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Abstract:
The operation of building energy systems contributes significantly to thermal comfort and energy efficiency.
In turn, the operation is influenced by the control quality of local closed-loop controllers. However, in practice
controllers are often commissioned without sufficient testing, due to the lack of time and budget, leading to
reduced performance and energy efficiency. To facilitate controller testing and assessment, this work presents
a three-step simulation-based testing method using little user input to provide an automated evaluation of the
controller performance. For the assessment, a model of the controlled system is used to enable the evaluation
of controller behavior for different scenarios. The controller performance is assessed in each scenario utilizing
different Key Performance Indicators (KPIs). The model of the controlled system also allows the estimation
of the optimal control behavior, which is used as reference control to provide further feedback for possible
improvements to the user. All three steps are implemented and deployed as a cloud service allowing the
controller under test to communicate with the controlled system model via an HTTP API. The testing method
is applied to two different control loops of an air handling unit. The tested controllers show poor control quality
when assessed with different KPIs. The results of the testing method provide direct improvements for both
controllers. By applying these improvements to the two controllers, the control quality, assessed with the
Integral Time-weighted Absolute Error (ITAE), was improved by 85 % and 63 % respectively.
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1. Introduction
In 2020, buildings accounted for 36 % of global energy consumption, emphasizing the need for energy-efficient
building operations to mitigate climate change [1]. Advanced control strategies like model predictive control
(MPC) promise energy savings from 15 % to 50 % [2]. Furthermore, advanced control strategies often rely
on local feedback controllers [3]. Additionally, even without advanced control strategies, poor-performing local
controllers lead to inefficient operation. Therefore, local controllers highly influence the overall efficiency of
buildings. However, in practice, controllers are often not tested sufficiently. One reason is that controller tuning
is not done at all or performed manually based on expert knowledge during installation [4]. This can lead
to poor performance, especially in operating points not present during the installation period. One promising
approach for controller performance assessment is to use models to decrease the required time and cost [5].
In addition, the manual effort can be reduced by clearly defining and automating the testing process.
Jelali identifies a five-step process for controller performance assessment [6]. First, the current control is
assessed by performance figures. Second, a benchmark for performance is selected. Afterward, deviations
from the benchmark are detected for every control loop inside the system. Fourth, the reason for the deviation
is detected. Finally, options for improvement are suggested. The author points out that especially the last
two steps are the most challenging and are usually done manually. Matinnejad et. al. present a search-
based testing method, which investigates the controller in different scenarios using models [7]. Scenarios
are benchmarked against each other based on Key Performance Indicators (KPIs) assessing the controller
performance. The aim is to detect worst-case scenarios, which can then be used for further manual testing
and improvement of the controller. The BOPTEST framework enables benchmarking different control strategies
by providing standardized models as use cases [8]. This allows testing different control strategies on the same
system with the same environmental conditions, creating a reference for these use cases. However, the focus
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is on advanced control strategies in a building energy management system and not on local controllers like PID.
In [9] a framework is presented, which investigates controller performance by step response. The step signals
are applied directly to the actual system and are investigated based on monitoring data. This requires an
already existing building management system and technical requirements as well as the time to write directly
to the system.
In the current literature, a lot of frameworks are developed to assess the performance of modern control and
energy management systems. However, these systems often rely on local control loops, which are often not
tested sufficiently. Furthermore, the testing process for these local controllers, if conducted, is often costly and
time-consuming. Therefore, in this work, we present a three-step simulation-based testing method utilizing
minimal user input to assess and, if needed, improve closed-loop controller performance in various scenarios.
To benchmark the controller performance, a model of the controlled system is used to calculate a reference
controller behavior. As a result of the method, direct suggestions for improvement are given. The testing
method is implemented as a cloud service and can be used for the installation of new controllers or during
operation since it does not interfere with the actual building. We demonstrate the method by applying it to two
local control loops of a reheater of an air handling unit (AHU).
In the following, we explain the testing method and all its processes. Subsequently, the use case and the
results of the application are presented and discussed.

