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Abstract: 
In the current electricity grids, it is becoming pivotal to install a large amount of storage capacity in order to 
maximize the deployment of renewable energy sources, stabilize the grid, and mitigate electricity price 
volatility. Engineering research focused on improving storage technologies performance aiming to improve 
the round trip efficiency and increase the utilization opportunities. Besides storage implementation, power 
plant flexibility is pursued as well to support electricity grids in the transient stage towards a decarbonized 
energy mix. Recent studies have investigated the possibility of enhancing the flexibility of  Combined Cycle 
Gas Turbine (CCGT) power plants by means of a heat pump and a cold thermal energy storage, this solution 
demonstrated a relevant potential, especially in those locations characterized by warm climates and volatile 
electricity markets. In such a situation is possible to fully exploit the cold thermal energy storage, decreasing 
the net power output, during storage charging in off-peak periods, and boosting it, through inlet cooling, 
during the most profitable periods. This paper performs a techno-economic comparison between cold 
thermal energy storage for gas turbines air inlet cooling and other established energy storage technologies 
(such as pumped hydro, batteries, compressed air, and pumper thermal storage) for time load shifting and 
energy arbitrage on the day ahead market. The analysis is based on Linear Programming (LP) and Mixed 
Integer Linear Programming (MILP) models for the optimization of the dispatch. The impact of market 
parameters on storage technologies performance is investigated and discussed, selecting the best option for 
each considered scenario. 
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1. Introduction 
The awareness about the ongoing climate change due to emissions of Green House Gasses (GHG) has led 
in the last decades almost every country to pledge drastic GHG emission cuts [1] and a complete transition 
to a decarbonized economy is commonly scheduled for the horizon of 2050 or 2070 [2]. The first step of the 
Energy Transition has been the massive installation of electricity generation capacity from Renewable 
Energy Sources (RES). Approximately 2 TW have been installed globally in the period 2010-20, and the 
overall share of electricity generation from RES reached 28%, overcoming 40% in many advanced 
economies even considering a significant contribution of hydropower [3]. Even a higher amount of RES 
capacity is forecast to be installed in the near future (between 2.4 and 3.7 TW by 2027 [4]); indeed, carbon 
intensity targets have been set more and more challenging and the demand for low-carbon electricity is 
expected to grow following the coupling of different energy sectors, such as Heating or Transportation [5]. 
Nevertheless, since the hydropower growth potential is limited, most RES capacity addiction depends on 
solar and wind sources, strongly characterized by discontinuity and stochasticity. Although forecasting of 
RES production in advance has improved significantly, especially thanks to artificial intelligence and data-
driven modeling [6,7], the mismatch between demand and production remains a severe issue and a 
significant amount of green electricity is often curtailed because of an overgeneration or a lack of 
transportation capacity of electricity grids [8]. Curtailments are negligible for PV generation but are relevant 
for wind, Especially in countries characterized by high wind energy shares, i.e., above 30%, up to 10% of 
wind generation can be curtailed [9]. Within this context, energy storage became a pivotal technology that 
must be implemented massively at the grid scale to support the energy transition and maximize the dispatch 
of renewable energy [10]. To be impactful on energy system management, storage must present adequate 
both power and energy sizes, there is no unique definition of grid-scale storage size. However, in this paper, 
1 MW discharge power for at least 1h is assumed as a threshold value. For such applications pumped hydro, 
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electrochemical batteries, compressed air, and pumped thermal energy storages are the most promising 
technologies, there many other solutions have been investigated, but currently present a too-low technology 
readiness level (TRL) on such a scale. 
Besides bulk energy arbitrage, i.e., the action of buying cheap energy during off-peak price periods, storing 
it, and selling it during price-peaking periods, storage technologies can be employed to provide services to 
the grid. This paper focuses only on load time shifting by energy arbitrage as the most relevant use 
considering the energy involved and the pivotal importance to maximize the RES dispatch and reduce the 
carbon footprint of electricity generation. 
Historically the first form of energy storage implemented on a large scale was pumped hydroelectric storage 
(PHS), it represents a variation of conventional reservoir hydroelectric power plants. Energy is stored in the 
form of potential energy of water that is pumped from a lower reservoir to an upper reservoir [11]. PHS is a 
