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Abstract: 
In the research field of district heating networks (DHNs), there is a need for more analysis on the economic 
optimization of the design and dynamic operation considering precise representations of the temperature and 
pressure drops in the pipes of the system. In this study, we develop a model tested in an academic case study 
of a DHN composed of a production unit, a distribution network, and twenty consumers. The dynamic behavior 
of the DHN is due to the variability of the heat demand and ambient temperature over a daily period. Inside 
the pipes, the temperature variation is described by a dynamic one-dimensional heat transfer equation while 
the pressure drops are computed using the Darcy-Weisbach equation. Energy and mass balances are applied 
in the interconnecting nodes of the system. In addition, the model includes design and operational constraints 
of the DHN. All these equations lead to a partial differential algebraic equation (PDAE) problem. Using the 
method of orthogonal collocation on finite elements (OCFE), the differential terms are discretized to obtain a 
set of algebraic equations. The resulting non-linear programming (NLP) problem is solved with an equation-
oriented (simultaneous) approach using the solver CONOPT. The aim of the optimization is to find the best 
trade-off between the capital expenditures (CAPEX) of the pipes and the operational expenditures (OPEX) by 
considering the pipe diameters, temporal values of mass flows and spatio-temporal values of temperatures of 
each pipe as continuous optimization variables. The CAPEX include the cost of the pipes and the cost of 
deploying them in trenches. The OPEX include both production and pumping costs which are related to thermal 
losses and pressure drops, respectively. As the pumping cost is significantly lower than the heat production 
cost, the results showed that it is more economical to reduce the thermal losses than the pressure drops. 
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1. Introduction 
Heating and cooling demand accounts for around half of global final energy consumption. Nearly half of this 
energy is used in industrial processes, 46% is used in residential and commercial buildings mainly for space 
and water heating. Most of the energy used for heating and cooling continues to be produced from non-
renewable sources. Consequently, heating and cooling is responsible for 40% of energy-related greenhouse 
gas emissions [1]. The development of district heating and cooling (DHC) systems is a good answer to face 
these energy and environmental issues. This technology has the advantage of accelerating energy transition 
by integrating an important part of renewable sources and waste heat. Due to their considerable investment 
and operational costs, currently in the energy field, one of the important challenges is the development of tools 
and methods for the optimization of DHC networks. 
According to how the time dependency is taken into account in the model, it is possible to classify the works 
on the optimization of DHC into four main categories: steady-state, quasi-steady-state, dynamic multi-period, 
and dynamic. In the steady state models, the optimization is performed with no time dependency considering 
averaged values for the operating parameters like mass flows and temperatures in the system. In most of the 
cases, the optimization problem is of the mixed integer programming type [2–4]. In [2] and [3] mixed integer 
linear programming (MILP) approaches are used for the optimizations of the operational cost and the total 
annual cost, respectively. Linear equations for the computation of thermal losses and pressure drops in the 
pipes are defined. In [4], the authors chose a mixed integer non-linear programming (MINLP) approach where 
the global cost of a district heating network (DHN) is optimized over 30 years. The thermal losses and pressure 
drops were computed with more precise equations. For the 3 previous studies, the discrete variables represent 
the design choices (connection in the topology nodes and/or the choices of production technologies). On the 
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other hand, the continuous variables represent the operating parameters (production power, flows, 
temperatures, …). The authors of [5] opted for a non-linear programming (NLP) resolution where they used a 
numerical continuation strategy that gradually forces the design variables towards discrete choices. Steady-
state models are interesting for long-term studies, but one of their main drawbacks is not considering a variable 
heat demand.  
In what we classified as quasi-steady-state studies, it is possible to consider different values of the heat 
demand. The optimization is performed within a time interval which is subdivided into periods. For each period, 
the heat demand is averaged. The problem is a succession of steady-state problems. In this type of studies, 