2. Methodology
In this section, we first present the nomenclature for this paper and afterward the three steps of the simulation-
based testing method for assessing closed-loop controller performance.
The most used controller in building energy systems is still the PID controller [4]. The control behavior of a PID
controller is defined by the following equation, with Kp, Ti and Td being the parameters for the proportional,
integral and derivative terms:

u(t) = Kp

[
e(t) +

1
Ti

∫ t

0
e(τ )dτ + Td

d
dt

e(t)

]
(1)

In a closed loop, the controller interacts with the controlled system as shown in Fig. 1. The controller output
u influences the process variable y , which, together with the setpoint r , is used as feedback for the controller.
The controller is therefore directly influenced by the controlled system and the corresponding disturbances z.
To fully assess the controller performance, the proposed testing method investigates both, the controller and
the system, in various scenarios.

Controller System

z

ur e y

−

• y : process variable
• r : setpoint
• u: controller output
• z: disturbance
• e: controller error

Figure 1: Closed loop control with used nomenclature

Design of experiment (DOE)

1. Run DOE method
2. Generate input signals for

every scenario

Simulation

1. Coupled simulation for
every scenario

2. Calculate optimal reference
for every scenario

KPI calculation

1. Calculate KPIs for every
scenario

2. Identify worst-case
scenarios

Figure 2: Process of the simulation-based testing method

Figure 2 shows the three different steps of the simulation-based testing method. Each step requires minimal
user input and therefore enables an automatic calculation process. As a first step, a Design of Experiment
(DOE) method is run, to parametrize the different scenarios in which the controller is assessed. In the second
step, the closed loop system is simulated with these scenarios, and for each scenario, an optimal reference
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controller is calculated. In the last step, KPIs for each scenario are calculated. This allows the user to identify
those scenarios, which performed worst.
In the following, a more detailed description of the three steps of the simulation-based testing method is given.
2.1. Design of experiment
Since a controller’s behavior strongly depends on the current operation of the system, a systematic perfor-
mance assessment needs to investigate controller performance at different operational points. One of the
main benefits of using models for controller performance assessment, in comparison to real-world systems,
is the ability to easily investigate controller behavior under different environmental conditions. For a control
loop, these environmental conditions are specified by the disturbances and the setpoint. Both act as external
signals, which can not be influenced by the controller or the system. Therefore, for an assessment of the
controller performance, these external signals need to be varied inside the operational boundaries.
Applying constant values for disturbance and setpoint would lead to a static operation, which does not repre-
sent the actual operation of a real system. Thus, to keep dynamic operation, a function is parametrized for
each external signal resulting in a time series as input for the simulations. We call the combination of an input
function for the disturbance and the setpoint a scenario. A scenario is defined by the parameter set for the
input functions and the type of function.
The parameter sets are chosen from a parameter space, which is limited by the operational boundaries of the
corresponding system, by running a DOE method. For every parameter set, a scenario is generated. By
selecting numerous different parameters for the input functions, long calculation times due to a high number
of simulations are needed. Therefore, the combinations of parameters need to be chosen systematically and
under consideration of the total amount of combinations. Latin Hypercube Sampling (LHS) is a DOE method
that randomly chooses different operational conditions by considering the input dimensions and trying to cover
most of the input space [10]. The number of combinations of parameters is defined by an input to the LHS.
With this, it is possible to simulate a defined number of parameter combinations while still covering most of the
scenario parameter space.
As a result of the DOE method, different sets of parameters are chosen, which are then used generate input
signals for every scenario by parametrizing functions. Within the methodology, multiple different types of
functions can be used for the setpoint and the disturbance. However, in this paper, we focus on two different
types of functions: a constant function for the disturbance and a step function for the setpoint. The constant
function keeps one value for the whole time period, while the step function changes its value instantly from a
