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Abstract: 
Due to the required CO2 reduction to achieve global climate goals, the political, social, and economic pressure 
for decarbonizing industry increases rapidly. An essential step towards this goal is the replacement of fossil 
fuels by renewable energy sources making changes in technology for generating electricity, steam, and 
process heat an inevitable requirement. This raises the question about the combination of energy supply 
technologies (such as photovoltaic systems, wind turbines or solar thermal systems) with energy conversion 
units (such as heat pumps or electric boilers) to cover the demand of an industrial process at minimal cost. 
Optimization methods are increasingly used for the selection and dimensioning of such units. These methods 
can systematically and efficiently determine optimal energy concepts according to the multicriterial 
requirements of a specific industrial process. 
The results of such deterministic optimizations depend heavily on assumptions of environmental conditions 
such as solar radiation and wind speed, the cost of purchasing and selling revenue of electric power, local 
infrastructure, and the demand of the industrial plant. Changes in these assumptions can result in significantly 
different costs or lead to an energy system, which is eventually incapable of covering the process demand. In 
this paper, the modelling of the required components is briefly described and a robust optimization approach 
is presented taking uncertainties of the assumptions into account during the optimization process. After a 
robust optimization for an industrial process is performed, the results are compared and discussed to those of 
a deterministic optimization. It can be shown, that the robust optimization allows to find energy concepts with 
less sensitivity and higher reliability when uncertainties are considered. 
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Nomenclature 퐴 area [m ] 퐶 capital expenditures [€] 푐 constant, specific heat [kJ/(kg K)] 퐸 energy [kWh] 푓 performance, uncertainty factor [-] 푔 specific global warming index 
[g kWh⁄ ] 푚̇ mass flow rate [kg/s] 푚 mass [kg] 푃 power [kW], probability, quantile [-] 푝 specific price [€/kWh] 퐩 parameter vector [-] 푄 thermal energy [kWh] 푄̇ thermal power [kW] 

푆 solar radiation [kWh/(m )] 푇 temperature [K] 

Abbreviations 
EB electric boiler 
GB gas boiler 
GWI global warming index 
HP heat pump 
PV photovoltaic 
ST solar thermal unit 
TAC total annual cost 
TES thermal energy storage 
WT wind turbine 

Greek symbols 훼 maintenance factor 훽 panel tilt angle, interest rate 훾 scaling exponent 

훿 declination angle of the sun 휂 efficiency 휏 time horizon 휆 load fraction 휑 latitude industrial site 

Subscripts and superscripts 푑 daily 푑푒푡 deterministic ℎ표푟 horizontal 푖푛 inlet 푖푛푐 incidence 푛표푚 nominal 표푢푡 output 푝푎푛 penal 푟표푏 robust 
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1. Introduction 
For a successful decarbonization of industrial processes it is essential to integrate renewable energies in an 
appropriate way considering economic as well as environmental aspects. For this purpose, it is necessary to 
model the required units of the considered process and the energy concept sufficiently to gain an 
understanding of their interaction and characteristics. Due to the huge number of parameters involved 
describing an energy concept it is necessary and to use numerical optimization strategies in order to find 
optimal configurations. 

1.1. Optimization of energy concepts 
With the increasing complexity of the investigated systems and the associated number of parameters to be 
defined, as well as with increasing requirements, optimization processes are increasingly used. This includes 
almost all industrial areas in which designs and systems are consistently pushed to the limits of feasibility. 
Thus, the need for design and operational optimizations of energy concepts for industrial processes is also 
increasing due to the global economic competition and increasing political and social pressure to reduce CO2 
emissions. The design of an energy concept is typically formulated as mixed integer nonlinear problem, where 
the nominal capacity of the units is described by real number whereas with the integer variable the number of 
units used defined, [1]. In the context of this paper, the units used are specified, so that the complexity of the 
optimization problem can be reduced, while still using nonlinear modelling of the units, Figure 1. A more 
accurate unit modelling is usually used for operational optimizations involving e.g. non-linear model predictive 
control with real-time weather data or forecasts, [2]. Such a complex operational optimization is not carried out 
here, but a simplified operational optimization is need to determine the operating costs, which results in a two-
level optimization problem. Thus, a stationary modelling of the components is sufficient for the design 
optimization of the energy concept. 

