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Abstract:
The current energy crisis has accelerated the interest in sustainable energy sources and cryogenic propel-
lants, liquid hydrogen (LH2) or liquefied natural gas (LNG). The thermal management of these systems re-
quires advanced control strategies to minimize the boil-off losses produced by heat leakages and sloshing-
enhanced heat and mass transfer. This work presents a data-assimilation approach to calibrate a 0D ther-
modynamic model for cryogenic fuel tanks from data collected in real time from multiple tanks. The proposed
approach combines ideas from traditional data assimilation with multi-environment reinforcement learning,
where an agent’s training (i.e., model assimilation) is carried out simultaneously on multiple systems (en-
vironments). The real-time assimilation uses a mini-batch version of the well-known Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno with bounds (L-BFGS-B) and adjoint-based gradient computation for solving
the underlying optimization problem. The approach is tested on synthetic datasets simulating multiple tanks
undergoing different operation phases (pressurization, hold, long-term storage and sloshing). We present the
general closure problem for the tank’s thermodynamics and the multi-environment assimilation framework. The
results show that the simultaneous sampling from multiple environments and loading scenarios significantly ac-
celerates the assimilation. Moreover, it is shown that the time scale for the training process is shorter than the
relevant time scales of the tank’s thermodynamics. This opens the path towards model predictive control based
on data-driven engineering models.
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1. Introduction
Cryogenic fuels such as liquid hydrogen (LH2) or liquefied natural gas (LNG) are managed and stored at
extremely low temperatures (typically ≈-170 ◦C for LNG and ≈-250 ◦C LH2). LH2 has been mainly used
in rocket engines [1] but is now actively explored as alternatives to fossil fuels in many applications, including
naval [2] and aeronautical [3] industries. The need for cryogenic temperatures stems from the need to maximize
the fuel density without resorting to extreme operating pressures (> 300 bars for gaseous H2) [4]. In addition,
the higher thrust-to-weight ratio compared to classical propulsive solutions [4] and the absence of pollutant
emission make LH2 a promising energy carrier for a carbon-neutral future [3,5]. LNG is not entirely emission-
free but can still bridge the gap between traditional fossil fuels and a fully renewable energy system [3].
Nevertheless, storage at cryogenic temperatures requires a complex thermal management system, which
poses significant challenges to any application requiring long holding times, from marine to aeronautical, from
ground transportation to deep space exploration. No insulating system can entirely prevent heat exchanges
with the surroundings. Thus some of the fuel unavoidably evaporates over time and increases the tank pressure
[6]. Additional challenges are faced in tanks installed on vehicles, as the external accelerations induce sloshing.
Sloshing, defined as the movement of the free liquid surface, can (suddenly) increase heat and mass transfer
rates between the liquid and ullage gasses and thus produce significant variations of the tank’s pressure [7,8].
This work proposes a data assimilation framework for identifying closure laws in a 0D thermodynamic model
from real-time measurements of pressure, temperature, and liquid level in cryogenic tanks. The underlying op-
timization problem is efficiently solved via gradient-based optimization using the L-BFGS-B (Limited-memory
Broyden–Fletcher–Goldfarb–Shanno with bounds) algorithm [9] coupled with the adjoint method [10] for eval-
uating the cost function gradient. The main novelty in our approach lies in the simultaneous assimilation of
observations from multiple fuel tanks (i.e., multiple environments) undergoing distinct thermodynamic evolu-
tion in potentially widely different operating conditions.
The proposed approach takes inspiration from multi-agent reinforcement learning (MARL) [11]. MARL is a sub-
field of reinforcement learning where multiple agents learn to interact with each other and with the environment
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to maximize a global reward. This is an active area of research with many open questions and challenges [12]
on handling communication and coordination between agents and learning effective policies in large-scale
multi-agent systems. Nevertheless, we believe that the potential impact of this concept in data assimilation is
enormous and worth investigating. This work moves the first steps towards its application to the problem of
data-driven calibration of thermodynamic models for cryogenic tanks. Leveraging synthetic data, we aim to
quantify the performance of the model’s calibration as the number of environments increases, using a single
agent to learn the closure terms. As a complementary investigation, the single-environment scenario is also
investigated to assess the impact of noise on the training data and the uniqueness of the solution.
This article is structured as follows. Section 2. outlines the physical modeling of the cryogenic fuel tank im-
plemented in this work. The real-time data assimilation and inverse method strategies are outlined in Section
3.. Furthermore, this section also describes how the synthetic test cases were generated. Lastly, Section 4.
overviews the results of the model calibration in single-environment and multi-environment conditions. Con-
cluding remarks and future outlook are discussed in Section 5..