start to an end value at a defined time. The combination of these functions allows an isolated assessment of
the step response of the controller for different disturbances.
For the DOE, these two functions result in a three-dimensional parameter space: the constant value for the
disturbance as well as the start value and end value of the step. The limits of this space, i.e. the operational
boundaries, and the time period of the signal are given by the user and depend on the controlled system.
With the created input time series for both the disturbance and the setpoint, the controller and the system
model can be simulated.
2.2. Simulation
During the simulation process, the controlled system is simulated separately from the controller. The coupled
simulation for every scenario is achieved by periodically communicating all necessary variables between
the controller and the controlled systems within a specified time step over a defined interface. This interface
includes all needed variables for a closed-loop controller: process variable y , setpoint r , disturbance z and
controller output u. This allows providing the testing method as a cloud service, by implementing the com-
munication interface as an application programming interface (API). With this, the controller can either be a
simulation model or a hardware controller, as long as it is able to send and receive the variables defined by the
interface through the API.
In this work, we assess controllers using models that are implemented in the modeling language Modelica [11].
The models are exported as Functional Mock-up Units (FMUs) using the Functional Mock-up Interface (FMI)
standard [12]. Within Modelica, the communication interface is realized using the bus model, which is based
on the expandable connector concept [13]. A bus allows the grouping of variables under a specified naming
scheme. This naming scheme can then be utilized for communication with external tools like Python. Therefore,
a bus model is created, which defines the above-mentioned necessary variables for the closed-loop controller.
The bus model is used to adapt existing models from the Modelica library AixLib, which includes various build-
ing energy system models like air handling units and thermal zones and is developed at the Institute for Energy
Efficient Buildings and Indoor Climate [14].
Depending on the type of function used to create the input signal for the coupled simulation of the controller
and controlled system, different conditions apply to the simulation. For the step function, it is necessary that the
system is in a quasi-steady state before the step can occur. Furthermore, it is important to run the simulation
long enough to see the effects of the step signal after the step occurs. Therefore, two important parameters for
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each simulation are the initialization time and the total simulation time. The initialization time defines the time
until the step occurs and the starting time for the assessment. The total simulation time describes the length
of the full simulation. Both time values heavily depend on the time constant of the controlled system. For this
reason, these values are provided by the user. Additionally, the communication step size for the communication
interval between the controller and the system has to be provided by the user.
As a basis for the performance assessment of the controller, the model of the controlled system is also used
for the calculation of an optimal reference. The calculation is performed for each scenario and in parallel
with the coupled simulation. Section 2.3. provides a more detailed description of this process.
2.3. KPI calculation
The KPI calculation is based on the simulation results and evaluates the controller performance by calculating
KPIs for every scenario. Numerous KPIs for the assessment of controller performance based on different
approaches are defined in the literature. Table 1 shows a selection of a few KPIs, which are based on an
integral term of the control error e(t). For a more detailed description of these KPIs, the reader is referred to
the literature [15].

Table 1: Selection of integral-based KPIs [15]

KPI Description Equation

IAE Integral Absolute Error
∫
|e(t)| dt

ITAE Integral Time-weighted Absolute Error
∫

t · |e(t)| dt
ISE Integral Squared Error

∫
e(t)2 dt

The goal of assessing the controller is to identify the scenarios where the controller performs worst. Since
most KPIs represent a single value, it is not possible to directly assess the potential of the tested controller.
For example, a controller of a boiler might produce bad KPI values for a downward setpoint step signal, which
are not caused by the controller, but by the inability to actively cool. Therefore, to identify these worst-case
scenarios, a reference controller is needed. Reference [15] introduces the Harris index, which allows rating the
controller performance against minimum variance control (MVC). The index ηMVC is defined as:

ηMVC =
σ2

MVC

σ2
y

(2)