1.2. Robust optimization strategies 
Optimized systems often only behave ideally under the given boundary conditions, so that deviations can lead 
to undesired system behaviour or a loss of performance. The goal of a robust optimization is to consider 
uncertainties or possible deviations directly during design optimization process. There are many definitions 
regarding robustness, like a small scatter in the objectives or low failure probabilities, [3]. For each of the 
defined robust criteria there are sophisticated methods for their efficient estimation. In any case, the 
consideration of conditions away from the design point requires a number of function evaluations to determine 
the robust objectives. To avoid this, usually only selected scenarios are considered in current energy concept 
design processes [4]. However, response surface methods in connection with robust optimizations are often 
very suitable, which can be created on the basis of a few function evaluations and then used to carry out 
extensive statistical evaluations efficiently [5]. In this paper local response surfaces are used for the robust 
optimization of an energy concept, which are created around the design point in every design evaluation. 

1.3. Structure of the paper 
In the following section the mathematical modelling of the units under consideration is described and the 
corresponding analysis of the entire energy concept is explained, Figure 1. An electrical batterie is not directly 
considered in this paper, but since the energy balances are calculated on a daily basis, it is assumed that the 
corresponding amount of electricity can be stored for a short time. The unit modelling serves as the basis for 
the energy concept design process, in which the nominal capacities of the units are optimized. Finally, the 
robust optimization problem is presented and its solution is compared with a deterministic optimum. 

Figure 1 overview of the energy concept to be optimized showing the electricity, gas and heating grid 
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2. Modelling of the energy concept 
In order to design and dimension the units shown in Figure 1, it is necessary to model them by an energetic 
point of view. The modelling then forms the basis for determining the electrical energy and heat produced in 
order to cover the production needs at all times. For this purpose, the formulations of the generation, 
conversion and storage units are first described in the following sections before the evaluation of the overall 
system is explained. 

2.1. Generation units 
The output of the generation units essentially depends on the installed capacity, solar radiations and wind 
speeds. The installed capacity is described by the area of the panels for the PV and ST units and by the 
nominal power for the wind turbine. The electrical power 푃  provided by the PV unit is thus calculated 
according to [2] by 

 푃 = 퐴 휂 푆  (1) 

with the unit area 퐴 , penal efficiency 휂  and solar radiation 푆  which summarizes direct and diffuse 
radiations. The electrical power is limited by the nominal capacity 푃 , such that 

 푃 ≤ 푃  with 푃 = 퐴 푃 , = 퐴 0.171. (2) 

Values for solar radiation are taken from monthly totals 푆ℳ  for a horizontal surface for the region of the 
industrial site from the DWD, [6]. Using the geometric relationships in Figure 2a, the corresponding solar 
radiation 푆  of the sun can be measured using its declination angle 훿  as well as the latitude 휑  of the 
industrial site: 

 푆 = 푆sin훼  with 훼 = 90° − 휑 + 훿. (3) 

A tilt angle 훽 of the PV module then corresponds to a decrease in latitude 휑, so that the solar radiation on the 
module is calculated by 

 푆 = 푆 푠푖푛(훼 + 훽) = 푆 푠푖푛(훼 + 훽)sin훼 . (4) 

The efficiency of the PV unit was chosen with 휂 = 0.09 in such a way that calculated values correspond to 
the measurements of a PV unit already installed at the industrial site. 

The electrical power provided by the wind turbine unit is determined by the nominal power 푃  and a wind 
load fraction 휆  dependent efficiency 휂 : 

 푃 = 휂 (휆 )푃  with 휆 = 푣푣 ,  (5) 

where a reference wind speed of 푣 , = 12푚푠  is chosen for the present study. Due to the linear 
dependency in (5), only a single representative wind turbine unit is considered at this point, a separation into 
several wind turbines with different capacities does not take place here. The efficiency function is selected 
according to [2] 

 휂 (휆 ) = 0                                     푖푓     휆 < 0.33           1.5393휆 − 0.5091 푖푓     0.33 ≤ 휆 ≤ 1.01                                     푖푓     휆 > 1.0                (6) 

and displayed Figure 2b. The wind speeds used here are taken from measurements at the industrial site. The 
same distributions of wind speeds and thus the same output of the wind turbine unit is assumed for each day 
in this paper. A distinction between days with a lot and little wind does not take place for the design of the wind 
turbine unit. 

To determine the output of the solar thermal unit, a single equivalent solar panel is usually considered, for 
which the inlet and outlet temperatures w.r.t a given the mass flow are calculated, [7]. However, to find an 
appropriate design an optimization of the mass flow in the panels is required, which may necessary for an 
operational consideration, but not for the design. For the design, the calculation of the thermal performance 

 푄̇ = 퐴 휂 푆 푓  with 푓 = 0.97 − 0.0367 푎∗  휂 + 0.0006 푎∗  휂  (7) 

using the panel area 퐴 , the zero-loss panel efficiency 휂 , the solar radiation on the penal 푆  as in (4) 
and a collector performance factor 푓 , [8]. Heat losses from the panel are considered using the performance 

1353 https://doi.org/10.52202/069564-0123



factor 푓 , which depends on the type of panel. For this paper, evacuated tubes with 휂 = 0.6 and 푎∗  = 3 
are used. 