Liu et al. [6] modeled an optimization of design parameters of a solar heating network. They took into account 
only discrete decision variables which were the network layout variables and pipe diameters. Sameti and 
Haghighat [7] studied the optimal design and operation of a DHN with a cogeneration unit. A MILP model was 
employed, and different buildings with different heat demands were considered. This kind of model is suitable 
for medium-term studies; however, it presents limits with dynamic aspects. As it does not include differential 
equations, for example, it is impossible to have the evolution of a thermal energy storage (TES) tank from one 
period to another. 
In terms of time discretization, the studies we classify in the dynamic multi-period approach are quite similar 
to the previous category. The main difference is that they include at least one differential equation. In this 
category, Deng et al. [8] developed a MINLP model to perform what they called an optimal scheduling of a 
DHC. For each period, they define whether the technology is working or not, and the amount of power it 
produces (or charges/discharges in case of storage). Wirtz et al. [9] were also interested in the choice of 
technologies and the amount of produced and stored power of a DHC with multiple production technologies 
and TES. In addition, they optimized the temperature in the distribution network and the thermal losses. We 
have also  Söderman [10] who optimized the topology and the operation to minimize the total annual cost of a 
district cooling network (DCN). He considered different consumers with different heat demands in each period. 
Another interesting study is the optimization of Khir and Haouari [11] of a DCN. They optimized chiller plant 
capacity, storage tank capacity, piping network size and layout, and produced and stored power during every 
period. In their operation, they ensure that supplied temperature corresponds to the desired one and that 
pressure drops are within the allowable limits. This type of works is suitable for medium-term studies with 
inclusion of dynamic aspects. In contrast, as they consider an important time step (  1 hour), it is difficult to 
perform real-time control and/or to have precise evolutions of physical phenomena in the pipes.  
What we chose to classify as dynamic approaches are the works that considered a small time step (<1 hour) 
and a short period of study (1-3 days generally). Two sub-categories can be distinguished, the studies that are 
for real-time optimization and the ones for dynamic offline optimization. In real-time models, Cox et al. [12] 
used a genetic algorithm to have the optimum control strategy of the operation of chillers and ice storage of a 
DCN. Lu et al. [13] developed a NLP optimization for the regulation of the operating parameters of a DHN. The 
limit with real-time models is that they require the calculation of the command in a short time. Therefore, they 
do not have precise thermo-hydraulic modeling of the pipes. This is where the interest of dynamic offline 
optimization (DOO) comes in with the possibility of having longer computation time; therefore, more accurate 
modeling of the pipes. In the DOO, Schweiger et al. [14] proposed a methodology to decompose a MINLP 
optimal control problem of a DHN into two sub-problems. A mixed problem to minimize the operational cost 
and a continuous one to minimize the production temperature. Nova Rincon et al. [15] studied another aspect 
of the optimal operation of a DCN. To avoid the technical issue of “Low ΔT syndrome” which reduces the 
efficiency of the system, they optimized the mass flows and temperatures in the distribution network to 
minimize the difference between the outlet temperature of consumers and a design outlet temperature. As 
they solve differential equations with a small time step, the DOO approaches have significant resolution times. 
To our knowledge, this is why we do not find studies that optimize at the same time the design and the dynamic 
operation of a DHC with accurate thermo-hydraulic modeling of the pipes. The originality of this work is that 
we conduct an optimization of the pipe diameters and the dynamic operation of a DHN with an economic 
objective function while having a precise modeling of the pipes.  
In this study, we present a methodology for the optimal operation of an academic case study of a DHN 
comprised of twenty consumers over a daily study period. In addition to the optimization of mass flows and 
temperatures in the distribution network, the pipe diameters are also optimized. Considering a variable ambient 
temperature, a dynamic one-dimensional heat transfer equation is used to define the temperature evolution in 
the pipes. The Darcy-Weisbach equation is employed to compute the pressure drops in the distribution 
network. In the following parts, firstly we expose the case study. Secondly, we introduce the physical, the 
design and the operational constraints in addition to the objective function of the problem. Finally, we present 
the results and conclusions.   