2. Thermodynamic modeling
The cryogenic propellant tank considered in this work is a single-species system composed of a liquid and its
vapor enclosed in an insulated tank Fig. 1 provides a schematic of the problem with the relevant parameters
involved. Subscripts l , v , and w are used to distinguish variables related to the liquid, the vapor, and the wall,
respectively. The gas-liquid interface separating vapor and liquid is treated as an infinitesimally thin region
where heat and mass transfer occurs. The system exchanges heat and mass, both on the liquid and the
vapor side, during various operations (e.g., pressurization, venting, filling). The reader is referred to the list of
symbols at the end of the article for the nomenclature.

Figure 1: Schematic of the cryogenic fuel tank and its subsystems: vapor (v ), liquid (l), and insulating walls
(w). The heat and mass exchanges between these control volumes are expressed through the ṁ and Q̇ fluxes.

The 0D thermodynamic model used in the assimilation expresses the conservation of mass and energy applied
to three control volumes: the liquid, the vapor, and the solid. Considering mass-averaged thermodynamic
properties, these balances result in a system of ordinary differential equations (ODEs), which must be closed
with empirical relations for the heat and mass transfer rates. Finding closure from sampled data is the objective
of the assimilation.
The mass conservation between the liquid and the vapor is given by

dmv

dt
=
∑

ṁv ,in −
∑

ṁv ,out − ṁph ;
dml

dt
=
∑

ṁl ,in −
∑

ṁl ,out + ṁph , (1)

where ṁph = ṁcond−ṁevap is the net mass flux through the interface, accounting for the balance of condensation
and evaporation. The mass conservation in the vapor and liquid phases give

dUv

dt
=
∑

ṁv ,inhv ,in −
∑

ṁv ,outhv ,out − ṁphhv ,sat − Q̇v ,i + Q̇w ,v + Ẇv (2)

dUl

dt
=
∑

ṁl ,inhl ,in −
∑

ṁl ,outhl ,out + ṁphhv ,sat − Q̇l ,i + Q̇w ,l + Ẇl , (3)

where Uv and Ul are the internal energies of the vapor and liquid phases, Q̇ denotes the general heat flux, h
is the specific enthalpy, and Ẇ = −pdV/dt is the expansion/compression work due to changes in filling level.
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The model closure is required to link the heat transfer rates at the interface. Assuming that the heat transfer
occurs at much larger time scales than the interface dynamics, we consider quasi-steady formulation and use
Newton’s cooling law for the closure relation:

Q̇v ,i = Aihv ,i (Tv − Ti ) ; Q̇w ,v = Aw ,v hw ,v (Tw − Tv ) ; Q̇l ,i = Aihl ,i (Tl − Ti ) ; Q̇w ,l = Aw ,l hw ,l (Tw − Tl ), (4)

where hv ,i , hl ,i , hw ,v , hw ,l are the heat transfer coefficients, Ai is the gas-liquid interface area, Aw ,v and Aw ,l are
the surface exchange areas between the walls-vapor and walls-liquid phases. The heat transfer coefficients
are unknown and must be identified from the data. The interface temperature in (4) is assumed to be the
saturation temperature evaluated at vapor pressure pv ; hence the energy balance at the interface provides the
mass flux due to phase change as ṁph = (Q̇l ,i − Q̇v ,i )/Lv , with Lv the latent heat of vaporization.
Concerning the exchange areas in (4), we do not account for the time variation of Ai (due to, e.g., sloshing),
and take it as the tank’s cross-section when the tank is half-filled. On the other hand, given the tank’s geometry,
the areas Aw ,v and Aw ,l are updated at each time step depending on the liquid level. This can be computed
from the liquid and vapor masses and their properties. In particular, treating the liquid phase as incompressible
(as in [13]), its density is solely a function of temperature ρl (p, T ) ≈ ρ(T ), hence