consolidated technology, already implemented widely at the grid scale since the 1970s to absorb the excess 
base load production from coal and nuclear power plants [12]. PHS plants have been installed especially in 
those regions characterized by an existing hydroelectric potential, such as the Alps in Europe, and along 
both the East and West Coast in the US [13]. However, within a liberalized electricity market, oligopolistic 
ownership, especially if both PHS and conventional power plants are managed by the same operator, may 
lead to an under-exploitation of it, as in the case of Italy [14]. In fact, a strategic operation of PHS could 
reflect in social welfare losses [15]. From a technological perspective, PHS is characterized by a Round Trip 
Efficiency (RTE) typically ranging between 70% and 80% even if up to 87% have been claimed [11]. One of 
the major issues of PHS implementation concerns site identification that must satisfy criteria of technical and 
economic feasibility together with social acceptance. A systematic approach for new PHS site identification 
has been developed and applied by Connolly et al. [16]. An interesting variance application concerns 
seawater PHS whose main advantage is to be not subject to the constraint of water availability in the lower 
reservoir [17]. 
Battery Energy Storage (BES) are probably the technology expected to grow more in the next years. 
The International Energy Agency states that, according to the Net zero emission by 2050 scenario, 680 GW 
of BES must be installed by 2030. 16 GW were already installed in 2021 [18]. Various BES types exist, the 
most interesting for large-scale applications include lithium-ion (Li-ion), sodium-sulfur (NaS), lead acid (Pb-
acid), lead-carbon batteries, as well as zebra batteries (Na-NiCl2), and flow batteries. Li-ion BESs represent 
almost the totality of installed grid-scale capacity (92% in the US [19]) mainly because of the round trip 
efficiency of up to 97% DC-DC [20,21], corresponding to 85-95% AC-AC [22]. NaS batteries are available 
since the early 2000s at MW scale [23] and are particularly appreciated for their achievable depth of 
discharge (up to 90%) [21], while the main drawback is the thermal management since they operate in the 
range of 300-350°C, causing up to 20% per day of parasitic losses during idle periods [24]; similar issues are 
presented by Zebra BES [23]. Lead-acid BESs are appreciated for their high recyclability [25] and reduced 
CAPEX even if characterized by a reduced lifespan [21]. Flow batteries use aqueous electrolytes with one or 
more dissolved active species; the electrolytes are stored in tanks, and, pumped through an electrochemical 
cell where energy conversion takes place, because of this architecture this kind of battery shows a unique 
capability to decouple energy and power [26], however, they are characterized by significantly higher energy 
density and lower efficiency. Vanadium redox flow batteries show the best values of RTE but are still limited 
to 75-85% [27]. A relevant issue of BES is the relevance of system degradation and aging: this strongly 
depends on usage mode and should be considered for optimal dispatch [28]. 
Compressed air Energy Storage (CAES), store energy as compressed air, for large applications typically 
underground reservoir are used. Even if porosity and permeability are mandatory requirements, geological 
constraints are not as strict as for PHS [29]. The clean medium, the moderate CAPEX for a unit of stored 
energy, and scalability are the most appreciated features. In contrast, low RTE, reduced depth of discharge, 
and a considerable response time are the main drawbacks [30]. RTE may be increased by advanced 
techniques for managing heat generated during the compression phase. According to these, CAPEX can be 
classified into Diabatic-CAES, more mature but less efficient, wasting compression heat and burning fuel, 
typically natural gas to preheat air before the expansion during the discharge phase, Adiabatic-CAES 
adopting a TES to store the compression heat and release it during the expansion without any fuel 
consumption, and Isothermal-CAES claiming RTE up to 70% but characterized by low TRL [31]. 
Pumped Thermal Energy Storage (PTES), also known as Carnot Batteries, is a type of energy storage 
system that uses thermal energy to store and release energy. PTES systems store energy by pumping a 
heat transfer fluid between two reservoirs at different temperatures. During the charging phase, power is 
used to drive a heat pump and transfer heat from the colder reservoir to the hotter one. To discharge the 
storage, the process is reversed, and the heat transfer fluid is pumped back from the hotter reservoir to the 
colder one, generating electricity in the process. PTES potential advantages for grid-scale applications 
include long cycle life, low life-cycle environmental impact, and appreciable energy density. However, the 
main drawback is a low RTE, which is typically in the range of 40-70% [32]. Additionally, PTES implies 
relevant specific CAPEX €/kW for the power and charging unit. PTES can be classified according to the 
discharging method, exploiting Brayton or Rankine cycles; the charging methods, mainly including reverse 