The variable σ2
MVC describes the variance for the minimum variance control, whereas σ2

y refers to the variance
of the tested controller. MVC describes the best possible controller behavior for achieving the smallest output
variance. In analogy to the Harris index, an index can be determined for each KPI, which relates the optimal
value to the value of the tested controller. For the ITAE, this leads to the ITAE-Index ηITAE:

ηITAE =
ITAEopt

ITAEy
(3)

To estimate the KPI of the optimal reference, an optimization problem is solved by minimizing the corresponding
KPI for a coupled simulation of the controlled system and a PID controller. The PID controller is chosen as
a reference since it is one of the most used controller types in building energy systems [4]. The optimization
problem is shown in (4).

min
Kp ,Ti ,Td

ITAE (4a)

subject to lb ≤ Kp, Ti , Td ≤ ub, (4b)

The upper boundary (ub) and the lower boundary (lb) for each of the three PID parameters influence the
runtime of the optimization. For different systems, default values based on experience are provided, but the
user can provide individual values if needed. The ITAE is calculated as a result of the simulation. For every
scenario, the optimization leads to optimal PID parameters and the optimal ITAEopt .
The resulting control behavior of the optimal PID heavily depends on the type of KPI that is used for the
minimization. Here, the ITAE is used, since [4] shows that the ITAE leads to a low overshoot and a short rise
time for heating, ventilation and air conditioning systems.
Based on the ITAE-Index ηITAE, the worst-case scenarios are identified. For these scenarios, the behavior
of the optimal controller and the tested controller is used as the basis for improving the tested controller. If the
tested controller is a PID, the optimal PID parameters can be directly applied.
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2.4. User input
The whole three-step process is implemented in a Python framework, which utilizes minimal user input to
run an automated performance assessment. The necessary input provided by the user is shown in Table 2.
Since this framework aims at testing specific control loops, a lot of the input is also specific for each use case.
Nevertheless, some recurring components of building energy systems are modeled and provided with default
values for the user input. This enables testing similar systems with low effort.
The user input itself is provided by a config file based on the JSON Schema. This setup provides a simple
interface, which can be used on a local machine as well as over an HTTP API.

Table 2: Necessary input for the simulation-based testing method provided by the user

Configuration File

DOE Simulation KPI

• Number of scenarios • simulation and initialization time • KPI for index calculation
• operational boundaries • communication step size
• DOE method • system/controller model

• optimal PID parameter boundaries

3. Application to an air handling unit
3.1. Use case description
The simulation-based testing method is tested with a reheater of an air handling unit. The schemata of the
reheater as well as the measured variables of the real system are shown in Fig. 3.

TTf,in T Tr,out

V̇ V̇out

T Tr,inTTf,out

V̇V̇air,in

TTair,in
T Tair,out

• Tf,in: primary circuit supply water temperature
• Tf,out: secondary circuit supply water temperature
• Tr,in: primary circuit return water temperature
• Tr,out: secondary circuit return water temperature

• V̇out: secondary circuit water volume flow
• Tair,in: inlet air temperature
• Tair,out: outlet air temperature

