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Abstract: 
Policies reasoned by global climate change and increasing commodity prices due to the international energy 
crisis force district heating providers to transform their assets. Pit thermal energy storage combined with solar 
energy can improve this transformation process. Optimal energy planning of district heating systems is often 
achieved by applying a linear programming model due to its fast computing. Unfortunately, depicting those 
systems in linear programming requires complexity reduction. We introduce a method capable of designing 
and operating the system with the complexity increase of considering the top and bottom temperatures of the 
pit thermal energy storage in linear programming.  
Firstly, we extract and clean data from existing sites and simulations of seasonal storages. Secondly, we 
develop a polynomial regression model based on the extracted data to predict the top and bottom 
temperatures. Lastly, we develop a mixed-integer linear programming model using the predictions and 
compare it to existing sites. The model uses solar thermal energy, a pit thermal energy storage, and other 
units to meet the demand of a district heating system. 
The polynomial regression results show an accuracy of up to 92 % with only a few features to base the 
prediction. The optimization model can design the storage and depict the correlation between decreasing 
specific costs and thermal losses due to an increasing volume. The control strategy of the heat pump requires 
further improvement. 
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1. Introduction 
The energy transition to a carbon-free system is one of the key challenges in the 21st century. Therefore, 
district heating systems (DHS) need renewable options and flexibility to reduce the impact of global warming. 
[1] predicts an expansion of DHS and emphasizes the importance of seasonal storages. Seasonal storages 
could enhance the integration of renewables like solar thermal energy and increase the system’s flexibility. [2] 
identifies pit thermal energy storages (PTES) as economically feasible compared to other technologies. 
Combining different renewable technologies and seasonal storages supplying a DHS and the connected 
consumers is a tested concept in Denmark [3]. However, the planning process of a DHS with different 
technologies and different locations can be complex and overwhelming. In order to support decision-making 
processes for planers, we analyze historical and simulation data from seasonal storages. We develop a 
method to design a DHS with a PTES and other technologies inside a discretized thermal grid.  
Figure 1 illustrates the concept of storing solar thermal energy in a PTES and unloading it through a heat pump 
into a district heating network. The goal is to design and operate energy converters and storages connected 
to the grid by modeling pipes, consumers, and production units. This approach tries to model a district heating 
network with all components and allows the integration of PTES in this system. The main research question is 
how a PTES integration into a DHS with different components can be optimized. 
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1.1. State-of-the-art
In recent years, several different strategies to model PTES and DHS, design and operate them, have been 
introduced (see Table 1). Most studies focus on a detailed depiction of the storage to calculate the operation 
and thermal losses due to charging, discharging, and environmental temperatures. A more in-depth review of 
those studies is given in the following paragraphs.
Appropriate simulation tools are helpful for the project’s economic viability. TRNSYS is found to be the most 
widely used simulation tool for PTES simulations due to its component sets. [2] used TRNSYS to optimize the 
efficiency by using the data from a pilot solar heating system combining PTES. Results show that control 
strategies significantly improve heat collection performance and exergy efficiency, and stratification of 
seasonal storage impacts collection efficiency, especially at the end of the non-heating season [4]. EnergyPlus 
has some advantages in modeling heating systems on the demand side to satisfy various loads and is focused 
on building simulations [5]. FLUENT and COSMOL specialize in the PTES device temperature and velocity 
field analysis rather than system integration. SDH calculation tools is a bundle of tools developed by EU project 
SDHp2m [6]. It specializes in calculating solar district heating systems [7].

Figure 1: Fictional grid for this research with: a) PTES, solar thermal field, and heat pump as central units, b) 
buffer storage, and c) biomass boiler as a decentral unit; d) is referred to as a production unit; e) is 
referred to as consumer.

[8] considers using a biomass trigeneration system and an absorption heat pump to supplement the 
temperature gap and stabilize the water temperature in PTES at 85 to 90 °C. The model considers the overall 
efficiency of a power plant and maximizes the net present value to meet the district heating demand [8]. [9]
uses TRNSYS to model the combined heating supply system to determine the performance of each plant and 
the ideal size. [10] studies the Dronninglund water pit thermal energy storage focusing on the balance model 
of energy and mass flow and providing the charging and discharging data for further research. In winter, the 
district heating supply temperature in Dronninglund is 75 °C; when the top temperature of the PTES is below 
the supply temperature, the heat pump works as a compensator. In Marstal, when the PTES top temperature 
drops below 70 °C, the PTES serves as the heat source for the heat pump to provide the gap between the 
district heating water temperature and the storage unit [11]. We apply the concept of Marstal using the PTES 
as a heat source for the heat pump. 
The space for the PTES and solar panels affects the economics of the system. [12] compares the parameters 
of PV panels with thermal solar collectors. Using TRNSYS, three locations across Poland are examined, and 
the results show solar thermal collectors’ advantages in area occupation and economics [12]. [12] uses an 

