 
The designs are similar to the those obtained using an energy system design optimization in [9]. All designs 
include two boilers and a thermal energy storage. ES1 includes a combined heat and power (CHP) unit and a 
heat pump (HP), ES2 has two CHP units but no HP, and ES3 has two HPs instead. 

2484https://doi.org/10.52202/069564-0223



(a) (b) (c) 

Figure 3.  Promising distributed energy system design alternatives . The three designs 
encompass boilers (B), heat pumps (HP), combined heat and power (CHP) units, and thermal energy 
storages (TES) to fulfill an electricity as well as a heating demand. The systems are connected to an electricity 
and a natural gas grid. 

Technical specifications of the conversion units are shown in Table 1. The part-load segment 
parameters ( ; ) are derived using correlations given in [9]. The thermal energy storage has for 
all cases a capacity of , charging efficiencies of , and a heat loss time 
constant of .  

Table 1.  Nominal power, nominal efficiency, and part-load segment parameters of the installed boilers (B), 
combined heat and power (CHP) units, and heat pumps (HP). 

 Nominal power Nominal efficiency   
Boiler   0.173 0.200 
CHP unit (electric)   0.582 0.500 
CHP unit (thermal)   0.582 0.622 
Heat pump   0.200 0.200 

 
The investment costs and annual maintenance costs of each DES design alternative are determined using the 
cost correlations given in [9] and are shown in Table 2. 

Table 2.  Investment costs and annual maintenance costs of each DES design alternative. 

 ES1 (HP+CHP) ES2 (CHP) ES3 (HP) 
Investment costs ,  383,901 551,542 216,260 
Maintenance costs ,  024,331 046,089 002,574 

 
Given the DES design alternatives, we conduct the first of the three preparation steps shown in Fig. 1: We 
define for each DES design an assessment metric according to Eq. (1) for a planning horizon length of  
years. This step includes the formulation of MILPs to determine annual energy costs. 
3.2. Uncertainty and surrogate modeling 
Next, we present the preparation of the uncertainty and surrogate models for each DES design alternative. We 
start modeling uncertainty by listing all parameters influencing the assessment metric. As the designs include 
different components, the assessment metrics of the design alternatives depend on different sets of model 
parameters. Next, we identify the uncertain parameters. As the price of energy carriers can have a relevant 
impact in energy planning models [2], we model the gas price and the electricity price as time-dependent, 
uncertain parameters. Furthermore, we assume that also the heating demand and the electricity demand are 
relevant uncertain parameters. All other model parameters are set to appropriate constant values. Hence, due 
to the hourly resolution of the optimization models, a total number of  parameters per year remain 
uncertain. We introduce three representative factors, i.e., one factor for scaling electricity prices ( ), one 
factor for scaling gas prices ( ), and one factor for scaling electricity and heating demands ( ). We 
assign each of the  uncertain parameters to one representative factor for scaling reference parameters 
(cf. Table 3). The representative factors serve as a low-dimensional representation of the uncertain parameters 
reducing the number of uncertain parameters to three per year. 

HP

B B CHP

TES

ES1 (HP+CHP)

B B CHP CHP
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ES2 (CHP)

HP HP

B B

TES
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Table 3.  Representative factors and long-term uncertainty modeling. For all representative factors, the 
associated uncertain parameters of the assessment metric, the type of uncertainty, and the bounds ( , ) 
of the permitted range are given. 

Representative 
factor 

Associated 
parameters 

Type of  
uncertainty   

 Hourly resolved 
electricity price II (constant) 0.44 1.57 

 Hourly resolved 
gas price II (constant) 0.26 1.74 

 
Hourly resolved 
electricity and 
heat demand 

III (increasing) 0.60 1.40 

 
We classify the representative factor  as type III uncertainty as demand uncertainties typically increase 
over time. Furthermore, we assume that the demand might increase or decrease by up to 40 % over the time 
horizon of 10 years. This assumption results in an upper bound of  and a lower bound of . 
We use the heating and electricity demand from [9] for defining the corresponding reference parameters. As 
done in [2], we assume that the accuracy of short and long-term energy price predictions is equal. Thus, we 
classify  and  as type II uncertainties. For modeling the long-term uncertainty of the energy prices, 
we assume a low-price and a high-price scenario considering historical prices (cf. [14]). In the low-price 
scenario, we assume an average electricity price of  and a gas price of . In the high-price 
scenario, we assume an electricity price of  and a gas price of . We assume that 
within one year the energy prices remain constant. We choose the upper bound  such that the reference 
price parameters scaled with   result in the high-price scenario. We determine the lower bound   and 
the range of the representative factor  analogously. After defining a low-dimensional parameterization 
and modeling long-term uncertainty, we generate the surrogate models. 
The linear surrogate models for approximating the energy costs of one year of operation are generated by first 
solving the respective MILPs for  Latin hypercube samples and then applying linear regression to 
obtain the parameters of the linear surrogate models. We use Pyomo 6.4 [15,16] for modeling and 
Gurobi 10.0 [17] as a solver. Table 4 shows the linear surrogate model parameters for each of the DES design 
as well as the quality of fit given by the -value. 