dVl

dt
= −dVv

dt
. ≈ 1

ρl

dml

dt
− ml

cp,lρ
2
l

(
dρl

dT

)
p

dul

dt
, (5)

where cp is the specific heat at constant pressure, ρ is the density, and u = U/m is the specific internal energy.
Finally, in the 0D formulation, the insulating walls are treated as a single control volume which can exchange
heat with the vapor and liquid phases, as well as with the external environment at ambient conditions. For a
single control volume with mass-averaged properties, the internal energy of the walls is described through

dUw

dt
= Q̇a,w − Q̇w ,v − Q̇w ,l (6)

where Q̇a,w is the heat entering the tank from the environment. This term could be computed from existing
literature correlations [14], but in this work, this is taken as a user-defined function that depends on the specific
scenario experienced by the tank (described in the following section). It is worth noticing that (6) can be written
as a function of the mass-averaged solid temperature by introducing dUw = mw cw dTw .
Finally, all thermodynamic properties (cp, ρ), as well as the link between internal energies, temperatures and
pressures, were evaluated using the CoolProp package [15] in Python. This library implements pure fluid
equations of state and transport properties using the Helmholtz energy formulations.
To conclude this section, we note that the thermodynamic model is constituted of equations (1)-(6) and can be
cast in the form of a parametric initial value problem:⎧⎪⎨⎪⎩

dx
dt

= f (x, t ;θ)

x(0) = x0

(7)

where x = [mv , ml , uv , ul , Tw , Vv , Vl ] ∈ R
7 is the state vector (composed by the masses, volumes and internal

energies of each control volume), describing the thermodynamic condition of the system at time-instant t ,
x0 ∈ R

7 is the (known) initial condition and θ ∈ R
p is the vector of unknown parameters. These identify a

function mapping the state vector to the heat transfer coefficients in (4) as further detailed in Section 3.1..

3. Real-time data assimilation framework
We describe the generation of the synthetic database in section 3.1. and the multi-environment real-time
assimilation approach in section 3.2..
3.1. Synthetic database generation
Borrowing from the reinforcement learning terminology, the assimilation is carried out by an agent interacting
with an environment to achieve a goal. In our context, the agent is a function that must predict the closure
parameters (heat transfer coefficients) with the goal of having the model prediction as close as possible to
the available data. In our context, the environment definition requires defining (1) the geometry of the fuel
tanks, (2) the working fluid, (3) the initial conditions of the system, (4) the temporal evolution of the heat
transfer coefficients (unknown to the agent), and (5) the sequence of operations applied to the tank. These are
summarised in Fig. 2.
The proposed multi-environment formulation involves learning the same closure law from multiple environ-
ments. In this work, we consider multiple cryogenic fuel tanks, partly filled with LH2. The environment pa-
rameters in terms of dimensions and initial conditions are presented in Table 4 in Appendix A. Tank 1 is the
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Figure 2: Schematic of the parameters required to define an environment for the data assimilation of the 0D
thermodynamic model of the cryogenic tank. Interaction with the environment produces the observation vector
y(t) simulating measurements from the tank.

reference case used to assess the single-environment performance of the assimilation framework (Section
4.1.). The remaining tanks are added to the analysis of the multi-environment scenario (Section 4.2.).
In all environments, the heat transfer coefficients in (4) were modeled as

hv ,i =
kv

R

(
θ0Re0.69

s,v Pr1/3
v + θ1Ra0.15

v

)
; hl ,i =

kl

R

(
θ2Re0.69

s,l Pr1/3
v + θ3Ra0.15

l

)
; hw ,v = θ4hv ,i ; hw ,l = θ5hl ,i (8)

where Res is the Reynolds number due to sloshing, Pr = ν/α is the Prandtl number, Ra is the Rayleigh number,
and θ0 − θ5 are the set of parameters governing the heat and mass transfer evolution in the tank.
The dimensionless numbers in (8) are defined as