2367 https://doi.org/10.52202/069564-0213



 

thermodynamic cycles and or the use of electrical resistance; and type of Thermal Energy Storage (TES), 
sensible, latent, or chemical [33,34]. 
Besides these technologies, an interesting application was studied in recent years to couple a Combined 
Cycle Gas Turbine (CCGT) with an Inlet Conditioning Unit (ICU) consisting of a heat pump (HP) and a cold 
(5°C) TES, connected as in the scheme (Figure 1). The ICU could work i) continuously, employing the HP to 
conditionate the CCGT intake, ii) as equivalent energy storage indeed using cheap electricity to drive the HP 
and charge the cold TES and using it to cool down the CCGT intake and boost the power output during the 
price peak periods without additional auxiliary losses. Preliminary works assessed the impact of intake 
temperature on the CCGT performance to investigate the potentialities of an ICU integration [35]. 
Subsequently, by means of a Mixed Integer Linear Programming (MILP) approach, it was developed a 
methodology to optimize the scheduling of an integrated ICU-CCGT power plant on the day-ahead market 
only [36] or considering the potentialities from an ancillary services provision [37]. Finally, a comprehensive 
assessment was carried out considering different European and US market and climate scenarios [38]. 
Considering that an ICU can be installed retrofitting existing CCGT plants and that those plants currently 
represent the backbone of many electrical systems, installing an ICU is equivalent to an investment in 
energy storage technology since it may be employed for the purpose of energy arbitrage and increasing the 
ability of the plant to supply grid services. 

 
Figure. 1.  Inlet Conditioning Unit (ICU) scheme 
The present paper aims to carry out a marked-based economic comparison between grid-scale available 
storage technologies, including the ICU-CCGT integration. Even if the participation of storage in the flexibility 
markets is today an interesting perspective, such markets are strongly characterized by uncertainties and are 
hard to generalize among different country rules, therefore the proposed comparison only considers the 
possibility for storage to perform energy arbitrage on the day-ahead market. The novelty of the approach is 
to compare pure storage technologies against a flexible solution for refitting CCGT.  

2. Methodology 
A previous work identifies 9 market clusters in Europe and USA characterized by similar profit opportunities 
for ICU-CCGT integration [38]. In this paper, a techno-economic comparison between available grid-scale 
storages is carried out on the same markets (i.e., the centroids of previously identified clusters). The 
approach consists in determining the best scheduling of dispatch for each storage maximizing the Net 
Operational Profits (NetOP). Historical electricity price data have been used for this purpose [39,40]. Net 
Operational Profits are then used to compute techno-economic indicators: Pay Back Period (PBP) and 
Internal Rate of Return (IRR) are used for the economic assessment because of their independency of the 
storage size and the interest rate. Net Operational Profits, eq. (1), are defined as Revenues from selling 
electricity minus costs of charging and any cost associated with the degradation of the storage itself. 
Equations (2) define the PBP, and equation (3) the NPV such as the IRR is the value of i to which it follows 
NPV=0. Where N is the lifetime in years. 
  (1) 

  (2) 

 
 (3) 

Storage operations are scheduled daily adopting an hourly resolution and an optimization horizon of 36h, as 
suggested by Vasylyev et al. [41]. According to this strategy price information beyond the daily horizon is 
provided to the optimizer. While the output concerning the first 24h is maintained, the scheduling from the 
25th to the 36th will be overwritten by the following day optimization. 
For the ICU-CCGT integration, the optimization of dispatch is carried out by means of the developed Mixed 
Integer Linear Programming (MILP) optimizer presented in detail by Mantilla et al. [36], and updated in the 
following works [37,38]. The objective function, equation (4) accounts for electricity price [39,40], gas cost 
(assumed as Henry Hub and TTF spot price for US and Europe respectively), CO2 emission allowance cost 
[42], O&M cost, and cost associated with start-ups. 
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 (4) 

The first term in (4) represents the revenues from selling on the market the net power output, i.e., the 
algebraic sum of CCGT, HP, and electric heater power. The second term represents the cost of fuel, then 
two different start-ups are considered, hot (hs) and warm (ws), C is the cost associated with the start-up and 
V is a binary logic variable. The cost associated with CO2 emission is computed as the unitary cost of 
allowance times the emission factor e times the fuel consumption. Finally, Operation and Maintenance costs 
are included. 
For the other storage technologies, a linear Programming (LP) optimizer is proposed. The problem is 
formulated by equation (5). x represent the array of solutions, the first 37 elements are the solution itself, i.e., 
the State of Charge (SOC) before and after each of the 36 time intervals, elements from 38 to 73 represent 
the values of the first auxiliary variable (Cdegr) dealing with the cost associate with degradation at each time 
step, finally, elements from 74 to 109 represent the second auxiliary variable (Cineff) dealing with the cost of 
charge and discharge inefficiency at each time step.  
 