2. Case study 
For this study, we used the same topology of the network presented in Figure 2 of [15] that serves 20 different 
consumers. In the outward path, there are 41 pipes, 21 main pipes ( ) and 20 lateral pipes ( ). 
The lateral pipes are directly connected to the consumers through a sub-station unit where the thermal power 
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is transferred from the distribution network to the consumer’s heating system. The return path is also comprised 
of 41 pipes that are parallel to the outward path (  and ). The network is then constituted 
by 1 production unit, 20 substations and 82 pipes with a total length close to 19 km. In what follows, we use  
as the index for all the pipes, , ,  and  as the sub-indexes for main outward pipes, main return pipes, 
lateral pipes entering consumers and lateral pipes leaving consumers, respectively. 

 
Figure 1.  Representation of the network's configuration [15]. 

Concerning the heat demand, the same daily profiles used in district B of [16] are taking into account. Two 
types of profiles are considered, one for residential buildings, and one for commercial buildings. Table 1 shows 
the distribution of the type of buildings and their peak demand. The two profiles are represented as a function 
of the peak demand of each consumer as shown in Figure 2. To have a continuous representation of the two 
types of profile over time, a fit function was introduced for each profile. The two heat demand profiles of Figure 
2 are defined by a sum of sinusoidal functions of the form: 

 (1) 

where ,  and  are coefficients of the demand function. 

Table 1.  Type of consumers and their peak demands. 
Consumer Type Peak demand Consumer Type Peak demand 
C1 Commercial 1500 C11 Commercial 720 
C2 Commercial 1260 C12 Residential 180 
C3 Residential 360 C13 Residential 450 
C4 Commercial 1440 C14 Commercial 1500 
C5 Residential 210 C15 Commercial 1050 
C6 Commercial 1020 C16 Commercial 540 
C7 Residential 240 C17 Commercial 990 
C8 Commercial 600 C18 Commercial 1200 
C9 Commercial 990 C19 Commercial 1170 
C10 Commercial 420 C20 Commercial 1110 
 
In Figure 3, the total heat demand of the network is represented. Its evolution is quite the same as the one of 
the commercial demand, because there are 15 commercial buildings in this case study and they have a higher 
peak demand than residential buildings. In the same figure, we also have the ambient temperature evolution 
which is one of a not very cold winter day. 

3. System modeling 
The model of the DHN is comprised of energy and mass conservation equations at each node and sub-station 
of the system. Inside every pipe, a heat transfer equation describes the temperature evolution. In this latter, 
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the mass flow is time dependent, while the temperature is time and space dependent. In addition, the Darcy-
Weisbach equation describes the dynamic evolution of pressure drops in the pipes. In the following parts, we 
will detail the different equations of the system. These equations represent the physical, design and operational 
constraints of the optimization problem. 

 
Figure 2.  Heat demand profiles. 

 
Figure 3.  Total heat demand and ambient temperature profiles. 

3.1. Production unit, nodes and sub-station 
At the production level, we consider one fixed technology that delivers the hot water at a constant temperature: 

 (2) 

At every interconnecting node of the network, the mass balance is applied. For the outward path, we have:  
     

    (3) 

   

For the return path, we have: 
     

    (3) 

   

In the outward path, the nodes are splitters so the temperature entering the node is equal to the temperature 
leaving it: 
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      (4) 

     

In the return path, the nodes are mixers. We apply an energy balance considering the equality between the 
inlet and outlet enthalpy flows. Assuming a constant specific heat capacity between the inlet and the outlet, 
the equation is:  

       

      (5) 

       

,  and  are the pipe length, mass flow and temperature of water in the pipes.  and  represent the 
time and distance dependencies.  
The sub-station unit is also defined by mass and energy balance equations. The flow going from the outward 
path to the substation is equal to the flow going from the substation to the return path. Assuming a constant 
specific heat capacity, the energy balance is defined to have a difference in enthalpy flows between the inlet 
and the outlet equal to the demand. The conservation equations of the sub-station are: 

    (6) 

    (7) 

 is the specific heat capacity of water.  
3.2. Thermal model of the pipe 
As stated in [17], the choice of an adequate pipeline model that gives a good trade-off between accurate 
physics and computing costs is a key challenge for DHN optimization. As proposed in previous studies 
[14,18,19] we use a one-dimensional energy balance in the pipe which is described by the partial differential 
equation (PDE) written in Eq. (8). This heat transfer equation is submitted to the following assumptions: 
▪ Plug flow 
▪ Neglected axial conductive heat transfer in the fluid 
▪ Material properties are constant and independent of temperature  
▪ Thermal interaction between the supply and return pipes is not included 
▪ Thermal inertia of the pipes, casing and insulation is neglected 