Res =
fe
f11

(
b
R

)2 (gR3
)1/2

ν

√
1.841 ; Ra =

gβΔTR3

να
(9)

where fe is the frequency of the forcing motion acting on the tank, f11 is the natural frequency of the tank [1],
b is the maximum expected wave-height during sloshing, which is a function of the forcing amplitude A0 [8], R
is the tank’s radius, ν is the kinematic viscosity, g is the gravitational acceleration, β is the volumetric thermal
expansion coefficient, and α is thermal diffusivity.
The hl ,i and hv ,i coefficients simultaneously account for forced convection through the Reynolds and Prandtl
numbers, as well as buoyancy-driven fluxes through the Rayleigh number. All synthetic test cases were gen-
erated using the set of parameters θ = [θ0, θ1 ... ] presented in Table 3 in Appendix A. These were tuned to
roughly portray the experimental pressure and temperature reported in [7,16].
Assuming that the functional relations in (8) are prescribed beforehand, the scope of data assimilation consists
in identifying the parameters θ from multiple environments. A general formulation of the problem could be
based on general parametric models (e.g. using radial basis functions expansions or artificial neural networks)
to learn the closure laws. These are currently being explored and will be presented in future work.
The interaction between the agent and the environment is carried out by monitoring some observations of the
system, here denoted as y(t) = h(x(t)), with h(·) the observation function simulating a measurement process.
The observations considered in this work are the vapor pressure pv (t), the mass-averaged vapor Tv (t), liquid
Tl (t), and wall Tw (t) temperatures, and the fill-level Hl (t). These quantities were retrieved from the state vector.
Hence the observation function is h(·) : R7 → R

5.
3.2. Real-time inverse method for multiple environments
Identifying the parameters θ requires solving an optimization problem. The optimal parameters are those that
minimize a cost function J(θ) measuring the discrepancy between model prediction and data across all the
available environments. Denoting as x{j}(t) the time evolution of the thermodynamic state in the j th environment
and as y{j}(t) the evolution of the corresponding observations, the cost function considered in this work is

J(θ) =
1
N

N∑
j=1

∫ ti +T

ti
g(y{j}, x{j}, t ;θ)dt =

1
2N

N∑
j=1

∫ ti +T

ti

(
y{j}(t) − h(x{j}(t))

)T R−1
{j}

(
y{j}(t) − h(x{j}(t))

)
dt (10)
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where N is the number of environments, T is the observation time and R{j} is the covariance matrix accounting
for measurement noise. Since the assimilation seeks to learn the full set of parameters from all environments,
the proposed formulation is a multiple-environment but single-agent framework, as opposed to a multi-agent
formulation in which different agents could be assigned to learn different coefficients in the same environment.
In this work, the function J(θ) is minimized through gradient-based optimization using the L-BFGS-B optimizer
[9] coupled with the adjoint method [10] to compute the gradient ∇θJ. The adjoint method allows computing
this gradient without computing the sensitivity of the state with respect to the closure parameters, i.e. dx/dθ.
The gradient is computed by relying on the augmented Lagrangian function L(θ)

L(θ) = J(θ) +
N∑

j=1

(∫ ti +T

ti

(
f(x{j}, t ;θ) − dx{j}

dt

)
λ{j}(t)T dt

)
(11)

where the (row) vector λ{j}(t) ∈ R
7 is the vector of adjoint variables for each environment. The cost function

(10) and the augmented cost function (11) are equivalent because the additional term is identically null for any
finite choice of the variable λ{j} (by definition of the underlying dynamics in (7)). Therefore, it is possible to
make the gradient computation of both cost functions independent of the sensitivities if the adjoint variables
are taken as the solution of the following terminal value problem [17]:⎧⎪⎪⎨⎪⎪⎩

dλ{j}
dt

= −
(
∂g

∂x

)
{j}

− λ{j}(t)
(
∂f
∂x

)
{j}

λ{j}(T ) = 0

(12)

This is a linear system of equations that must be integrated backward in time to solve for λ{j}. The gradient
can then be computed as

∇θJ(θ) =
N∑

j=1

(∫ tj +T

tj

(
∂g

∂θ

)
{j}

+ λ{j}(t)
(
∂f
∂θ

)
{j}

dt + λ{j}(0)
dx{j}
dθ

(0)

)
(13)

where dx{j}/dθ(0) is known from the initial conditions of each environment (tank). Thus, in the adjoint-based
approach, the gradient of the loss function is evaluated by solving two systems of equations for each environ-
ment in the ensemble (i.e., one forward pass to obtain x{j}(t), and one backward pass to obtain λ{j}(t)).
The vector of parameters is iteratively updated throughout the optimization loop as