2.2. Conversion units 
The task of the conversion units is to provide the heat required for the industrial process using electricity or 
gas. There are a lot of ways to generate heat, e.g. using combined heat and power units, but firstly only the 
components described below were considered in this work. The thermal output 푄̇  of the gas boiler is 
calculated according to 

 푄̇ = 푄̇ 휆  (8) 

with the nominal capacity 푄̇  and the load fraction 휆  limited by lower and upper bounds 0.2 ≤ 휆 ≤ 1.0 
. The power 푃  required for generating 푄̇  is calculated based on the efficiency 휂 , so that the behavior 
in part load can also be considered, [2]: 

 푃 = 푄̇휂  with 휂 = 21.754휆 − 7.001휆 + 1.397휆 − 0.07620.666휆 − 5.342휆 + 0.678휆 + 0.035 휂  (9) 

and a nominal efficiency of 휂 = 0.8, Figure 2c. In the calculation, 휆  is set to 휆 = 0.2 if 0.01 ≤ 휆 ≤0.2 and 휆 = 0.0 if 휆 < 0.01 to also consider the non-use of the gas boiler. 

The electric boiler is calculated in the same way as the gas boiler. Thus, the thermal output 푄̇  is determined 
according to 

 푄̇ = 푄̇ 휆  (10) 

with the nominal capacity 푄̇  and the load fraction 0.0 ≤ 휆 ≤ 1.0. In contrast to the gas boiler, the entire 
range of the nominal capacity 푄̇  can be used. Furthermore, a constant efficiency 휂 = 0.95 is assumed, 
so that a required power is calculated by 

 푃 = 푄̇휂 = 푄̇0.95. (11) 

Finally, heat pumps are also considered for the heat supply, as these offer the possibility of providing heat very 
efficiently and on the basis of renewable energy sources, especially in connection with thermal energy storages 
and solar thermal systems. The thermal output 푄̇  of the heat pump is also calculated by 

 푄̇ = 푄̇ 휆  (12) 

with the nominal capacity 푄̇  and the load fraction 휆 . As by the gas boilers, the load fraction is limited by 
an upper and lower bound, such that 0.2 ≤ 휆 ≤ 1.0. The efficiency of the heat pump is calculated according 
to [2] as the product of a constant 2nd law efficiency 휂 = 0.36 and the Carnot efficiency 휂  that serves 
as theoretical maximum: 
 휂 = 휂 휂 = 휂 푇 ,푇 , − 푇 ,  

(13) 

with the heat sink temperature 푇 ,  as output and the heat source temperature 푇 ,  as input of the heat 
pump. In (13) it becomes clear that a heat pump can work most effective when an appropriate high-quality 

Figure 2 a) angles to calculate the solar radiation b) efficiency of wind turbines depending on the wind load and c) 
efficiency of the gas boiler depending on the load fraction 
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heat source is available and the difference between 푇 ,  and 푇 ,  is as small as possible. The required 
electrical power 푃  of the heat pump is then determined by 

 푃 = 푄̇휂 . (14) 

In addition to a minimum temperature difference of 푇 , − 푇 , ≥ 25퐾 and a maximum output temperature 푇 , ≤ 160°퐶 are also taken into account, [9]. Using (13) and (14) the required thermal power 푄̇  taken 
from a connected thermal energy storage can be calculated for a given temperature difference: 

 휂 푇 ,푇 , − 푇 , = 푄̇푃 = 푄̇푄̇ − 푄̇ ⟹  푄̇ = 푄̇ 1 − 푇 , − 푇 ,휂 푇 , . (15) 

Usually, only constant efficiencies of the heat pump are applied during the design process. However, this 
means that solar thermal unit, thermal energy storage and heat pump are considered separately, which can 
lead to an incorrect evaluation of the overall system. 