 (5) 

  (6) 
f is the array of coefficients of objective function expressing the linear dependence between the solution 
array x and objective, i.e., the sum of net operational profits over the optimization period. 
The first 37 elements of f directly link the SOC and revenues from discharging and the cost due to charging, 
while the elements from 38 to 109 are equal to -1. 
  (7) 

The linear constraints, expressed by the matrix A and array b, relate the auxiliaries variables Cdegr and Cineff 
to the difference of SOC within the relative time interval. More in detail 5 different types of constraints are 
imposed. The two first limits the maximum difference, respectively upward (equation(8)) and downward 
(equation (9)), the limit is imposed by the maximum admissible power (even expressed as C-rate for BESS) 
during charge and discharge. These constraints are expressed by means of the time constant , i.e., the 
minimum time [h] required by a complete charge or discharge, equal to the ratio between nominal capacity 
Emax and the maximum charging and discharging power. 
  (8) 

  (9) 

Secondly, matrix A imposes the Cdegr at each time interval. For some kinds of storage, such as BES, lifetime 
is determined by the maximum number of cycles. Consequently operating the storage has a cost since once 
the maximum number of equivalent cycles is reached the storage must be replaced paying again the 
CAPEX. Each equivalent cycle has, therefore, a cost equal to the ratio between CAPEX and the maximum 
number of equivalent cycles, equation(10), then the degradation cost at the time interval i depends on the 
fraction of equivalent cycle performed on that interval, equation (11). 
  (10) 

 
 (11) 

Finally, the cost of charging and discharging efficiency is considered.  
 

 (12) 

Furthermore, Aeq and beq impose the SOC at the initial time: for the first optimization, the minimum SOC 
allowed is used, while for the subsequent optimizations the SOC25 of the previous day is set. Lower bounds 
and upper bounds are imposed consistently as follows. 
  (13) 
  (14) 
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3. Storage preliminary sizing 
The ICU-CCGT integration design is a fairly complex process that must take into account the site market and 
meteorological specificity, even when focusing on just continuous cooling [43]. However, the size indicated 
by previous works (i.e., 10 MWh and 10 MW of Thermal Energy Storage and a 3.5 MW Heat Pump) as the 
preferable value was used to maintain comparable results. The corresponding CAPEX has been estimated 
at 6.3 M€ [36,44]. To proceed to a fair comparison between this solution and pure storage technologies a 
preliminary sizing of the latter is required. 
Sizing is diriment because it directly impacts capital expenditure. The overall CAPEX depends on the 
storage size [MWh], the charging, and the discharging power [MW]. Table 1 reports assumed values for this 
paper from an existing literature survey. As a consequence, the specific CAPEX [€/kWh] depends on the 
storage duration disch and the ratio between charging and discharging time constant, ratio. Figure 2 shows 
the trend of specific CAPEX versus disch considering ratio between 1 and 6. However, BES CAPEX is 
typically expressed as an exclusive function of the storage capacity since capacity and power are strictly 
correlated and typically increased power does not imply extra costs, especially considering that if an hourly 
time interval is assumed, as in this paper, there is no advantage in adopting C-rate beyond 1 that are 
therefore not investigated. Thus BES curve in Figure 2 is flat. 

 
Figure. 2.  Storage specific CAPEX versus duration of discharge 
Figure 2 shows that BESs are the most economical storage for a short duration, generally, the other 
technologies CAPEX are very sensitive to the duration when it drops below 10h since the cost of power units 
becomes predominant. Increasing ratio leads to savings in CAPEX decoupling charging and discharging 
power. Charging equipment cost weights more than the discharging one, so the impact of the ratio is crucial 
in balancing the effect of reducing the CAPEX by decreasing the size of the charging equipment by a factor 
1/ ratio, while increasing the operational charging time accordingly. This can be exploited if the duration of the 
off-peak price period is greater than the peak duration and if the off-peak price profile is constant, so ratio>1 
is not directly reflected in an OP decrease. For a short duration, capital expenditure implied by CAES and 
PHS are comparable, nevertheless considering increased  values the weight of storage cost itself is much 
more relevant if compared to the charging and discharging power units CAPEX, consequently in this case 
PHS is more advantageous because the cost per kWh is almost half of CAES.  