θ(k+1) = θ(k ) − B(k )∇θJ(θ(k )) for k ∈ [0, 1 ... nk ] (14)

where the superscript (k ) indicates the iteration counter, and B is the approximation of the Hessian matrix
inverse according to [9]. The gradient computation in (13) and the updates in (14) define two-time scales of
the assimilation problem. The first scale is the observation time T , linked to the rate at which new information
is collected. The second is the learning time scale implicitly defined by the number of optimization iterations
nk carried out before an update on the gradient is requested (or is available). The first time scale defines the
rate at which the cost function changes because of the dynamics of the system and the potential occurrence of
unseen scenarios. The second time scale defines the rate at which the optimizer travels along the parameter
space before the cost function changes.
The optimal setting of these scales poses a fundamental question on the impact of the observation time T in
relation to the observed scenarios and the quality of the gradient computation: one might ask, for example,
whether the observation time should be long enough to observe at least two or three pressurizations or sloshing
events. This work investigates the impact of this parameter by making it vary from T = 10 min until T = 60 min,
with the five environments observing different scenarios and different combinations of events.

4. Results and discussion
We split the presentation of results and the discussion into a section dedicated to the performance of a single
environment (Section 4.1.) and a section dedicated to multiple environments (Section 4.2.).
4.1. Single-environment performance
We first describe the investigated scenario in 4.1.1.. Section 4.1.2. studies the impact of measurement noise
in the collected data for different observation times T . Finally, section 4.1.3. reports on the impact of mini-
batching the assimilation using only a portion of the data.
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4.1.1. Test case description

We consider the environment denoted as ‘case 1’ in Table 4. Figure 3 illustrates the loading and operation
scenario of the tank in an observation of 1 hour. The first row of plots illustrates the time evolution of the ullage
gas pressure (on the left), and the mass averaged temperatures of the vapor, the liquid and the solid volumes
(on the right). The second row plots the time amplitude (left) and the frequency (right) of sinusoidal sloshing
events. The third row plots the mass inflow/outflow of vapor (left) and liquid (right) as a function of time. Finally,
the last row shows the heat flux exchanged through the walls (left) and the liquid level (right).

Figure 3: Synthetic data generated for Tank 1 (see Table 4) used to evaluate the single-environment perfor-
mance. The components of the observation vector are displayed alongside the injected/removed mass fluxes,
the non-dimensional excitation conditions, and the external heat flux.

A detailed overview of these graphs helps understand the complexity of the system control problem. In the
presented scenario, the tank is undisturbed in the first 2 minutes. Then, a moderate sloshing event occurs
with a dimensionless amplitude of A0/R = 0.045 and dimensionless frequency fe/f11 = 0.8 (see definitions of
sloshing conditions in (9)). This triggers a visible pressure drop. To counter-balance this, at time t = 4 minutes,
hydrogen vapor at 40 K and 2 bar is injected in the ullage at a rate of 4.2 g/s for 6 minutes. This allows the
tank to recover 4.8 bar pressure at 10 minutes when the sloshing event ends. From t = 10 to t = 22 minutes,
the tank is again undisturbed but the temperature difference between the wall, the gas, and the liquid results in
the warming of the liquid and the cooling of the vapor. This slightly reduces the pressure in the ullage. Finally,
between t = 22 and t = 30 minutes, liquid at 22 K is injected into the system at a rate of 0.01 kg/s. This reduces
the ullage volume, resulting in a moderate compression that arrests the decreasing trend. Finally, at t = 35
minutes, a violent sloshing event occurs and continues until the end of the observation. This results in a violent
pressure drop due to the significant condensation (see liquid level evolution), followed by a moderate pressure
rise due to heat exchanges with the (now) warmer walls. Throughout this test, no heat exchange is assumed
to occur from the environment.
4.1.2. Impact of noise in the observation data

We here consider three scenarios in terms of measurement noise in the collected observations; these are
termed (1) ‘clean’ (2) ‘low-noise’, and (3) ‘high-noise’. No noise is present in the first, while Gaussian noise
(with zero average) is added in the other two. In (2), the noise’s standard deviation is 2 kPa on the pressure,
0.2 K on the temperature, and 0.5 mm on the fill level. In (3), these values are doubled.
We considered various observation windows T of the environment described in the previous section for the

1046https://doi.org/10.52202/069564-0095



three scenarios. Figure 4 shows the results of the real-time data assimilation applied to the ‘clean’ data for
T = 10, 20, and 30 minutes. The thick solid lines indicate observations from the virtual experiment, whereas
the thin dashed lines indicate the predictions given by data assimilation. The columns of the figure show the
tank pressure, vapor temperature, and liquid temperature as the observation time increases.