2.3. Thermal energy storage 
The thermal energy storage is used to store the thermal output generated by e.g. the solar thermal unit and to 
make it available for the generation of the required heat. It is used on the one hand for preheating but also as 
a source for the heat pump, Figure 3a. Starting from the currently stored thermal energy 푄 , available 
thermal performance 푄̇ during the considered time frame ∆푡 is used to charge the storage tank 

 푄 = 푄 + 푄̇∆푡. with 푄 ≤ 푄  (16) 

ensuring that the nominal capacity 푄  of storage is not exceeded. Due to the fact, only a hot water storage 
is used in this paper the temperature 푇  of the storage tank can be determined based on the stored thermal 
energy 푄 , the storage mass 푚 , the specific heat capacity of the storage medium 푐  and initial 
temperature 푇 : 

 푄 = 푐 푚 (푇 − 푇 ) ⟹ 푇 = 푇 + 푄푐 푚  (17) 

When discharging the storage, a simple calculation as in (16) is not suitable, because with the discharging of 
the storage, the storage temperature reduces and according to (15) also the thermal power taken from the 
storage by the heat pump. In order to be able to better describe the discharging, it is necessary to consider 
the power used for preheating 푄̇  and for the heat pump 푄̇  within a single formulation 

 푄̇ = −푄̇ − 푄̇ = −푐 푚̇ (푇 − ∆푇 − 푇 ) + 푄̇ 푇 , − 푇휂 푇 , − 1  (18) 

where the source temperature for the heat pump is set to the storage temperature 푇 , = 푇   and the output 
temperature for the preheating is chosen to be 푇 = 푇 − ∆푇 in order to ensure a pinch in the heat 
exchangers of ∆푇. By rearranging (18), formulation 

Figure 3 description of the two options for discharging the storage (a) and discharging of the storage according 
to (22) using 푚 = 1000푘푔 , 푐 = 4.19 푘퐽 푘푔퐾⁄ , 푇 = 15°퐶 , 푐 = 4.19 푘퐽 푘푔퐾⁄ , 푚̇ = 1.0 푘푔 푠⁄ , 푄̇ = 100푘푊 and 푇 , = 100°퐶 (b) 

a) b) 

HP 푇 , 푚̇ , 푐푇   
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 푄̇ = 푐 푚̇ (∆푇 + 푇 ) + 푄̇ 푇 ,휂 푇 , − 1푐 − 푐 푚̇ + 푄̇휂 푇 ,푐 푇  (19) 

is obtained, where the terms in the square brackets, that are assumed to be constant with time, are 
summarized by the constants 푐  and 푐 . If the formulation of 푇  in (17) is used, equation (19) can be 
formulated such as 

 푄̇ = 푐 − 푐 푇 = 푐 − 푐 푇 + 푄푐 푚 = 푐 − 푐 푇푐 − 푐푐 푚푐 푄  (20) 

with the constants 푐  and 푐 , where (20) now depends on 푄 . With this, the following problem can be 
formulated 

 푄̇ = 푑푄푑푡 = 푐 − 푐 푄  ⟹ 
푑푄푐 − 푐 푄 = 푑푡 (21) 

which can be solved by integrating separately from 푄  to 푄  and 푡  to 푡 , where ∆푡 = 푡 − 푡 : 

 푄 = −푐푐 + 푄 푒 ∆ + 푐푐  (22) 

Using (22), the energy provided by the storage 푄 − 푄  and 푄̇   as well as 푄̇  can be calculated 
over different time ranges, taking into account the effect of (15) and the fact that also with decreasing storage 
temperature 푇  in the preheating less energy can be transferred, Figure3b. During the discharging of the 
thermal energy storage it is checked that 푄 ≥ 0.  
2.4. Integration of the components 
To model the entire energy concept of the industrial process, the components described in the previous chapter 
must be integrated to check whether the demand of the production process can be covered at any time. The 
heat requirement considered here corresponds to the batch process of an existing food processing process 
shown in Figure 4a, whereby this is only applicable on weekdays, due to the fact that there is no production at 
off days. Here the day is divided into 7 sections, with different time periods ∆푡( )  and heat requirements 푄̇ ,( ) with a peak load that is only required for a short period of time. 

For the analysis of the system consisting of the described components with their nominal capacity, 
representative weeks are evaluated for each month of the year. This is necessary because the solar radiation 
and thus also the power of the PV and ST unit change greatly over the course of a year. To determine the 
daily solar radiation 푆ℳ,  for a specific month, the monthly values 푆ℳ  are divided by the corresponding 
number of days per month. The analysis of each week starts on Saturday with an empty thermal energy 
storage. This means that the storage can be charged over the weekend, since there is no heat demand for the 
production process here. In general, the charging level of the storage is calculated according to the sections 
in Figure 4a by 

 푄 ,( ) = 푄 ,( ) − 푄̇ ,( ) + 푄̇ ,( ) − 푄̇ ,( ) ∆푡( ) w.r.t. 푄 ,( ) ≤ 푄  (23) 

where at weekends 푄̇ ,( ) = 푄̇ ,( ) = 0. In order to determine 푄̇ ,( ), according to (18) it is necessary to 
define the thermal output of the heat pump 푄̇ . Since the components in the batch process under 
consideration have to be operated at partial load, in sections with a lower heat demand 푄̇ ,( ) it is necessary 
to determine appropriate load fractions 휆 ,휆  and 휆 of the units. In this paper, this is realized by a load 
optimization with regard to minimal operating costs: 

 min흀∈ 푓 s.t. ℎ = 푄̇ ,( ) − 푄̇ ,( ) − 푄̇ ,( ) − 푄̇ ,( ) − 푄̇ ,( ) ≤ 0 (24) 

with 푓 = 푝 퐸 ,( ) + 푝 퐸 ,( ), the price for electricity 푝 and for natural gas 푝  as well as 