(a)

(b)

(c)

(d)

(e)
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electrode boiler to feed into the PTES. [13] calculates an energy system with additional units and suggests a 
ratio of the seasonal storage volume to the solar field area of 2 to 3 m. [14] compares distributed and 
centralized thermal solar collectors in Finland with 1231 MWh yearly heating demand and concludes that the 
centralized units have a significant advantage in the heat generation costs. The lower costs for central units 
are caused by decreasing specific investments with increasing dimensions [2].  

Table 1. Typical energy system model comparison [15] 
Energy system 
model  

Min. Time 
step  

Space range  Related function  Ref.  

TRNSYS Seconds PTES/System  Economic analysis [9] 
 Control strategy [16] 
 Validation [17] 
 Efficiency [18] 
 PTES structure optimization [19] 
 Model development [17] 

[20] 

COMSOL Not available PTES  Validation [21] 
 PTES structure optimization [22] 
 Stratification model [21]  

[23] 

FLUENT Not available PTES  PTES structure optimization [24] 
 Stratification model [25]  

[26] 

Mathematical 
model 

 PTES/System  PTES structure optimization [27] 
 Validation [28] 
 Scenario analysis [28] 
 Stratification model [27]  

 

SDH calculation 
tools 

Hourly System  Combined five mixed system 
 Economic analysis 
 Scenario analysis  
 Efficiency (sizing) 

[7] 

PyLESA Hourly System  Economic analysis [29]   
 Control strategy [29]  
 Temperature dependence for heat 

pump models [29] 
 Stratification model [29]  

[29] 

 
The mentioned research gives and models the storage geometry and volume inside the simulation. We set the 
geometry as a variable and contribute to this extensive research with an approach in mixed-integer linear 
programming (MILP), including 
▪ dynamic network behavior by depicting temperatures inside the grid, 
▪ designing and controlling PTES in combination with other energy converters and storages located at 

different positions in the grid, 
▪ introducing realistic PTES temperatures from simulations and measured data to obtain more realistic, 

dynamic coefficients of performance (COPs) (see Marstal concept), 
▪ modeling and calculating the geometry of the PTES inside the optimization to account for thermal losses, 

space requirements, and specific investments. 
The major problem of designing seasonal storage systems in energy system models based on MILP is the 
temperature modeling inside the storage – which would introduce nonlinearity – and the lack of information 
concerning the geometry. Our approach is based on the fact that already-designed systems have been 
operated for several years. [30] gathers data concerning the ratio between volume and surface, while the 
storages in Marstal and Dronninglund provide operational data. This information provides a generic approach 
supporting planners in the design phase of a carbon-neutral DHS.  
The paper is structured in the method section, result section, discussion, and conclusion. In the method, we 
explain how we utilize the data from existing sites to model temperatures of PTES supplied by solar thermal 
energy. Additionally, we explain how we model the geometry of the PTES leading to specific investments, 
thermal losses, and space requirements. In the result section, we validate our approach by simulating the 
temperatures in the PTES and comparing the geometry and other parameters to existing sites. We continue 
by discussing our results and conclude with the most important findings. 
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2. Method
To find the optimal design for our energy system, we utilize MILP. MILP is a mathematical optimization 
technique for solving problems where some variables are constrained to be integers. It is used to model real-
world problems where decisions are made based on discrete choices [31]. Our approach uses historical data 
from existing, and simulated PTES projects supplied by solar thermal fields and predicts temperature profiles 
for the location where the energy system model is applied. Figure 2 gives an overview of the methodology. We 
train a regression model based on the extracted data to predict the top and bottom temperature. With that 
temperature information, the MILP model optimizes the heat pump operation, and we also obtain the 
temperature losses at the surfaces. To create a dynamic PTES surface model, we used existing sites to build 
a piecewise function in the MILP model that takes the variable volume as an input and delivers the areas of 
the bottom, top, and sides as an output. The specific investments are modeled analogously. The MILP model 
includes energy balances around pipes, consumers, energy converters, and storages. The mass flow inside 
the pipes is estimated a priori, preventing nonlinearity.