Table 1.  Technical and economic assumptions for each storage technology 
 BESS PHS CAES PTES 
Emax [MWh] 1MWh 7 GWh 250 MWh 250 MWh 
DoDmax 80% 90% 50% 100%  

disc  [h] 1 2-24 2-24 2-24 
ch min / disch min 1 1-6 1-6 1-6 
ηch 92% 85% 75% 200% 
ηdisch 92% 88% 85% 30% 
CAPEXstorage 150€/kWh 15€/kWh 32€/KWh 21€/KWh 
CAPEXch - 400€/kW 500€/kW 2125€/kW 
CAPEXdisch - 350€/kW 300€/kW 1900€/kW 
Lifetime_max 25yr 80yr 35yr 35yr 
Ncycle max 7500 - - - 
ref [28,45] [46] [46] [47] 
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To preliminary size BES, PHS, CAES, and PTES, yearly optimizations are performed to quantify OP, PBP, 
and IRR. Different scenarios have been investigated, considering years from 2018 to 2022 and the 9 market 
zone identified as a relevant statistical sample for the ICU-CCGT integration [38]. The driving market factor 
for energy arbitrage is the price difference that can be exploited. Equation (15)  expresses in a general form 
the minimum discharge price to be worth operating storage, it depends on the charging price, the efficiency 
of charging and discharging, and the degradation costs. 

 (15) 

Therefore to characterize each market scenario the average daily variability  is adopted highlighting the 
distance between the discharging price  and the charging price, , on a daily basis. Table 2 reports 
the values of  and the yearly average price, , for each year and zone. Optimizations have been 
performed considering data synthesized in Table 1 as input of the LP scheduler described in the 
Methodology section. 

Table 2.  Average daily electricity price spread and yearly price average [€/MWh] in the considered years and zones. 

Bidding Zone State/ 
Country Ref. Location 

2018 2019 2020 2021 2022 
                    

ARKANSAS_HUB AR Pine Bluff 21.64 25.03 15.67 21.27 13.83 17.72 24.29 31.05 44.87 56.81 
AT AT Vienna 31.15 46.32 26.72 40.06 28.25 33.14 72.32 106.85 163.51 261.4 
CENTRL NY Syracuse 48.87 50.38 33.52 40.00 14.74 17.40 49.60 57.42 107.56 123.35 
LZ_CPS TX San Antonio 73.52 29.41 137.54 35.70 40.28 20.15 113.63 123.85 125.88 63.65 
NEWHAMPSHIRE NH Manchester 29.92 37.32 20.95 28.13 19.29 22.01 29.57 39.09 59.98 81.56 
NO3 NO Trondheim 13.10 44.08 8.81 38.54 3.61 9.46 21.58 41.07 40.04 41.94 
NORD IT Milan 31.28 60.71 28.05 51.25 26.06 37.79 59.40 125.2 161.52 307.81 
SCE CA Los Angeles 60.13 37.28 49.52 33.13 69.16 31.13 65.64 43.60 99.56 82.07 
SICI IT Palermo 56.99 69.49 71.75 62.77 48.87 46.21 73.15 129.02 172.8 295.07 

Table 3 reports the Utilization Factor (UF) as the first output of storage dispatch optimizations, the reported 
disch and ratio are selected as the best in the following economic analysis for each storage technology. The 

UF is defined as the ratio between the discharged energy and the energy discharged if a cycle until the 
maximum allowed depth of discharge was performed daily.  

 (16) 

Table 3.  UF [-] computed on a yearly basis for the best storage duration 

Bidding Zone 
(State/Country) 

BES PHS CAES PTES 
disch=1h ratio =1 disch=12h ratio =1 disch=12h ratio =1 disch=2h ratio =1 

2018 2019 2020 2021 2022 2018 2019 2020 2021 2022 2018 2019 2020 2021 2022 2018 2019 2020 2021 2022 

ARKANSAS_HUB (AR) 0.339 0.156 0.101 0.372 0.760 0.765 0.701 0.743 0.734 0.745 1.006 0.952 0.982 0.977 0.969 0.001 0 0.002 0.002 0 

AT (AT) 0.55 0.449 0.461 1.127 1.686 0.730 0.716 0.749 0.734 0.717 1.091 1.070 1.134 1.107 1.055 0.101 0.096 0.126 0.076 0.042 

CENTRL (NY) 0.871 0.656 0.105 0.862 1.275 0.788 0.743 0.554 0.755 0.749 1.066 1.012 0.781 1.025 1.019 0.016 0.001 0.004 0.001 0.003 

LZ_CPS (TX) 0.741 0.722 0.536 0.805 1.145 0.820 0.817 0.815 0.828 0.85 1.057 1.064 1.035 1.084 1.131 0.042 0.094 0.021 0.044 0.079 