 퐸 ,( ) = 푃 ,( ) + 푃 ,( ) ∆푡( ),  퐸 ,( ) = 푃 ,( )∆푡( ), (25) 

 퐿 = {흀 = [휆 , 휆 , 휆 ] ∈ ℝ |ℎ ≤ 0,흀 ≤ 흀 ≤흀 }. (26) 
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Due to ℎ ≤ 0 it can be ensured that the heat demand of the production process is covered with minimal 
operational cost. When calculating the required electrical energy 퐸 ,( ), the energy of the PV and WT unit is 
also taken into account, which is not required to cover the electricity demand of the production process. The 
total electricity demand of a day is then calculated according to 
 퐸 = 퐸 + 퐸 − 퐸 − 퐸 + 푃 ,( ) + 푃 ,( ) ∆푡( ) (27) 

with daily energy generated by the PV unit 퐸  and the WT unit 퐸  as well as daily base load 퐸  and load 퐸  on the working days, which is needed e.g. to use the electrical machines. The daily gas demand is 
calculated according to 
 퐸 = 푃 ,( )∆푡( ). (28) 

The calculation of the daily demands is carried out consecutively for all days of the week. A negative energy 
demand means that more energy has been produced than is needed and this amount can be sold, a positive 
energy demand means that the corresponding amount has to be bought. The charging level of the storage is 
taken over from one day to the next, as shown exemplarily in Figure 4b. Since representative weeks with five 
working days are analysed for all months, a total of 4 × 5 × 12 = 240 load optimizations (24) are required for 
an evaluation of the energy concept. 

3. Deterministic optimization of the energy concept 
The results of the analysis of the energy concept from section 2.4 essentially depend on the dimensioning or 
the nominal capacities of the units used. For example, larger PV or WT units lead to a larger amount of 
electrical energy being produced, which, according to (27), can reduce the energy demand. Furthermore, a 
larger ST unit with a corresponding thermal energy storage means that, according to (23), the heat pump also 
has a high-temperature source available or the energy in the storage can be used for preheating, so that less 
additional energy is needed. In addition, the CO2 emissions can also be reduced by using renewable energy 
sources like PV, WT and ST units, although an increase in the normal capacities is also associated with 
increased investment costs. In order to find suitable trade-offs between economic criteria such as costs and 
ecological criteria such as CO2 emissions, optimization processes are applied. Therefore, in the next section, 
the considered criteria will first be explained before the corresponding optimization problem is formulated and 
the optimization result is discussed. 

3.1. Determination of the objectives 
As already described, economic as well as ecological criteria are considered in the design process. The total 
annual costs 푇퐴퐶, which are calculated on the one hand from the required operating costs and on the other 
hand from the investment costs, are chosen as ecological criterion. The annual investment cost for each unit 푐  , 푖 ∈ {푃푉,푊푇, 푆푇,퐺퐵,퐸퐵,퐻푃,푇퐸푆} is determined according to 

 푐 = (훽 + 1) 훽(훽 + 1) − 1 + 훼 퐶  with 퐶 = 퐶 , 푄̇ /푄 /푃 /퐴푄̇ , /푄 , /푃 , /퐴 ,  (29) 

Figure 4 a) considered batch process with daily heat demand sections 푖 and b) charging level of the thermal 
energy storage for one week in November and an exemplary energy concept 
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with total capital expenditure 퐶  for unit with nominal capacity 푄̇ /푄 /푃 /퐴 , cost 퐶 ,  and nominal 
capacity 푄̇ , /푄 , /푃 , /퐴 ,  of a reference unit, scaling exponent 훾 , maintenance cost factor 훼  and 
interest rate 훽 as well as time horizon 휏 at financing, [10]. Thus, in 푐  the annual rate for financing is combined 
with the maintenance costs. The values used here for the individual units are summarized in Table 1, [2], [11]. 