Figure 2: Illustrating the method dividing into the prediction of the temperatures, the piecewise functions for 
the capex and the surface areas of the storage depending on the volume, and the MILP model for the 
DHS.

2.1. Regression Model predicting PTES Top and Bottom Temperature
For our approach, we assume that the temperatures in the PTES behave similarly independent of the system 
due to the seasonal storing of solar thermal energy. To examine this assumption, four datasets were used in 
this research to predict the internal temperature of the PTES. We use the existing sites in Marstal and 
Dronninglund [3] and the simulation data from Wadelheim [32] and Florence [33]. The temperatures are
extracted using the tool WebPlotDigitizer [34]. 
Many features can affect the temperature in the PTES. First of all, the environmental factors should be 
considered. The database of photovoltaic geographical information [35] provides the ambient temperature –
two meters above the surface – and irradiance. [30] analyzes the slope and azimuth of solar thermal collectors’ 
installation. Based on this work, the slope is set at 35 degrees, and the azimuth is chosen at 180 degrees. The 
soil temperature is relatively constant according to the monitoring results in [3]. So, the effect of the deep soil 
temperature on the tank’s bottom temperature is neglected in our model. Additionally, the geometry – volume 
and surface area – of the PTES could affect the top temperature. However, this effect cannot be considered 
because the volume is a decision variable in the MILP model; therefore, the storage’s geometry is unknown 
when we apply the regression model (see Figure 2). In conclusion, we use the features time, solar irradiance, 
and ambient temperature at the given location.
Before applying a polynimal regression [36], we resturcture the data input to improve the accuarcy. The feature 
time is separated into hour [1,…,24] and day [1,…,365]. The time is then split into sine and 
cosine such as and . The time is now categorized into four features. 
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Afterward, we apply the StandardScaler from scikit-learn [37] to all features. Then we use three data sets to 
train the model and one to test it. To evaluate the performance of the regression, mean squared error, root 
mean squared error (RMSE), mean average error (MAE), R-squared, explained variation, and accuracy are 
set as measurements. 
2.2. The Energy System Model 
A description of all used nomenclature can be found in the Nomenclature section after the conclusion. The 
energy system model is a MILP model minimizing the costs of the system represented by an objective function 

        (1) 
 is the variable operational cost for energy converters combining costs for energy carriers, 

maintenance, and repair.  are the fixed costs for storages or energy converters for the operation, 
maintenance, and repair, and  are the investments. The economic calculation is based on [38]. The 
calculation is performed for one year in 3-hour timesteps. The model was solved with Gurobi [39]. 
The mass flow in the network is calculated a priori per day based on a fixed temperature delta of 30 K, meeting 
the demand of the highest peak in the grid of that day. Additionally, the velocity in the pipes is limited by a 
minimum pressure loss of 80 Pa/m and a maximum pressure loss of 300 Pa/m [40]. The energy balance for 
the pipes is formulated as  

   (2) 

where the first term represents the storage capacity of the pipe, the second term is the enthalpy rate entering 
and exing the pipe, and the last term is the loss of the pipe. The energy balance of the consumers is given by 

        (3) 

and the energy balance of the production units is formulated analogously with 
        (4) 

The temperatures in the grid are limited by the consumers, with  and a technical limitation 
between 0 °C and 130 °C. 
The heat flow at a production unit is the summation of all heat flows by storages and energy converters at that 
location . Therefore,  is given by 

    (5) 

 is the set of energy converters and storages at that location. The solar thermal field is modeled 
with 

        (6) 

where  is the variable dimensioned by the optimizer to calculate the area of the collectors.  is 
the efficiency of the solar field here assumed to be 0.5 [41]. The solar field charges the PTES, and a heat 
pump lifts the temperature of the PTES, if necessary, before injecting the heat into the grid. The energy balance 
of the PTES can be described as 

    (7) 

The energy balances for the buffer storages are modeled analogously. The PTES has a cyclic condition 
where . The PTES energy is limited by 

       (8) 
The heat flow when discharging the storage can only be directly injected into the grid if the supply 
temperature is lower than the temperature of the PTES at the top. This is given by 

      (9) 