NEWHAMPSHIRE (NH) 0.507 0.282 0.270 0.552 1.171 0.750 0.737 0.761 0.730 0.720 1.037 1.062 1.078 1.059 1.042 0.008 0.004 0.004 0.004 0.004 

NO3 (NO) 0.125 0.038 0.008 0.253 0.387 0.355 0.301 0.455 0.476 0.546 0.450 0.356 0.566 0.605 0.696 0.020 0.011 0.01 0.03 0.066 

NORD (IT) 0.599 0.545 0.493 0.912 1.557 0.575 0.666 0.692 0.597 0.611 0.846 0.973 1.034 0.879 0.902 0.001 0.007 0.021 0.007 0.008 

SCE (CA) 1.064 1.088 0.962 1.037 1.207 0.866 0.867 0.865 0.855 0.842 1.239 1.256 1.231 1.210 1.159 0.097 0.151 0.211 0.159 0.164 

SICI (IT) 1.266 1.401 1.122 1.239 1.636 0.788 0.827 0.828 0.686 0.639 1.196 1.263 1.268 1.028 0.959 0.031 0.111 0.057 0.043 0.074 

Table 3 indicates that the highest UFs are reported by BES in 2022, under considerably favorable market 
conditions. This occurs especially in those bidding zones, typically as southern and central Europe, 
characterized by two distinct and prominent price peaks, in the morning and early evening, and presenting 
the opportunity to perform two cycles in a day. On the opposite side, other markets, e.g. Texas, even 
characterized by a relevant daily variability, typically show only one peak in a day, thus the second daily 
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discharge is very rare. Finally, markets characterized by flat electricity price and reduced variability, e.g., 
Norway, shows reduced potential for arbitrage for all the storage technologies. 

If BES scored the UF highest values, CAES UF is considerably robust (around 1) even under less favorable 
market scenarios. However, CAES is characterized by a very low allowed DoD (50%), which means that, 
designing disch=12h, just 6h are required to discharge until the maximum allowed depth. 12h and 10.8h are 
required by PTES and PHS respectively. The operativity of storage would depend only on the frequency with 
equation (15) is satisfied, consequently BES has a great advantage thanks to high efficiency, and low disch 

and ch but, differently than other technologies, it pays the impact of degradation costs, especially in low and 
moderately variable markets. If the amount of energy discharged is considered, PHS operates more than 
CAES because of the highest efficiency, while PTES is almost unutilized because of the too low efficiency 
and therefore excluded by the following analyses. 

 
Figure. 3.  BES, PHS, and CAES Pay Back Period (PBP) vs the average daily variability of electricity price

 
Figure. 4.  BES, PHS, and CAES Internal Rate of Return (IRR) vs the average daily variability of electricity price 
Figures 3 and 4 show the PBP and the IRR assessed by means of the annual cash flow, as an output of the 
yearly optimizations. Consequently, trends are drawn considering 45 values and the relative  , from 5 
years and 9 bidding zone reported in Table 2. Trends appear smooth enough to confirm the outcome of [38], 
identifying   as the best predictor for energy storage economic performance. 
BESs present the lowest PBP; for  >50-55 €/MWh it drops below 10 years, however, the expected 
lifetime reduces as well because of the increased utilization. Besides the cycling aging of BES, calendar 
aging must be considered. According to the model presented by Stroe et al. [28], the maximum calendar life 
for an idling battery is about 25 years, this value is assumed as ceil even if the maximum number of cycles is 
not reached. Such an underutilization is typical of those markets with daily variability below 50€/MWh. The 
IRR increases with   and it is positive beyond 30€/MWh of daily variability. 
For PHS and CAES the ranges of disc and ratio (i.e., the ratio between ch and disc) indicated in Table 1 are 
investigated. The blue and the red lines in Figures 3 and 4 represent the envelope of best and worst points 
respectively, moreover, three other lines are plotted for the three combinations of disc and ratio that more 
often result as the best possible. Both for PHS and CAES the best couple is disc=12h and ratio=1, while the 
second and the third rank differ for the two technologies showing that selecting ch about 12-24h is preferable 
for CAES to limit CAPEX. PBP shows similar trends for CAES and PHS, even if under extremely favorable 
conditions (right side of charts) the PBP stabilizes at a slightly lower value for PHS (about 5 years, while 8 
years are required to pay back the  CAES) because of the lower specific CAPEX, as shown by Figure 1, and 
the higher efficiency. Moreover, it must be considered that the expected lifespan is significantly higher for 
PHS and this is reflected in the IRR which is positive even for reduced   (>10-15€/MWh). 
For the purpose of the comparison between traditional storage technologies and the CCGT-ICU integration 
in Section 3, the best disc and ratio are selected.  
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4. ICU-CCGT comparison 
The comparison is carried out on the three market zones that showed the highest potential for the integration 
of an ICU in an existing CCGT: SCE in California, northern Italy (NORD), and LZ_CPS in Texasi [38]. 
Respective reference locations for historical climate data are Los Angeles, Milan, and San Antonio. The 
previous section highlights how the bidding zone is not relevant for BES, PHS, and CAES but what is 
diriment is the exploitable variability in electricity price on a daily basis. Thus, for these technologies, is 
proposed an aggregated analysis, Figure 5 shows trend lines both for PBP and IRR built on rational 
3rd-degree function fitting all 45 available values.  