Table 1  values for calculating annual component costs 푐  
 reference capacity 퐶퐴푃퐸푋 [€] 훾 [−] 훼 [−] 휏 [−] 훽 [−] 

PV unit 푃 , = 1 kW 1400 0.95 0.01 10 0.03 
WT unit 푃 , = 1 kW 5000 0.95 0.03 10 0.03 
ST unit 퐴 , = 1 푚  240 0.95 0.5 10 0.03 
GB unit 푄̇ , = 1 kW 2700 0.45 0.015 10 0.03 
EB system 푄̇ , = 1 kW 70 0.66 0.02 10 0.03 
HP system 푃 , = 1 kW 2650 0.95 0.02 10 0.03 
TES system 푄 , = 1 kWh 80 0.87 0.02 10 0.03 

To calculate the operating costs, days with positive and negative energy demand 퐸  must be considered 
separately. Thus, in 퐸 , , all positive energy demands of the considered representative week of each month 푚 are summarized and in 퐸 ,  all negative ones. For the calculation of the weekly gas demand 퐸 , , 
however, the daily values 퐸  are simply summed up. The total annual costs 푇퐴퐶 can then be calculated: 

 푇퐴퐶 = 푝 퐸 , − 푝 퐸 , + 푝 퐸 , 4.3∈ℳ + 푐∈ℑ  (30) 

with ℳ = {퐽푎푛,  퐹푒푏,  ⋯ ,  퐷푒푐} , ℑ = {푃푉,푊푇, 푆푇,퐺퐵,퐸퐵,퐻푃,푇퐸푆} , revenue for the sale 푝 =0.06 € kW⁄  and price for the purchase 푝 = 0.35 € kW⁄  of electrical energy as well as price for natural gas 푝 = 0.13 € kW⁄ . The weekly values are multiplied by 4.3 to get estimated monthly values. 

The global warming impact 퐺푊퐼 is considered as ecological criterion 

 퐺푊퐼 = 푔 퐸 , − 퐸 , + 푔 퐸 ,∈ℳ  (31) 

with the specific global warming impacts 푔 = 349 g kWh⁄  and 푔 = 244 g kWh⁄  of 
electricity and natural gas, respectively [2]. It should be noted that the specific global warming impact from 
purchased energy is actually varying greatly over time, depending on the shares of e.g. renewable energies. 
Formulation (31) reduces the 퐺푊퐼 through the purchase of energy to emphasize the positive contribution. It 
should be noted at this point that the manufacture of components or units also has an effect on the 퐺푊퐼, 
which, according to [12], is significantly lower than that caused by operation. However, the contribution of 
manufacturing to the 퐺푊퐼 is not considered here. 

3.2. Optimization problem formulation 
The two optimization objectives (30) and (31) depend on the one hand on the investment costs of the installed 
units and on the other hand on the consumption of electrical energy and natural gas. Both criteria therefore 
depend on the nominal capacities of the installed units, which are to be determined as part of an optimal 
design. Thus, the design parameters 퐩  of the energy concept are: 

 퐩 = 퐴 ,푃 ,퐴 , 푄̇ , 푄̇ , 푄̇ ,푄 .. (32) 

The multi-objective optimization problem for minimizing both objectives simultaneously is 

 푚푖푛퐩 ∈ 푇퐴퐶 퐺푊퐼  with 푃 = {퐩 ∈ ℝ |ℎ ≤ 0,퐩 ≤ 퐩 ≤ 퐩 } (33) 

with the constraint  ℎ = 푚푎푥 푄̇ ,( ) − 푄̇ ,( ) − 푄̇ ,( ) − 푄̇ ,( ) , which is the maximum of all 
constraints ℎ of the optimal solution of the problem (24). It can happen, that if the nominal capacities of the 
GB, EB and HP units are chosen too small, a valid solution of (24) is not possible, which result in  ℎ > 0. This 
constraint is essential, since the units are chosen to be as small as possible, particularly to reduce the 
investment costs. The lower limits for the design parameters are chosen to be 퐩 = [0, 0, 0, 0, 0, 0, 0]  and 
the upper limits to be 퐩 = [4000, 24, 2000, 250, 250, 250, 5000] . This means that individual units do 
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not have to be used and the entire heat requirement can be covered by GB, EB or HP. It should be noted here 
that the capacity of the units is modelled continuously, so that the results may not be directly implemented in 
practice, since e.g. PV units are only available in a certain size. 

3.3. Discussion of the results 
The optimization problem (33) is solved by the genetic algorithm NSGA2 which is implemented like the 
modelling of the units and the energy concept in Python, [13]. The result is a Pareto-front consisting of optimal 
compromises between the objectives, Figure 5. Here it can be clearly seen that the objectives 푇퐴퐶 and 퐺푊퐼 
are contradictory and the design 퐩 ∗,  for a minimum 푇퐴퐶 causes only about half the annual costs as the 
design 풑 ∗,  for a minimum 퐺푊퐼. However, there are also compromises in between that can be chosen for 
implementation. The low 푇퐴퐶 is realized mainly due to a low gas price 푝  compared to the price of electricity 푝  and a high nominal capacity 푄̇  of the GB unit, while a low 퐺푊퐼 is achieved through a high use of 
renewable energy sources, a large thermal energy storage and a high nominal capacity 푄̇  of the HP unit. 