Figure 4: Model predictions and observation data extracted from the test described in Section 4.1.1. for 10,
20 and 40 minutes of observation.

Interestingly, the assimilation produces excellent matching between the model and observation if the observa-
tion time is sufficiently long. In the virtual experiment analyzed, this is of the order of T = 40 min, i.e., enough
to see all the events in the environment (sloshing, filling on the vapor and the liquid side).
The analysis of the noise impact is thus completed in Fig. 5, which presents the minimum of J (on the left)
and the l2 relative error norm of θ (on the right) as a function of the observation time, for the three tested
scenarios as a function of the observation time. When noise is added, the minimal cost function is expected
to be larger in the presence of noise since the underlying model filters it out from the data. Nevertheless,
these results show that the noisy cases consistently produced smaller values of J when the full observation
is used. Surprisingly, the measurement noise helps the optimization avoid local minima, and the parameters
identified in the assimilation are more accurate (right plot in Fig. 5) and learned with shorter observation times.
Interestingly, in all cases, the learning of the parameters saturates for T > 40 min.

Figure 5: Performance of the data assimilation framework applied to one environment for different noise levels
in the data. Left: minimum of the cost function as a function of the observation time. Right: l2 relative error
norm associated with θ.

We close this analysis by comparing the retrieved parameters from the assimilation and those used to generate
the data; these are reported in the next section and presented alongside the impact of data batching for the
gradient computation.
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4.1.3. Impact of approximating the gradient of the cost function via mini-batches

The mini-batch sampling [18] is a classic approach to escape local minima and limit memory requirements
in the gradient descent method. The idea consists in computing the cost function gradient using a randomly
chosen subset of the observation data; this produces an approximation of the gradient ∇θJ that might point
away from local minima.
The use of mini-batch strategies on quasi-Newton methods, such as the L-BFGS-B technique used in this work,
is the subject of active research (see [19]). Nevertheless, in this work, we explored its impact on the ‘high-noise’
configuration from the previous subsection. We test the assimilation using 80%, 50%, 20% and 5% of the
observed data to evaluate ∇θJ. To account for the stochasticity of the process, the assimilation is repeated
one hundred times in each case and the results are averaged. The average behavior of the cost function
evolution and the convergence of the parameters are shown in Fig. 6. Remarkably, the additional stochasticity
of the minibatch selection further improves the result of the assimilation in both aspects. Interestingly, the
relative error is nearly identical when sampling 80%, 50%, and 5% of the training data, whereas for the 20%
bath size the error is reduced by roughly 6%. The cost function, on the other hand, is slightly higher.

Figure 6: Performance of the data assimilation framework applied to one environment. Left: minimum of the
cost function as a function of the observation time. Right: l2 relative error norm associated with θ.

Finally, we compare the parameters obtained in the assimilation for different mini-batch sizes in table 1. For
each coefficient, the table collects the average and the standard deviation (over 100 repetitions of assimilation).
The reference coefficients used to generate the synthetic data are shown in the last row of the table. These
results confirm that the best match of θ was achieved when 20% of the training data was sampled at each
gradient computation, even though this case reported the highest cost function evaluation on average.

Table 1: Mean coefficients obtained during the model training, alongside their respective standard deviation.
The cases in which ∇θJ was approximated via mini-batches were repeated 100 times.