    (8) 

  
 and  are the water density and cross section area, respectively.  represents the total dynamic thermal 

resistance per unit length of pipe and  is the temperature of the soil surface.  
The total thermal resistance over time  depends on the thermal conductivities of the pipe, insulation, 
casing and soil.  depends also on the internal convective heat transfer between the water and the inner 
wall of the pipe and is given by [18]: 

 (9) 

where , , and  represent the thermal conductivities of the pipe, insulation, casing and soil, 
respectively, and , ,  and  are the different radiuses from the inner wall of the pipe to the casing, as it is 
shown in Figure 4. 
 is the conduction shape factor, for , it can be approximated by [20]: 

 (10) 

where  is the distance between the pipe axis and the soil surface. 
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 is the convective heat transfer coefficient over time averaged for the entire length of the pipe, it is 
computed by:   

 (11) 

 
Figure 4.  Representation of the buried pipe [15]. 

where  is the pipe internal diameter ( ,  is the Nusselt number over time averaged for the 
entire length of the pipe and  is the thermal conductivity of water. Assuming that the system operates under 
a turbulent regime (Reynolds ), we use the correlation of Dittus-Boelter [21] to compute the Nusselt 
number in a circular tube: 

 (12) 

 and  are the Reynolds number over time and the Prandtl number, respectively: 

 (13) 

 (14) 

 and  are the flow velocity over time and dynamic viscosity of water, respectively. 
3.3. Hydraulic model of the pipe 
The work of the pumps in the distribution network is directly related to the pressure drops. For each pipe, to 
compute the linear pressure drops, the Darcy-Weisbach equation is used: 

    (15) 

 represents the friction factor over time which depends on the flow regime and the rugosity of the pipe. For 
 and a relative roughness  smaller than , it can be computed by the form of 

Colebrook-White equation proposed by Moody [22]: 

 (16) 

We assume that we have smooth pipes, which means . The singular pressure drops are assumed 
to be equal to 30% of the total pressure drops [4]. In each branch, the total pressure drop is equal to the sum 
of the linear and singular pressure drops. As we have parallel connections, we choose the longest path to 
compute the linear pressure drops. For the left branch (LB), the pressure drop is: 

 (17) 

with:  

For the right branch (RB), the pressure drop is: 
 (18) 

with:  
The fact that the LB is longer and serves more consumers than the RB, suggests that the  should 
be higher than the . We assume that at every time step, the pressure drop of the LB is higher than 
the one of the RB. We also neglect the singular pressure drops in the pipes 0 and 0r. The electrical power 
required for the pump is:  
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  (19) 

 is the pump efficiency, it represents the total efficiency of the pump which includes mechanical, transmission 
and motor efficiencies.  is assumed to be equal to 70%. 
Depending on the inner diameter of the pipe, a maximum flow velocity is recommended, which limits the 
specific pressure drop over the pipe length. A threshold of maximum specific pressure drop of 100-150 Pa/m 
is common to avoid corrosion and increased pumping energy [23]. Using the recommended flow velocities for 
sizing pipes reported in [24], we imposed an inequality constraint on each pipe to don’t exceed a maximum 
flow velocity per diameter: 

    (20) 

We consider that every consumer have to respect a contractual outlet temperature, for this purpose we defined 
this equality constraint: 

    (21) 

In order to have values that are available in reality, the diameters of the pipes are bounded to a maximum 
value of 0.57m that is based on the commercial availability of PVC pipes: 

    (22) 

The set of Eq. (2) to (22) represent the equality and inequality constraints of the optimization problem, resulting 
in a partial differential algebraic equation (PDAE) system. The orthogonal collocation on finite elements 
(OCFE) method was used to discretize the PDE (8) in order to transform the PDAE system into a set of 
algebraic equations. The details of the implementation of the OCFE and the discretized mathematical model 
of the system are presented in the appendices A and B of [15], respectively. 