Table 4.  Linear surrogate models for approximating the annual energy costs of the energy systems. The linear 
surrogate models are defined by its parameters . The coefficient of determination  aids assessing the 
model quality. 

 

 
Figure 4 shows by comparing observed and approximated energy costs that energy costs are predicted 
reasonably well by the linear surrogate models for each LHS and DES design. 
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Figure 4.  Scatter plot for assessing the accuracy of the three linear surrogate models based on the Latin 
hypercube samples. Small vertical deviations from the dotted line indicate a high approximation accuracy. 

3.3. Rapid Monte Carlo analysis 
The RMCA is applied employing the uncertainty and surrogate models. Our analysis is presented in three 
parts. First, we present the generated scenarios, which consist of  long-term scenarios illustrated in 
Fig. 5. Next, we provide a statistical analysis from three views to evaluate the scenarios. Finally, we consider 
the computational burden associated with the RMCA.  

 
          (a) (b)                      _ 

Figure 5.  Long-term scenarios ( ) and Latin hypercube samples ( ). a) The subset of ten 
long-term scenarios showing different trajectories of the representative factors ( , ). b) The 
parameter space is spanned by the representative factors and is densely covered by the 50,000 years 
contained within the long-term scenarios (small gray dots). One long-term scenario and the Latin hypercube 
samples are illustrated in orange and by the red dots, respectively. 

We evaluate the long-term scenarios using the linear surrogate models and thus avoid solving many 
optimization problems with similar parameterizations. We analyze the TAC obtained for the long-term 
scenarios and DES design alternatives from three views. First, we analyze the distributions of the TAC for 
each design.  
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Figure 6.  Cumulative probability plot for determining the probability of the total annualized cost (TAC) being 
lower or equal to the given TAC when choosing the respective design. 

Figure 6 reveals the bandwidth of expected TAC. This view indicates that ES2 is likely to result in the highest 
TAC and that furthermore ES1 and ES3 lead to similar TAC. However, this visualization does not include 
information about the difference in TAC for specific long-term scenarios. 
By comparing the TAC of the DES design alternatives in each scenario, we determine the frequency of having 
the lowest TAC for each design. We find that ES3 results in 87.7 % of the scenarios in the lowest TAC. In the 
remaining scenarios, ES1 results in the lowest TAC. However, this second view does not convey information 
about the differences in TAC, i.e., how high the regret is when another design would have been a better choice.  
Third, we examine the differences in TAC. We normalize the differences using the expected TAC of ES3. We 
find that the maximal regret associated with choosing ES1, ES2, and ES3 is 19.4 %, 51.4 %, and 11.4 %, 
respectively. In this context, regret is defined as the difference between the TAC of the selected design and 
the TAC of the best design. Furthermore, we find that the average regret associated with choosing ES1, ES2, 
and ES3 is 5.5 %, 31.7 %, and 0.3 %, respectively. Thus, we recommend ES3 as it most likely results in the 
lowest TAC whereas choosing ES2 should be avoided. Overall, the different views of the statistical analysis 
provide insights about the probability distributions of the assessment metric. Furthermore, analyzing the 
differences in TAC can reveal which design should be preferred or avoided. 
The computational performance of the RMCA is addressed next. Here, we use the number of MILPs to be 
solved as a proxy for the computational burden. We compare the RMCA to a MCA that does not employ 
surrogate models. When not using surrogate models, we need to solve one MILP for obtaining the energy 
costs for each year, scenario, and design. As a result, the computational burden increases linearly with the 
number of long-term scenarios. Given three DES design alternatives and a time horizon of ten years, each 
scenario requires solving 30 MILPs. Solving the MILPs of this work typically requires a few minutes. As MCA 
applied for energy system design might require hundreds of scenarios to be considered [4,5], not using 
surrogate models results in a significant computational burden.  
Using the RMCA also requires solving MILPs. Before we can evaluate the first scenario using RMCA, we need 
to create the surrogate models first. We solve 75 MILPs for the three linear surrogate models in total. In 
comparison to solving MILPs, the computational burden of determining the parameters of the linear surrogate 
models and evaluating them is negligible. As a result, the RMCA is faster if three or more long-term scenarios 
are considered. For the considered 5,000 scenarios, the computational time is reduced by more than 99 %. 