The COP is calculated a priori based on the predicted temperature profile of . The heat losses 
 correlate with the geometry of the storage and decrease with increasing volume. The heat losses 
 are calculated identically to [42]. However, in this study, we do not know the size of the surface yet 

due to the unknown size of the storage. Therefore, we applied a piecewise function [43] calculating the 
sides, top, and bottom area of the PTES depending on the volume. We use existing sites to get grid points 
and summarize them in Table 2. We calculate the areas for each storage based on the geometry of an 
obelisk and assume that the bottom and top areas are quadratic. Furthermore, we assume a standard 
correlation between the top area side length and the bottom area side length of 78 to 48 due to the detailed 
information of Dronninglund from [42]. 
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Table 2: PTES information about the geometry and specific investments used for the piecewise functions. [2, 
30, 44] 

Site Volume 
[m3] 

Total 
surface 
[m2] 

Angle 
[°] 

Height 
[m] 

Calculated 
bottom 
area [m2] 

Calculated 
top area 
[m2] 

Calculated 
side area 
[m2] 

Specific 
investments 
[€/m3] 

Stuttgart 1050 835 45 5 118.4 312.65 403.95  

Ottrupgård 1500       150 

Eggstein 4500 1924.9 30 9 182.9 482.97 1259.04 113.02 

Sunstore 2 
Marstal 10000       67 

Dronninglund 60000 17076 26 16 2247.49 5934.78 8893.73 38 

Toftlund 70000 19204 27 14.5 2826.33 7463.28 8914.4  

Sunstore 4 
Marstal 75000 20298 32 16 3174.36 8382.31 8741.33 36 

Gram 122000 28893 20 15 3957.6 10450.53 14484.87 34 

Vojens 210000       24 

3. Results 
The result section divides into examining the results of the regression model to predict the top and bottom 
temperature of a PTES charged by a solar thermal field. Afterward, the MILP model uses this profile to design 
the PTES and other energy converters in a district heating network. The design is evaluated by comparing it 
to the existing sites of Marstal and Dronninglund. Additionally, we simulate the storage heat losses in Marstal 
with our predicted temperatures and compare the error. To evaluate the heat pump control, we perform two 
optimization runs: the first is with the predicted temperature profile, and the second is with averaged 
temperatures – not using the regression model in the pre-processing. We then re-simulate the actual 
temperatures in the storage and calculate the electrical demand for the heat pump in both optimization runs. 
For the re-simulation, we take the energy level  and divide by the volume, the specific heat capacity, 
and the density resulting in the current temperature delta. This temperature delta is added to  and the 
COP of the heat pump is recalculated.  
3.1. Polynimal Regression Results 
Table 3: Polynomial regrssion results for three sites as training and one site as testing. 

Dataset Polynomial Regression 
train test RMSE MAE Accuracy 
Marstal, Dronninglund, Florence Wadelheim 0.6336 0.5687 0.5986 
Marstal, Florence, Wadelheim Dronninglund 0.8395 0.6668 0.2953 
Dronninglund, Florence, Wadelheim Marstal 0.5964 0.4906 0.6443 
Marstal, Dronninglund, Wadelheim Florence 0.2896 0.2337 0.9161 

 
Table 3 shows the results for using three data sets as training and one dataset as testing. The accuracies for 
Wadelheim and Marstal are around 60 % due to the daily fluctuations in the demand. The result for Florence 
is realtively high with an accuracy of 91.6 %. The prediction accuracy for Dronninglund as testing is relatively 
low, at 29.5 %. The deterministic solution of the polynomial regression is given by 

,      (10) 

where the temperatures have the unit of °C and the irradiance W/m2. Before Eq. 10 can be used, the 
StandardScaler (see method section) has to be applied to every feature. 
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Figure 3: Polynomial regression results for Florence showing a) the simulated top temperature and the 
predicted top temperature and b) the deviation between the two temperature profiles. [33]

Figure 3 shows the simulated top temperature for the PTES in Florence [33] compared to the predicted 
temperature. A high correlation can be examined in Figure 3 a) between the two temperature profiles. 
However, the deviation has a maximum of 18 °C and an average of 5 °C. A deviation of 18 °C in the calculation 
for the COP of a 1 MW heat pump supplying 90 °C would result in an error of around 100 kW for the electrical 
input. This error indicates potential weaknesses in the modeling approach. To evaluate the effects on the 
geometry, we simulated the heat losses of the Marstal storage in 2014 based on the predicted top and bottom 
temperatures. The simulation results in a heat loss of 2391.85 MWh, causing an error of 17.7 % compared to 
the measured data [3].
3.2. Results for Designing the Energy System
The MILP model is applied to a fictional grid (see Figure 1). The design optimization of a central production 
unit results in a 250 kW central biomass boiler, a 12555 m2 solar thermal field, a 26725 m3 PTES, a 62 m3