4. Objective function 
The objective function includes the operational expenditures (OPEX) of the system and the capital 
expenditures (CAPEX) of the pipes. The OPEX comprise both heat production and pumping costs. The heat 
production cost “ ” is obtained by multiplying the total thermal energy produced over the day by the unit 
cost of heat production:  

  (23) 

with:   (24) 

 is the unit cost of heat production, its unity is (€/MWh),  is the production mass flow (kg/s) and  
and  are the production and return temperatures, respectively. The total thermal energy produced is 
computed by integrating with respect to time the thermal power  which is equal to the difference 
between the enthalpy fluxes of production and return. 
The pumping cost “ ” is the product of the total pumping energy over the day and the unit cost of 
electricity: 

  (25) 

 represents the unit cost of electricity, its unity is (€/MWh). The pumping power of the network  
is integrated over the day to obtain the total pumping energy. As Gaussian quadrature methods are suited for 
the computation of integrals when the OCFE is used, for the resolution of the integrals presented in Eq. (23) 
and Eq. (25) the Gauss-Lobatto quadrature was employed.  
The investment cost of the pipes “ ” which includes the cost of the pipes and the cost of deploying 
them in trenches is represented by a linear function as follows:  

  (26) 

Values of investment cost of different nominal diameter by unit length were given by a French company which 
operates DHN. Using these values, we create a linear regression to have a continuous representation of the 
cost depending on the diameter. Considering that the DHN of this case study has a lifetime of 30 years, we 
transform the coefficients of the linear regression (  and ) to have an investment cost for one day. 
Using a Lagrange problem type formulation, the objective function is the sum of the three costs defined above: 

  (27) 
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The optimization variables are the inner diameters of the pipes, the temporal values of mass flows, and spatio-
temporal values of temperature in each pipe. This optimization aims to find the diameters that give the best 
trade-off between CAPEX and OPEX while finding the optimal operational values of mass flows and 
temperatures. 
Since all the variables are continuous, Eq. from (2) to (26) and the objective function (27) constitute a dynamic 
NLP problem. The OCFE was employed on the PDE (8) to transform the problem into a set of algebraic 
equations. For the resolution, we used an equation-oriented (simultaneous) methodology, with the software 
GAMS for the modeling of the system, and the solver CONOPT for the solving.  
As it is the case in most complex optimization problems, a resolution methodology was developed. The 
purpose of the methodology is to help the solver by creating a resolution process where we solve successive 
problems. We start from a simple problem and we get more complex until we finally solve the problem of this 
study. In the resolution process, we always use the last solution for the initial values of variables of the next 
problem.   

5. Results and discussion 
This optimization was done considering a production temperature of 92 °C and an outlet temperature of 
consumers equal to 72 °C. The unit cost of electricity was taken equal to 174 €/MWh. Concerning the unit cost 
of heat production, we considered the prices in France in 2022 for 3 different technologies: biomass boiler (50 
€/MWh), gas boiler (150 €/MWh) and heat recovery (20 €/MWh). The thermo-physical properties of water are 
taken for the temperatures of 92 °C and 72 °C as it is shown in Table 2. In what follows, we will present some 
results obtained in the optimization of this case study. 

Table 2.  Thermophysical properties of water [20]. 
  (kg/m3)  (kJ/(kg K))  (N s/m2)  (W/(m K)) 
Outward pipes (92 °C) 963.4 4.209 0.306 0.677 
Return pipes (72 °C) 976.6 4.191 0.389 0.664 
 
Figure 5 represents the daily evolutions of heat production and mass flow at the production level for the case 
of biomass boiler. We observe that the heat production has the same profile as the total demand with slightly 
higher values due to the thermal losses in the network. The thermal losses can also be observed in Figure 6 
where the return temperature to the production is represented. The production mass flow of Figure 5 also has 
the same profile as the total demand. Since production temperature is constant and return temperature does 
not vary significantly, the mass flow follows the demand as it can be seen in Eq. (7). We obtain the same 
evolutions for the two other production technologies (gas boiler, heat recovery). 
The pressure drops have daily profiles quite similar to the total demand due to the fact that they are proportional 
to the square of velocity (Figure 7). Inside the pipes, as there is a plug flow regime, the velocity and mass flow 
have the same profile. As expected, the pressure drop of the left branch is always higher than the one of the 
right branch which is explained by a more important demand on the left. In a real case, the DHN cannot operate 
under these pressure conditions. To guarantee a correct operation, it is necessary to have pressure control 
valves before mixing nodes that will maintain the same pressure drop in every parallel connection of pipes. 
Consequently, the pressure drop of the right branch will be equal to the one of the left. 