 
Figure. 5.  PBP and IRR comparison for BES, PHS, CAES, and ICU-CCGT in three different locations 
The analysis reported in a previous paper [38], was focused on one year and highlighted structural 
differences between market zone clusters considering both markets and climate parameters. On the other 
hand, this paper considers several years of operations highlighting that for systems with ICUs, an in-depth 
analysis is necessary and the expected economic outcome it is difficult to generalize because of the 
additional influence of ambient temperature and, secondly, of electricity price-gas price relationship, often 
synthesized by the Clean Spark Spread, the difference between the electricity price and the CCGT 
production cost, including CO2, as defined in eq. (18). However,  confirms to be an effective indicator 
and the economic performance constantly improves as it increases. The only exception is represented by 
Los Angeles in 2020 due to the low Clean Spark Spread that year. 
Even if in Texas and California higher  values are more common historically, for the same value the 
ICU-CCGT potential is higher in northern Italy. As Confirmed by Figure 6 and Table 4, in this location the 
potential for using directly the HP for heating and cooling the inlet air is higher (about 30% of operating hours 
for each of these operational modes), conversely, the TES is more exploited in California and Texas. In this 
last location is common to discharge the TES more than once a day and the inlet cooling by means of TES 
discharging is adopted for about 15% of operational modes.  Despite the typical single peak price profile of 
this zone, this is possible because the value of energy discharged by the TES depends both on the electricity 
price and the potential CCGT power increase following the cooling depending on the ambient temperature. 
Thus, if the daily trends of ambient temperature and electricity price present two peaks characterized by 
sufficient prominence and temporal shifting, the resulting profits opportunities may result in a two peaks 
profile allowing a UF beyond 1. 

  

Table 4. Inlet Conditioning Unit TES UF [-] 

  
Bidding Zone 

(State/Country) 

  SCE 
(CA) 

NORD 
(IT) 

LZ_CPS 
(TX) 

2019 0.706 0.372 1.01 
2020 0.627 0.311 1.032 
2021 1.056 0.783 1.548 
2022 0.819 0.5991 1.139 

Figure. 6. Operating mode as a percentage of overall operating hours 
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More in detail, from an economic perspective the main difference between the ICU-CCGT integration and the 
other storage technologies relies on the value at which the discharging power is awarded. The thermal 
energy discharged by the TES is reflected in an extra power output of the CCGT and a slight variation in 
efficiency since the fuel consumption increases as well, a detailed investigation of the dependence on the 
ambient temperature and the GT load is provided in [35]. Thus the economic value of the discharged energy 
is the power increment, due to inlet cooling by TES discharging, times the Clean Spark Spread (CSS), i.e., 
the profit margin of a CCGT power plant considering the fuel consumption and the cost of carbon dioxide 
allowance emissions, equation (18). Conversely, the cost of charging the TES is proportional to the ratio of 
electricity price on the HP COP. Analogously to equation (15), is possible to state the minimum condition to 
be worth operating the TES of an ICU. For the sake of simplicity, equation (17) neglects the variation in 
efficiency and thus in CSS following the TES discharge. 

 (17) 

 (18) 

Finally, Figure 7 confirms the pivotal importance of CSS reporting the boxplot distributions versus  for 
each year in the analyzed locations, in the hours in which the TES is discharged, . It is immediate to 
appreciate the strict correlation between the trend lines connected the CSS median values and the IRR or 
the opposite of PBP in Figure 5. CSS can be considered as a carrier signal, then on the right part of the chart 
trends diverge because the extra benefits on economic KPIs of increased .   