Data sampled min J θ0 θ1 θ2 θ3 θ4 θ5

100% 3.8e-2 98.3 17.2 65.2 1.21 8.91 11.6
80% 2.7e-2 134.1 ± 14.6 10.7 ± 2.4 51.6 ± 4.7 1.9 ± 0.2 34.9 ± 37.5 10.1 ± 0.4
50% 2.8e-2 128.3 ± 16.4 11.1 ± 2.9 50.9 ± 3.8 1.9 ± 0.3 28.8 ± 32.0 10.2 ± 0.7
20% 3.4e-2 134.5 ± 16.3 10.0 ± 3.6 49.6 ± 5.5 2.0 ± 0.3 18.1 ± 19.2 10.0 ± 0.6
5% 3.0e-2 120.0 ± 23.8 12.8 ± 4.2 53.3 ± 7.2 1.8 ± 0.4 18.7 ± 16.6 10.0 ± 0.6

Reference - 140.0 10.0 50.0 2.00 20.0 10.0

The table shows that the standard deviation for each component of θ increases as the batch size decreases.
This is attributed to less accurate gradient evaluation during the parameter updates. The only outlier to this
trend is θ4, which shows the opposite behavior. However, this is characterized by a significantly larger standard
deviation. This parameter is associated with the heat transfer coefficient hw ,v , governing the heat exchanges
between the vapor and the insulating walls, which appears to have a minor impact on the system’s dynamics.
Thus, given the insensitivity of the model to this parameter, the assimilation cannot determine its true value
from the observed data.
In summary, these results showcased that sampling portions of the training data during the optimization can
improve the assimilation results. Furthermore, this sampling provides an approximation of ∇θJ, which allows
for a broader exploration of the parameter space, yielding better predictions for θ, even if the value of the cost

1048https://doi.org/10.52202/069564-0095



function is not significantly affected (on average). For the current training data set, the best compromise was
obtained by sampling 20% of the input data.
4.2. Multi-environment performance
We here extend the previous analysis to the case of multiple environments characterised by vastly different
geometries, sloshing profiles, thermal loading and inflow/outflow control actions.
The first environment is the tank described in Section 4.1.1. while the geometrical parameters, and initial
conditions for the others are summarised in Table 4 in Appendix A. All environments are observed for the same
T = 60min, but their thermodynamic evolutions differ by imposing different sequences of filling, pressurization,
venting, sloshing, and external heating.

Figure 7: Performance of the data assimilation framework applied to multiple environments. Left: minimum of
the cost function as a function of the observation time. Right: l2 relative error norm associated with θ.

The multi-environment framework requires solving for N forward and backward passes for every parameter
update. However, these evaluations could be performed in parallel to improve runtimes and could be batched
also across multiple environments. We repeat the same analysis as in the previous section, applying high noise
to the observed data and using a batch of 20% of the observation points to update θ during the optimization
loop. The results for N = 1, 3, 5 environments are shown in Fig. 7.
The increase in the learning convergence as the number of environments increases is evident, as the cost
function drops by one order of magnitude compared to the single-environment scenario for an observation
time of T =10 min. The increase in performance between 3 to 5 environments is much less significant, hinting
that saturation with respect to the number of environments is to be expected.

Table 2: Mean coefficients obtained during the model training, alongside their respective standard deviation
for the multi-environment network. The assimilation of each case was repeated 10 times.

No. of tanks min J θ0 θ1 θ2 θ3 θ4 θ5

1 3.8e-2 134.5 ± 16.3 10.0 ± 3.6 49.6 ± 5.5 2.0 ± 0.3 18.1 ± 19.2 10.0 ± 0.6
3 3.9e-3 137.3 ± 19.9 10.6 ± 4.0 49.8 ± 0.7 2.0 ± 0.1 21.3 ± 22.8 10.0 ± 0.1
5 6.9e-3 138.7 ± 32.8 10.2 ± 3.4 50.0 ± 4.8 2.0 ± 1.3 19.3 ± 2.2 10.0 ± 10.7

Reference - 140.0 10.0 50.0 2.00 20.0 10.0

Like in the previous section, Table 7 collects the average and standard deviation of the identified parameters
over 100 realizations in the case of multiple environments. The accuracy in the detection is comparable,
although the standard deviation grows for some coefficients (e.g. θ4 and θ5). This might be due to the relative
importance of these terms with respect to the various scenarios considered: θ0 strongly influences the model
performance in the presence of sloshing, but the relative importance of sloshing events over the five scenarios
is reduced with respect to the first environment as other physical mechanisms are more present.