 
Figure 5.  Heat production and production mass flow over time. 
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Figure 6.  Outlet temperature of consumers and return temperature of the network over time. 

In Table 3, we present the results of 3 optimizations where all the parameters are the same ( ,
…) except for the unit cost of heat production ( ). Each unit cost represents a different 

production technology (gas, biomass and heat recovery). We observe that when  increases, the heat 
produced energy decreases and the pumping energy increases. When the price of heat is more important, the 
solution tends to reduce the size of the diameters resulting in less investment for pipes, less thermal losses 
and more pressure drops as it can be observed in Figure 8. 

Table 3.  Optimization results for 3 different production technologies. 
Type  
of production 

Unit cost (€/MWh) Total heat  
produced (MWh) 

Total pumping  
energy (kWh) 

Average diameter  
(mm) 

Gas boiler 150 169.11 652.82 154.55 
Biomass boiler 50 169.17 591.43 155.34 
Heat recovery 20 169.20 567.35 155.86 
 

 
Figure 7.  Pressure drops of the two branches of the network over time.    
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Figure 8.  Pressure drop of the left branch of the network for 3 different production technologies. 

6. Conclusions and perspectives 
In this study, we developed a model for the optimization of the daily operation of a DHN. We optimized the 
pipe diameters in addition to the mass flows and temperatures in the distribution network. In the modeling of 
the pipes, the OCFE was used to discretize the heat transfer equation, and the Darcy-Weisbach equation 
described the pressure drops. The parametric study on the unit cost of heat production confirmed that it is 
better to have smaller diameters when the cost increases to reduce the thermal losses.  
The results of this NLP optimization are a good starting point for a Mixed Integer Dynamic Optimization (MIDO). 
As we find only discrete values of diameters in the market, it is more interesting to solve a MIDO problem 
where the diameters will be discrete variables and mass flows and temperatures continuous ones. Moreover, 
to correctly design the pipes, it is necessary to take into account the operation of the DHN in the different 
seasons. An interesting study may be the consideration of different characteristic days (one for each season). 
Another interesting study is the consideration of more than one production unit and of a TES tank. The aim 
would be to optimize the management of all units while considering the same physical complexity in the pipes 
and the temperature distribution inside the TES. Currently, we are working on the development and the 
optimization of a model of this type. 

Nomenclature 
Abbreviations 
CAPEX CAPital EXpenditures 
DCN District Cooling Network 
DHC District Heating and Cooling  
DHN District Heating Network  
DOO Dynamic Offline Optimization 
MIDO Mixed Integer Dynamic Optimization 
MILP Mixed Integer Linear Programming 
MINLP Mixed Integer Non-Linear Programming 
NLP Non-Linear Programming 
OCFE Orthogonal Collocation on Finite Elements 
OPEX OPerational EXpenditures 
PDAE Partial Differential Algebraic Equation 
PDE Partial Differential Equation 
TES Thermal Energy Storage  
Latin symbols 

 cross section area of the pipe, m2 
 specific heat capacity of water, J/(kg K)  

 pipe diameter, m 
 friction factor 
 pipe length, m 
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 mass flow in the pipe, kg/s 
 thermal power, W 

 electrical power of the pump, W 
 radius, m  
 total thermal resistance per unit length of pipe, (m K)/W 
 Reynolds number 

 time variable, s 
 temperature of the flow in the pipe, °C 
 flow velocity, m/s 
 space variable, m  

Greek symbols 
 water density, kg/m3 
 dynamic viscosity of water, Pa s 

 pressure drops, Pa 
 thermal conductivity, W/(m K) 
 pump efficiency  

Sets and indexes 
 index for the inner diameter of the pipe 
 set of consumers  

 set of pipes 
  index of the left branch of the network 
  index of the right branch of the network  

 index for the soil   
 index for water   
 sub-set for main forward pipes 
 sub-set for main return pipes  
  sub-set for pipes entering consumers 

 sub-set for pipes leaving consumers  
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