 
Figure. 7. Yearly Clean Spark Spread distribution versus the average daily variability 

5. Conclusions 
This paper performs a market analysis by means of Linear Programming and Mixed Integer Linear 
Programming optimizer of different storage technologies for energy arbitrage on the day-ahead market. Battery 
Energy Storage (BES), Pumped Hydro Storage (PHS), Compressed Air Energy Storage (CAES), and Pumped 
Thermal Energy Storage (PTES) are compared against the integration of a Combined Cycle Gas Turbine with 
an Inlet Conditioning Unit consisting of a Heat Pump and a cold Thermal Energy Storage (CCGT-ICU). 
Different scenarios have been analyzed considering historical data from different bidding zones and years. 
First, it was observed how the operativity of energy storage depends on the conversion efficiency and any 
possible cost associated with the degradation of the storage itself, this is an important issue for batteries. It 
was observed that PTES presents a very low utilization factor, because of the low round trip efficiency profit 
opportunities from arbitrage with PTES are very rare and it is not possible to pay the investment back. PTES 
is then excluded by the following analysis. 
A sizing procedure applied to PHS and CAES identifies both an optimal charging and discharging duration of 
about 12h, highlighting how limiting the charging power is an effective approach to reduce CAPEX and 
enhance economic KPIs. The daily electricity price variability is the driving factor for storage opportunities. 
Thanks to the absence of degradation costs and a good round trip efficiency, PHS performs better on 
markets characterized by moderate variability (<40-60 €/MWh), while batteries are the best solutions when 
the price is extremely variable (>60 €/MWh), in such a condition the high efficiency represents an advantage 
despite the cost associated to the storage degradations; performing even two cycles per day. CAES may find 
an application in low variable markets (<30-40 €/MWh), if there is no site availability for PHS. However in 
such conditions, the PBP is close to the expected lifespan, thus the viability of investment for CAES is still 
uncertain if only arbitrage profits are considered. 
Introducing the ICU-CCGT integration in the comparison requires separately analyzing bidding zones 
because of the impact of local climate and the Clean Spark Spread (CSS). The proposed integration wins 
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the comparison against other storage technologies in northern Italy and demonstrates to be competitive in 
California while it shows lower performance in Texas. It was demonstrated that what drastically impacts this 
outcome is the CSS and the opportunities to use the ICU also for direct inlet cooling and heating. 
It is possible to conclude that, as pure storage, the ICU integration presents low performance if compared to 
a system designed for this purpose. However, within the ICU investment, an HP is included that, if exploited 
in continuous heating and cooling mode, can increase the extra profits generated by the ICU retrofitting. 
Moreover, it must be considered that such an investment can avoid the closure or mothballing of the CCGT 
power plant, therefore keeping available to the Transmission System Operator a relevant capacity for 
supplying services to the grid, including the rotational inertia typical of turbomachinery-based power plants 
and essential for the purpose of frequency regulation. 

Nomenclature 
Acronyms 
BES  Battery Energy Storage 
CAPEX  Capital Expenditure 
CAES  Compressed Air Energy Storage 
CCGT  Combined Cycle Gas Turbine 
GT  Gas Turbine  
HP  Heat Pump 
HX  Heat Exchanger 
ICU  Inlet Conditioning Unit 
LP  Linear Programming 
MILP  Mixed Integer Linear Programming 
OH  Operating Hours 
PHS  Pumped Hydro Storage 
PTES  Pumped Thermal Energy Storage 
RES   Renewable Energy Sources 
TES  Thermal Energy Storage 
Variables 
C  Cost, €, €/MWh, €/ton 
COP  Coefficient of Performance, - 
CSS  Clean Spark Spread, €/MWh 
DoD  Depth of Discharge, % 
e  Emission factor, ton/MWh 
E  energy, MWh 
i  Interest rate, - 
IRR  Internal Rate of Return, % 
O&M  Operating and Maintenance Costs, €/MWh 
OP  Operational Profits, € 
P  Power, MW 
p  Price, €/MWh 
PBP  Pay Back Period, yr 
Q  Quantity, MWh 
RTE  Round Trip Efficiency, % 
SOC  State of Charge, % 
T  Temperature, °C 
UF  Utilization Factor, - 
V  Start-up Binary Variable, logic 
η  Efficiency, % 
τ  Duration, h 
Subscripts and superscripts 
amb  Ambient 
d  Daily 
el  Electricity 
ch  Charge 
disch  Discharge 
T  Transpose 
inef  Inefficiency 
degr  Degradation 
w  Warm 
h  Hot 
s  Start-up 
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i Days from February 13 and 19, 2021 have been excluded from the Texan analysis because of the exceptional energy crisis 
occurred during those days. Extremely high electricity prices occurred in that period cannot be considered as regular neither 
fully exploitable because of the generalized unavailability of many generators following the severe weather conditions. 
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