4. Robust optimization approach 
The result of the optimization from chapter 3.3 depend decisively on the assumptions about e.g. prices for 
electricity and gas, unit performances, investment costs as well as assumptions about environmental 
influences such as wind speeds and solar radiation. Uncertainties in these assumptions can lead to deviating 
and undesirable system behaviour. It is the task of robust optimization to take this into account in the design 
process. In the following sections, the uncertainties assumed here are presented, the corresponding robust 
optimization concept is explained and finally the solution from deterministic and robust optimization is 
compared. 

4.1. Description of uncertainties 
In this paper uncertainties in the price of gas 푝  and in the solar radiation 푆  on the panels are considered 
for a first investigation. This is realized in the form of two uncertainty factors 푓  and 푓  such that: 

 푆 = 푆 푓  and 푝 = 푝 푓  (34) 

with 0.9 ≤ 푓 ≤ 1.0 and 1.0 ≤ 푓 ≤ 2.0. Thus, the gas price will change with an assumed increase of up to 100%. Solar radiation is assumed to be reduced by up to 10%, which corresponds to degraded panel 
performance, additional shading, or overestimation of solar radiation. 

Local response surfaces are used to assess the influence of 푓  and 푓  on the optimization objectives (30) and 
(31), [14]. Response surfaces enable the relationship between input parameters and output of a function to be 
approximated on the basis of a few function evaluations in order to subsequently carrying out extensive 
statistical studies very efficiently. To set up the response surfaces, a random sample 푓( ),푓( ) , 푖 = 1(1)4 
based on a Latin Hypercube Sampling is defined and analysed with 퐩 = 퐩 ∗, = 푐표푛푠푡. Kriging models 푦  and 푦  are then created using the calculated values of 푇퐴퐶( ) and 퐺푊퐼( ), [15]. The response surface 푦  is shown in Figure 6a as an example. A sample with 푁 = 1푒3 sampling points is then defined and 

Figure 5 Pareto-front as solution of the multi-objective problem (33) 

퐩 ∗, =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 퐴 = 3360.6푃 = 0.73퐴 = 89.1푄̇ = 179.4푄̇ = 24.0푄̇ = 23.7 푄 = 206.9⎦⎥⎥

⎥⎥⎥
⎥⎤
 

풑 ∗, =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 퐴 = 3998.9푃 = 22.2퐴 = 1436.6푄̇ = 42.4푄̇ = 33.8푄̇ = 193.2 푄 = 3151.1⎦⎥⎥

⎥⎥⎥
⎥⎤
 

← 푇퐴퐶 

←퐺푊퐼
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evaluated just using the response surfaces in order to determine the robust criteria. The 95% quantiles 푃  
and 푃  of the objectives are chosen as criteria, which e.g. for 푇퐴퐶 is defined as follows: 
 1푁 퐼(푦( ) ) = 0.95  with 퐼(푦( ) ) = 1 푦( ) ≤ 푃0 푒푙푠푒 , (35) 

and describes a value under which 95% of all elements of the sample are located. However, since the criteria 
were only determined on the basis of the response surfaces, the question arises as to how accurate these 
estimates were. For this purpose, the variances 푠̂  and 푠̂  of the Kriging estimates 푦  and 푦  can 
be used, [16]. This allows to define lower and upper limits, e.g. 

 푦 ,( ) = 푦( ) − 3푠̂( )  and 푦 ,( ) = 푦( ) + 3푠̂( )  , (36) 

which define a range in which the actual value 푇퐴퐶( ) is within a probability of ≈ 99.99%, Figure 6b. With 
these lower and upper limits, the quantiles can then be determined according to (35) and thus a quantile range 

 푅 , = 푃 , − 푃 ,   (37) 

Figure 6 approximation of 푦  using a) four and c) eight design evaluations (●) and the associated differences 푦 − 푦  between upper and lower bound (b) and (d) 

a) b) 

c) d) 
푓  

푓  

푦 푦−
푦 

푦−
푦 푦 

푓  

푓  

푓  푓  

푓  푓  

Figure 7 frequency distributions of the optimal solution 풑 ∗,  with respect to a) 푇퐴퐶 and b) 퐺푊퐼 

a) b) 