4. Conclusion 
Designing distributed energy systems (DES) under uncertainty is a challenging task. One approach to address 
uncertainty is to use Monte Carlo analysis (MCA). However, the high computational burden associated with 
MCA for DES design and long planning horizons limits its application. Furthermore, MCA requires reasonable 
assumptions about probability distributions. To address the challenge of designing DES under uncertainty 
considering multi-year planning horizons, we propose a rapid Monte Carlo analysis (RMCA) approach enabled 
by long-term uncertainty modeling and surrogate modeling for optimization-based energy system planning 
under long-term uncertainty. Our method provides decision support when a set of promising DES designs is 
given.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

total annualized cost (1000 €)

ES1 (HP+CHP) ES2 (CHP) ES3 (HP)

2488https://doi.org/10.52202/069564-0223



To enable RMCA, three preparation steps are conducted. Firstly, an assessment metric is defined and mixed-
integer linear programs (MILPs) for the operational optimization of each DES design are formulated. Secondly, 
a low-dimensional representation of uncertainty and a long-term uncertainty model are systematically derived. 
Thirdly, surrogate models are created after solving the respective MILP for representative Latin hypercube 
samples. The RMCA starts by generating a large number of scenarios by sampling the long-term uncertainty 
models. The scenarios are evaluated using the surrogate models. Subsequently, a statistical analysis reveals 
the expected distribution of the total annualized cost (TAC) for each design, the likelihood of a specific design 
resulting in the lowest TAC, and the regret of choosing one design over another. 
We apply our method to a case study adapted from the literature to assess three promising DES designs for 
a time horizon of ten years. We formulate MILPs for the operational optimization of each DES design and 
represent uncertain parameters using three representative factors per year. We create accurate linear 
surrogate models with a coefficient of determination  for all designs. In the RMCA, 5,000 scenarios 
are considered and the best design which most likely results in the lowest costs is identified. The RMCA 
approach is compared to a MCA that does not rely on surrogate models and thus does not require solving 
MILPs for representative samples but lacks the benefit of the low effort of evaluating a surrogate model. Using 
the surrogate models results in a speedup if three or more long-term scenarios are considered. When 
considering 5,000 scenarios, the computational time is reduced for the specific case study by more than 99 %. 
The presented approach can be applied to a wide range of energy systems. Besides, created surrogate models 
could also be used in companioning sensitivity analyses, which would also benefit from the substantially 
reduced computational burden. The benefit of a sensitivity analysis is that it does not require information about 
probability distributions. For DES designs of higher complexity, nonlinear surrogate models might be required 
to reach a high quality of fit, increasing the effort of creating the surrogate models.  
In summary, the RMCA approach enabled by uncertainty and surrogate modeling provides an efficient way of 
considering multiple sources of uncertainty and long planning horizons. The adaptability and the reusability of 
its components, i.e., of the energy system, the uncertainty, and the surrogate modeling, potentially enable wide 
applicability of the proposed approach for energy system design under uncertainty. 
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Nomenclature 

    coefficient of performance, - 
    interest rate, - 

    investment costs of energy system ,  
     number of long-term scenarios, - 

     number of Latin hypercube samples, - 
    operational expenditure of energy system  in year ,  
    maintenance costs of energy system  in year ,  

energy costs of energy system  in year  (observed/approximated),  
    net present value factor, - 

  /     nominal thermal/electrical capacity of unit ,  
    capacity of thermal storage,  

    coefficient of determination, - 
  /     upper/lower bound of the permitted range of representative factor , - 

    time horizon length, - 
  /     total annualized cost of energy system  (observed/approximated),  

  /       nominal thermal/electrical efficiency of unit , - 
  /     efficiency/heat loss time constant of thermal storage, - 

  /       representative factor  in year , - 
  /    /     auxiliary variable for representative factor  in year , - 

   part-load efficiency parameter of unit , - 

    expected value of auxiliary variable for representative factor , - 
  /     standard deviation of auxiliary variable for representative factor , -  
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