• V̇air,in: air volume flow

Figure 3: Reheater structure and measured values

The reheater consists of a heat exchanger and a hydraulic circuit, including two actuators, a three-way valve
and a pump. The hydraulic circuit is split into a primary circuit containing the heat exchanger and a secondary
circuit, from which the reheater is provided with hot water. The dashed volume flow sensor indicates that this
value is not measured directly, but calculated and provided through an interface by the vendor.
The investigated control consists of two different control loops with PID controllers. One control loop controls
the outflowing air temperature Tair ,out with the pump speed, from now on referred to as pump control loop. The
other controls the inflowing water temperature into the heat exchanger Tf ,out with the valve position, referred
to as valve control loop. These two control loops interact with each other resulting in one controller being a
disturbance to the other one. A more detailed description of the control can be found in [16].
To analyze the control behavior of the implemented control of the reheater, the step responses for both control
loops are investigated. The step responses of the pump and valve control loop are shown in Fig. 4 and Fig. 5.
The step occurs at 0 min and both signals are recorded for 30 min. In each, the upper figure shows the step
response of the process variable and the corresponding setpoint. The lower figure shows the relative control
output between 0 % and 100 %. The installed pump allows relative speeds from 10 % to 100 % and runs on a
minimum speed of 500 rpm for values below 10 %.
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For the pump control loop, a setpoint step from 292.15 K to 297.55 K leads to an ITAE of 358.66. The control
output is not at its maximum value of 100 % even though the process variable does not reach its final value
after 30 min. Considering an advanced control strategy, which might send new setpoints every 10 to 15 min,
this could lead to high discomfort or energy losses. The valve control loop also doesn’t reach the final setpoint
value for a step from 295.5 K to 300.5 K with the control output also not utilizing its full range, leading to an
ITAE of 333.05.
The step responses indicate that both control loops show significant rise times and need to be adjusted to
reach the setpoint within a reasonable amount of time. Therefore, the simulation-based testing method is
applied to both control loops. For this, the model used is described in the next section.
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Figure 4: Measured response of the tested pump control loop
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Figure 5: Measured step response of the tested valve control loop

3.2. Models for the reheater
The model for the reheater is created with Modelica using the library AixLib. To reduce the modeling effort,
the model is designed so that the user only has to provide parameters that can be found in datasheets. Thus,
even a non-professional can use the models. A more detailed description of the model, its assumptions and
its application in a use case are given in [13].
The model is calibrated to represent the behavior of the real system. This is done using the AixCaliBuHa
framework, which allows the automatic calibration of Modelica models [17]. As input for the calibration, 58 h of
measurements of the variables displayed in Fig. 3 are taken. The calibration process is done in two separate
steps. First, the volume flow in the secondary circuit is calibrated by varying the pump characteristics and
pressure losses of the circuit. In the second step, the outlet air temperature is calibrated by adjusting the
parameters of the heat exchanger and temperature losses in the circuit. For both steps, the measured values
of the valve position, pump speed and inlet temperatures for the secondary circuit and air are taken as inputs
to the model. As the objective for the calibration, the normalized root mean squared error (NRMSE) is used.
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With n being the amount of measured data points, y being the measured value and ŷ the simulated value, the
NRMSE is defined as:

NRMSE =

√
1
nΣ(yi − ŷi )

2

ymax − ymin
(5)

The results of the calibration for the volume flow and the air temperature are shown in Fig. 6 and Fig. 7 respec-
tively. The calibration resulted in an NRMSE of 0.025 for the volume flow and 0.113 for the air temperature.
The bigger NRMSE of the air temperature compared to the volume flow is caused by two major aspects. One
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Figure 6: Measured and simulated volume flow in the primary circuit (top) and actuator inputs (bottom) for the
calibrated model
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Figure 7: Measured and simulated outlet air temperature (top), measured and simulated inlet air temperature
(middle) and water supply temperature as input (bottom) for the calibrated model