buffer storage, and a 958 kW heat pump. Furthermore, a decentral production unit consisting of a 50 kW 
biomass boiler is installed. The heat generation costs are 14.5 ct/kWh. The operation and investments of the 
system are displayed in Figure 4. The costs are based on the year 2020 using the Day-Ahead prices. The 
solar thermal field mainly loads the PTES in the summer. The heat pump also has the opportunity to charge 
the PTES. Due to the heat pump’s partial load limit of 50 %, the biomass boilers cover peak loads. The 
buffer storage serves as a day-to-day flexibility supporting the heat pump operation. However, the heat flows 
of the buffer storage are not included in Figure 4, for clarity and due to the low impact on the energy system. 
The storage is mainly loaded in spring and summer, and the discharging starts mainly in October. In 
October, the temperatures in the storage are high enough to inject into the grid directly; therefore, the other 
units do not operate.
The temperature in the storage affects the electrical input for the heat pump, influencing the operational 
expenditures (opex). This effect is measured by resimulating the temperatures inside the storage and 
recalculating the COP. Based on the COP, the electrical power for the heat pump is recalculated. We also 
perform an optimization run without the predicted temperature profiles assuming a constant temperature 
inside the PTES. Using the constant temperature inside the PTES leads to a deviation of the electrical input 
for the heat pump of 45 %, while the predicted temperature profiles of the PTES cause an error of 29 %. 

(a)

(b)

2247 https://doi.org/10.52202/069564-0202



Figure 4: b) optimized operation of the energy system model and a) the investments in the energy system 
with the different shares for the energy converters and storages.

4. Discussion
The discussion divides into highlighting the benefits and drawbacks of the regression model and comparing 
the results of the energy system model with the existing sites in Marstal and Dronninglund.
4.1. Discussion of the Polynomial Regression Results
The difficulty of the regression model is the prediction of temperature profiles without knowing the demand or 
the volume of the PTES. Therefore, the model only has the time, the solar irradiance, and the ambient 
temperature as features. Using three storages as training data and Dronninglund as testing leads to a 
relatively low accuracy due to the considerable fluctuations in the temperature profile of Dronninglund. This 
clearly shows the disadvantages of the model because it cannot depict hourly or daily fluctuations. However, 
the prediction results improve up to 91 % for Florence. This improvement is due to the data being a 
simulation; therefore, no rapid changes are in the gradient. The regression model cannot replace a detailed 
storage simulation but can estimate the seasonal behavior at a given location for a pre-analysis.
4.1. Discussion of the Energy System Results
Utilizing the predicted temperature profiles in the energy system model leads to reasonable results, see Table 
4. It should be noted that the energy system model is not applied to the demand structure in Marstal or 
Dronninglund due to the lack of data. Therefore, the results can only be compared relatively. The storage is 
about half the size compared to Marstal and Dronninglund; the same applies to the solar thermal field. The 
storage charging is 4362 MWh, while the storages in Marstal and Dronninglund are charged with 7813 MWh 
and 12760 MWh. The ratio volume to solar field is 2.13 m, while for Marstal and Dronninglund, it is 2.25 and 
1.68 m. [13] suggests a ratio between 2 and 3 m, with 3 being relatively compared to our calculations and the 
existing sites. This comparison shows a correlation between the optimization results and the existing sites. 
Additionally, the results verify the approach of the piecewise functions to calculate the areas of the storage 
based on the volume due to the moderate deviation of 17.7 % compared to the measured data of Marstal in 
2014.
A significant drawback is the deviation of the electrical input for the heat pump – 29 %. Utilizing the predicted 
temperature profiles increases the accuracy, but a deviation of 29 % is still not accurate. We also tested a 
binary-based model leaving the temperature calculation inside the optimization. We applied this model to the 
same use case and obtained a solution for a timestep of 24 h after 8 h computational time on a windows 
machine with 488 GB and an AMD EPYC 7542 32-Core Processor. Reducing the timestep length to 8 h led to 
computational times over 24 h. Therefore, we conclude that the model is not applicable. Feeding the 
optimization model with fixed temperature profiles already suggests a control strategy for the heat pump and 

(a)

(b)
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influences the results. The last option would be to assume a constant temperature inside the storage and 
calculate the COP based on a constant value. Based on this study, we suggest using a constant temperature 
inside the storage for the COP calculation and performing a more detailed simulation of the PTES with 
TRYNSYS or other simulation software mentioned in the state-of-the-art. This has the advantage that the 
energy system model already calculates the design of the PTES, and the simulation can focus on the control 
strategy. Assuming a constant temperature inside the PTES for the energy system model would allow loading 
the storage with other technologies. The regression model can only work if a seasonal behavior is present in 
the charging process; however, other technologies like air heat pumps would load the storage based on the 
electricity market.  