푇퐴퐶 

푃 , ∗,  퐻 

퐺푊퐼 

푃 , ∗,  퐻 
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can be estimated. If this range is above a 1% limit of 푃 , the response surface has to be refined. Appropriate 
update points are defined by solving the optimization problem 
 max, 푠̂ with 0.9 ≤ 푓 ≤ 1.0 and 1.0 ≤ 푓 ≤ 2.0 (38) 

which finds the point where the estimation 푦  has the greatest variance 푠̂ . This update process is carried 
out until the quantile range (37) is sufficiently small, Figure 6c and d. As can be seen, the response surface 
can thus be updated very efficiently using just a few iterations. The distributions and estimates for the quantiles 푃 , ∗,  and 푃 , ∗,  determined for the design 퐩 ∗,  for minimal 푇퐴퐶  using the updated response 
surfaces are shown exemplarily in Figure 7, where the spread in the 푇퐴퐶 covers a range of 30k€. 
4.2. Robust optimization concept 
As reference for the robust optimization the optimal design 퐩 ∗,  of the deterministic optimization (33) is 
chosen, because it may be an appropriate choice from an economic perspective. Due to the fact, that the 
robust assessment is performed according to the adaptive local response surface procedure described in the 
previous section, where a number of energy concept evaluations are needed for a single design, just a single 
objective robust optimization approach is chosen in order to reduce the computational effort. This results in 
the optimization problem 
 min퐩 ∈ 푃 with 푃 = 퐩 ∈ ℝ ℎ푃 − 푃 , ∗, ≤ ퟎ,퐩 ≤ 퐩 ≤ 퐩 , (39) 

where in addition to (33) a further constraint is added to ensure that an improvement of 푃  is not be achieved 
by an increase of 푃  and a comparability with the design 퐩 ∗,  can be guaranteed. 

4.3. Comparison of optimization results 
The optimization problem (39) is solved using a differential evolution algorithm implemented in Python, 
whereby the computing time was approximately twice as high as with the deterministic multi-objective 
optimization (33). In contrast to multi-objective optimization, the result is not a set of optimal compromises but 
a single design 

 풑 ∗ = 퐴푃푉,푃푛표푚푊푇 ,퐴푆푇, 푄̇푛표푚퐺퐵 , 푄̇푛표푚퐸퐵 , 푄̇푛표푚퐻푃 ,푄푛표푚푇퐸푆 푇   = [3539.7, 0.3, 173.7, 3.5, 57.6, 161.9,   755.3] ..  (40) 

Compared to the deterministic optimum 퐩 ∗, , Figure 5, the TES and the ST unit were significantly increased  
and the nominal capacity of the GB unit was reduced to a small value. According to the selected robust 
criterion, the quantile value 푃  and thus the high costs to be expected could be reduced, Figure 8a. 
However, over a wide range, the deterministic optimum 퐩 ∗,  results in low 푇퐴퐶 , whereas the robust 
optimum has a significantly smaller variance in the 푇퐴퐶. In any case, the robust optimum 풑 ∗ results in a 
significantly smaller 퐺푊퐼, Figure 8b, which was not a goal of the optimization but is an effect due to an increase 
in the share of renewable energies. The choice of a specific objective of the robust optimization or the desired 
properties of the energy concept depend heavily on individual factors and must be redetermined depending 
on the situation.  

Figure 8 frequency distributions of the optimal solutions 풑 ∗,  (grey) and 풑 ∗ (dark grey) with respect to 
a) 푇퐴퐶 and b) 퐺푊퐼 

a) b) 

푇퐴퐶 

퐻 

푃 , ∗,  푃 ,  푃 , ∗,  푃 ,  퐻 

퐺푊퐼 
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5. Conclusions 
In this paper, the modelling of units of an energy concept was described and the procedure for the integrated 
analysis with regard to economic and environmental criteria was explained. Based on the analysis, a 
deterministic multi-objective and a robust single-objective optimization problem for the dimensioning of the 
units used were defined and corresponding optimizations were carried out. 

It turns out that the results of the deterministic optimization depend strongly on the assumptions and boundary 
conditions used and deviations can lead to a large scatter in the objective functions. Furthermore, changes in 
the boundary conditions of the optimization can lead to different optimal configurations. As part of a robust 
optimization, assumptions about uncertainties in the price of natural gas and the solar radiation were 
considered and a design was found that has a lower scatter in the 푇퐴퐶 and reduces the expected high costs 
compared to a selected reference design from the deterministic multi-objective optimization. This shows that 
the consideration of uncertainties is particularly necessary for long planning periods. In general, the result of a 
robust optimization strongly depends on the criteria and uncertainties considered, so that different criteria and 
more realistic assumptions of the uncertainties are investigated in further studies. 
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