aspect is that the temperature sensors of the real system are not calibrated. This leads to high uncertainty of
the measurements and fluctuating temperature values over time under otherwise unchanged conditions. The
other aspect is the selected time frame for the validation of the calibration. After 14 h, the simulated outlet air
temperature rapidly rises, while the measured value only increases slightly over time. A similar behavior occurs
after 18 h. Here, two peaks are occurring right after one another. This leads to high deviations and negatively
impacts the NRMSE. The deviations are caused by the air volume flow V̇air,in dropping to 0 m3/h at 14 h and
staying at this value until jumping back to 7500 m3/h at 18 h. Both processes take roughly 300 s. Therefore,
during these times, the volume flow reaches values near zero, leading to the first and third peaks in the outlet
air temperature due to the unchanged supply water temperature. This behavior is not seen in the measured
value. But since this effect only applies to small volume flows, this is only relevant in situations where the AHU
is turned on or off. Therefore, this does not influence the model quality for the controller tests.
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During the first and third peaks, after the volume flow hits 0 m3/h, the outlet air temperatures of the simulation
and the measurement tend towards the environment temperature of 295.15 K. For the second peak, a rise in
the measurement is also seen. This is because the air inside the heat exchanger heats up when the air volume
flow is 0 m3/h and is measured as soon as the air flows again. The measurement shows a similar peak.
The inlet air temperature also shows a deviation from the measurement during the period of 14 h to 18 h.
The simulated value tends towards the environment temperature, while the measured value tends towards the
supply temperature Tf,in. This is due to the real temperature sensor being placed near the heat exchanger.
Therefore, the air around the heat exchanger heats up according to the supply temperature. In the simulation
model, the temperature sensor is only affected by heat losses to the environment.
The NRMSEs for both variables show that the calibrated model sufficiently describes the reheater for the
relevant operating points. Therefore, the model is used as input for the testing method.
3.3. Applying the simulation-based testing method
With the calibrated model, the two control loops are investigated using the simulation-based testing method.
The method is applied once for each control loop with the tested controller parametrization, which led to the
deviations displayed in Fig. 4 and Fig. 5. In the following, the results are presented and discussed using the
pump control loop as an example.
As disturbance for the pump control loop, three different variables are possible: the supply temperature at the
inlet of the hydraulic module Tf,in, the volume flow in the air canal V̇air,in and the inlet air temperature Tair,in. Since
monitoring data showed a more or less constant value for the air volume flow over the operation of one year
and the supply temperature influences the mixing temperature, controlled by the valve control loop, the inlet air
temperature is chosen as the disturbance. For each test run, the other two disturbances are not investigated
further and are kept at their average operation values.
The two control loops and the respective actuators influence each other as well. Therefore, the setpoint of one
controller is set to a constant value within the operation area, if the other controller is tested. This allows the
isolated assessment of each controller.

The value ranges for the different input variables with which the scenarios are generated are given in Table 3.
The setpoint represents the setpoint for the outlet air temperature and the disturbance stands for the inlet air
temperature. The ranges are based on monitoring data. The control output, here the pump speed, can take
values between 0 % and 100 %.

Table 3: Value ranges for the simulation-based testing method

Variable Value range

setpoint 290 K - 298 K
disturbance 285 K - 295 K

Figure 8 shows the resulting step responses for one exemplary scenario. Each scenario was simulated for
3600 s with an initialization time of 1800 s at which the step occurs. Here, the step function is parametrized
with a start value of approximately 291.5 K and an end value of roughly 297 K. The constant function for the
disturbance has a value of about 291.55 K. The process variable of the tested controller shows similar behavior
to the one displayed in Fig. 4. The outlet air temperature also does not reach its setpoint within the simulation
time. Conversely, the optimized controller does reach the setpoint 500 s after the step. The optimal controller
reacts more actively to the step by immediately generating a control output of over 60 %, whereas the tested
controller never reaches the same output as the optimal controller. This leads to an ITAE for the tested con-
troller of 869 501 K s2 and for the optimal controller of 9064 K s2. Thus, the ITAE-index results in 0.01, implying
that the tested controller only reaches 1 % of its maximum potential.