Table 4: Comparison of results with the existing sites in Marstal and Dronninglund. [3] 
Parameter Marstal (2015) Dronninglund (2015) Energy System Results (2020) 
Charging, MWh 7813 12760 4362 
Discharging, MWh 5435 11983 3433 
Thermal losses, MWh 2946 1275 853 
Heat capacity, MWh 5430 5500 2086 
T-max, °C 84 89 92 
T-min, °C 20 10 23 
Volume, m3 75000 63000 26725 
Solar gain, kWh/m2/a 395 447 355 
Solar field, m2 33300 37573 12555 
Ratio volume / solar field, m 2.25 1.68 2.13 

5. Limitation of Results 
The method is applied to a fictional grid with six consumers. The grid size does not represent the usual DHS, 
and larger grids would lead to higher computational times. However, the solver needed ca. 1 h, and the model 
is applied in the planning phase; therefore, the computational time can be slightly higher than in a control 
optimizations. Nevertheless, the method must be applied to larger grids to evaluate its performance. 

6. Conclusion 
In this study, a method is developed to design PTES supplied by solar thermal energy inside a DHS. Our 
approach utilizes historical data and identifies strong correlations between the modeling results and the 
existing sites. The results suggest a ratio of ca. 2 m for volume vs. solar field. For 1 GWh capacity of a PTES, 
an area of around 1500 m2 combined with 37500 m2 solar thermal collectors would be needed. Achieving a 
more accurate result, our model can be applied in the planning phase for a grid-based DHS supplying heat 
from and to different locations. The model can depict the decreasing specific investments and thermal losses 
due to an increasing volume. This behavior is achieved by a piecewise function taking the volume as input and 
the investments and geometry of the PTES as output.  
The difficulty within the optimization is the control strategy of the heat pump, depending on the temperature 
inside the storage. We examined three possibilities: 

1. Predicting the temperatures of the storage before the optimization and calculating the COP a priori 
2. Assuming one constant temperature of the storage and calculating the COP a priori 
3. Calculating the temperature and the COP during the optimization 

The first option already induces a control strategy inside the optimization and causes an error of 29 % for the 
electrical input. The second option did not depict any temperature changes inside the storage and caused an 
error of 45 %. The third option was not applicable due to a high computational time. In conclusion, we suggest 
the second option, followed by a detailed simulation. This study showed the computational limits for a 
mathematical optimization in the design stage due to the fact that the dimension – the volume of the PTES – 
and operation – the temperature of the PTES – is a variable. In the future, new methods could be developed 
depicting volume and temperature as a variable and computing results in a practical manner. 
Furthermore, it would be interesting to investigate different technologies supplying a PTES and compare it to 
solar thermal energy due to its high investments. For Power-to-Heat technologies, the investigation should 
optimize at the Day-Ahead market to react to price fluctuations. In addition, large grids should be examined 
due to the large space requirements for PTES charged by solar thermal energy. 
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Nomenclature 
Letter symbols 

 area, m2 
 specific heat capacity, kJ/(kg K) 

 coefficient of performance for heat pumps 
DHS district heating system 

 energy, kJ 
 variable opex of the components in the energy system, € 
 fixed opex of the components in the energy system, € 

 capex of the components in the energy system, € 
 mass, kg 
 mass flow, kg/s 

MAE mean average error 
MILP mixed-integer linear programming 
PTES pit thermal energy storage 

 heat flow, kW 
RMSE root mean squared error 
 time 

 timestep length of the optimization, s 
 temperature, K 
 heat transfer coefficient, kW/(m2 K) 
 set of arcs – pipes, consumers, producers 

Greek symbols 
 set of timesteps 
 solar irradiance, kW/m2 
 efficiency 

Subscripts and superscripts 
 pipe 

 capital expenditures 
 solar collectors 

 consumer 
 energy converter 

 forward-flow 
 backward-flow 
 entering a component 
 energy converter or storage 
 shell 

 minimum 
 losses 

 variable operational expenditures 
 fixed operational expenditures 

 leaving a component 
 producer 
 irradiance 
 soil/ground 
 storage 

 for the supply / to the consumer 
 timestep 

 at the top level 
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