5. Conclusions
We presented a multi-environment real-time data assimilation framework for the data-driven thermodynamic
modeling of cryogenic fuel tanks.
The implemented approach sets up an optimization problem in which the error between system observations
and model predictions must be minimized by acting on closure parameters. The model is based on a lumped
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formulation of mass and energy balances for each of the system’s control volumes (i.e., the vapor, liquid, and
solid walls), and the optimization is carried out by combining a quasi-Newton approach with the adjoint-based
evaluation of the cost function gradients.
The training data is collected by multiple environments, i.e. different tanks undergoing various operating condi-
tions (e.g., sloshing, filling, etc.). To provide the first proof of concept of the proposed framework, synthetic data
generated through the model was used as a reference for the learning algorithm. The heat transfer closure
relations in this model depend on six closure coefficients. The assimilation algorithm aimed to identify these
from noisy pressure and temperature observations, which simulate measurements sampled from multiple fuel
tanks.
Various tests were performed for the data assimilation applied to a single environment: we assessed the
impact of measurement noise on the training data and the effect of ‘mini-batches’ in the gradient computation
alongside the duration of an observation within which the assimilation is carried out. Remarkably, it was
found that measurement noise improves the data assimilation, allowing for better identifying the underlying
coefficients in shorter observation times. Similarly, an optimal batch size of 20% of the available data produced
systematic improvements in the assimilation convergence. Finally, further improvements in the assimilation
were achieved in a multi-environment scenario considering three or five tanks undergoing widely different
loads and control scenarios.
To conclude, this work provides a solid proof of concept for applying a multi-environment data assimilation
framework for the data-driven calibration of thermodynamic models of cryogenic tanks, potentially enabling
model predictive control in thermal management systems. In the era of the fourth industrial revolution, where
intelligent sensors are becoming widely available, the perspective of deploying the proposed multi-environment
assimilation to a large fleet of heavily instrumented tanks appears particularly promising.
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Appendix A Details of the multi-environment framework
Table 3 shows the vector of parameters used to close the heat transfer correlations. In addition, Table 4
summarises the geometric parameters and initial conditions associated with each fuel tank.

Table 3: Coefficients associated with the heat transfer coefficients in (8) used to produce the synthetic test
cases. Each column pair indicates the ci coefficients linked to the heat transfer term in the header.

Coef. θ0 θ1 θ2 θ3 θ4 θ5

Value 140 10 50 2 20 10

Table 4: Geometrical parameters and initial conditions associated with each fuel tank. All tanks were filled with
liquid hydrogen and were treated as upright cylinders.

Tank Geometry Initial conditions Wall properties
case Ri [m] Ro [m] H [m] p0

v [bar] T 0
v [K] T 0

l [K] T 0
w [K] H0

l [m] mw cw [MJ/K]
1 0.9 1.00 2.2 4.80 32.1 20.1 29.1 1.43 2.44
2 2.7 2.90 14 3.10 30.1 20.1 25 6.16 91.4
3 1.4 1.50 6.2 4.40 30.1 20.1 28.1 4.03 10.5
4 0.4 0.50 1.2 0.94 20.1 20.1 21.1 0.43 0.10
5 1.0 1.05 2.1 0.94 20.1 20.1 22.1 1.56 0.63

Nomenclature

Letter symbols

A area, m2

A0 forcing amplitude, m

b maximum wave amplitude, m
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B approximated Hessian inverse

C specific heat, J/(kgK)

f frequency, Hz

g gravity, m/s2

g integrand of the objective function

H height, m

h heat transfer coefficient, W/(m2K)

h mass-specific enthalpy, J/kg

J cost function, [−]

L Lagrangian function, [−]

Lv latent heat of vaporisation, J/kg

m mass, kg

ṁ mass flow rate, kg/s

Q̇ heat transfer rate, W

R radius, m

T temperature, K

t time, s

U internal energy, J

u mass-specific internal energy, J/kg

V volume, m3

Ẇ work, W

y observation vector

Greek symbols

α thermal diffusivity, m2/s

β volumetric thermal expansion coefficient, K−1

θ vector of parameters

λ adjoint variable

ν kinematic viscosity, m2/s

ρ mass-specific density, kg/m3

Subscripts and superscripts

a ambient

i interface

l liquid

{j} environment counter

(k) iteration counter

ph phase change

v vapor

w walls
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