Figure 9 highlights the ITAE for every scenario in dependence of the optimal PID parameters (Fig. 9a) and the
input function parameters (Fig. 9b). The parameters of the scenarios are given as P1, the start value of the
step signal for the setpoint, P2, the end value of that signal and P3, the constant value for the disturbance.
A cluster of low ITAE-indexes ηITAE and therefore worst-case scenarios is located around big values for Kp and
small values for Ti and Td (Fig. 9a). Compared to a PID controller with these values, the tested controller
performs worse. Also, the derivative parameter Td does not seem to have a high impact, since every optimal
PID chooses small values for the parameter.
Figure 9b implies that the tested controller performs well for scenarios in which the start value of the step is
close to the end value of the step. However, especially for bigger step sizes, the controller performs worse,
indicating a passive behavior as seen in Fig. 8.
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Figure 8: Simulated step response for the tested controller and the optimal reference control
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Figure 9: ITAE-Index for every simulated scenario

Using the graphical representation of the controller performance given in Fig. 9, the tested controller is im-
proved. Since the tested controllers are PIDs, the parameters given by the cluster described in Fig. 9a are
applied to improve the controller. The derivative parameter Td is set to zero since its impact seems to be low.
Analog to the pump control loop, the valve parameters are improved. The adapted PID parameters for both
control loops are given in Table 4.

Table 4: Different PID Parameters before and after applying the simulation-based testing method

(a) Tested controller

Controller Kp in 1
K Ti in s Td in s

Valve 1.5 850 0
Pump 1.2 130 0

(b) Improved controller

Controller Kp in 1
K Ti in s Td in s

Valve 1 180 0
Pump 11.25 300 0

1248https://doi.org/10.52202/069564-0113



The initial experiment for the reheater is repeated. The results are shown in Fig. 10 and Fig. 11. With the
improved PID parameters, both the outlet air temperature and the primary supply temperature reach their
setpoint within a reasonable time. The pump controller shows a small overshoot. The valve control is disturbed
by two sudden temperature changes in the secondary supply temperature Tf,out, leading to two small deviations
from the setpoint. Nevertheless, the ITAE of the pump control was reduced to 54.01 K s2, while the ITAE of the
valve has a value of 122.541 K s2. This results in a relative improvement of approx. 85 % for the pump and
approx. 63 % for the valve.
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Figure 10: Measured step response of pump control loop with improved PID parameters
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Figure 11: Measured step response of valve control loop with improved PID parameters

4. Conclusion
In this work, we presented a three-step testing method, which utilizes a model of the controlled system to
investigate controller performance in various scenarios. The system model is also used to calculate an optimal
reference for each scenario to benchmark the tested controller. To receive the optimal control, an optimization
problem is solved by varying the parameters of a reference PID controller to minimize the ITAE. With this, the
controller performance is assessed in every scenario and worst-case scenarios are identified. These scenarios
are then improved utilizing the optimal control.
By applying the method with calibrated models to two different control loops of a reheater of an air handling unit,
we have shown that the method can improve the controller behavior. Even when multiple control loops interact
with each other, the different scenarios created by the method allowed for isolating and therefore assessing
each controller’s performance separately. The improved controllers showed enhanced control behavior for two
different scenarios, leading to an improvement of the ITAE by 85 % and 63 % respectively.
The presented simulation-based testing method is a promising approach to avoid time-consuming tests on a
real system. Even when the used models are not fully calibrated to the real behavior of the controlled system,
the derived adjustments improve control behavior. This allows the time-consuming modeling process to be
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done once for each type of controlled system and to only invest minimal effort for each specific system the
method is applied to. Due to minimal user input, the method can be automated, reducing effort further.
Future work should investigate the automated improvement of controllers or the concrete suggestion of im-
provement measures based on the optimal reference. In addition, research is needed to assess the distur-
bance rejection of controllers.
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Nomenclature
Abbreviations

AHU air handling unit,

DOE Design of Experiment,

KPI Key Performance Indicator,

LHS Latin Hypercube sampling,

MPC model predictive control,

MVC minimum variance control,

NRMSE normalized root mean squared error

Letter symbols

V̇ volume flow, m3/h

T temperature, K

Greek symbols

σ variance,

η KPI index

Subscripts and superscripts

p Proportional,

i Integral,

d Derivative,

opt Optimal value,

f Forward flow,

r Return flow,

in Inlet,

out Outlet,

air Air,

max Maximum value,

min Minimum value
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