2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL 2023)

Matsue, Japan 22 – 24 May 2023

IEEE Catalog Number: ISBN: CFP23034-POD 978-1-6654-6417-8

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP23034-POD
978-1-6654-6417-8
978-1-6654-6416-1
0195-623X

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL) **ISMVL 2023**

Table of Contents

Message from the Symposium Chair	x
Message from the Program Chair	xi
Symposium Committee	xii
ISMVL 2023 Reviewers	xiv
Keynote I: Tackling the Explosions of Data and Solutions with Low-Bitwidth Computing	
Architectures	xv
Keynote II: A Challenge of Scalable Quantum Computing Control Systems	xvi
Keynote III: Card-based Cryptography: How to Securely Compute Multiple-valued Functions	3
Using a Deck of Cards	xvii

Session 1A: Machine Learning Circuits

A Consideration on Ternary Adversarial Generative Networks Kennichi Nakamura (Tokyo Institute of Technology, Japan) and Hiroki Nakahara (Tokyo Institute of Technology, Japan)	1
Write-Energy Relaxation of MTJ-Based Quantized Neural-Network Hardware Ken Asano (Tohoku University, Japan), Masanori Natsui (Tohoku University, Japan), and Takahiro Hanyu (Tohoku University, Japan)	7
Easily Reconstructable Logic Functions Tsutomu Sasao (Meiji University, Japan)	. 12

Session 1B: Non Classical Logics

Kalmbach Implication in Orthomodular Posets	8
Natural Deduction with Explosion and Excluded Middle	4
Self-Extensional Paradefinite Four-Valued Modal Logic Compatible with Standard Modal Logic 3 Norihiro Kamide (Nagoya City University, Japan)	0
An Inductive Construction for Many-Valued Coalgebraic Modal Logic	6

Session 2A: Medical & Healthcare

On Neural-Network-Based Detection for Hypertensive Subjects using Classification of Retinal Fundus Photographs
 Predicting the Development of Chronic Lung Disease in Neonataes from Chest X-ray Images using Deep Learning
Kidney Tumor Recognition from Abdominal CT Images using Transfer Learning
 Detection of Osteochondritis Dissecans using Convolutional Neural Networks for Computer-Aided Diagnosis of Baseball Elbow

Session 2B: Function Representation & Transformation

Properties of the Reed-Muller-Fourier Spectra of Maiorana-McFarland Bent Functions	4
Remarks on Gibbs Permutation Matrices for Ternary Bent Functions	0
Radomir S. Stankovic (Mathematical Institute of SASA, Serbia), Milena	
Stankovic (Faculty of Electronic Engineering, Serbia), Claudio Moraga	
(Faculty of Computer Science, Technical University of Dortmund,	
Germany), and Jaakko T. Astola (Tampere University of Technology,	
Finland)	

Decomposition-Based Representation of Symmetric Multiple-Valued Functions	76
Shinobu Nagayama (Hiroshima City University, Japan), Tsutomu Sasao	
(Meiji University, Japan), and Jon T. Butler (Naval Postgraduate	
School, USA)	
Logic Synthesis from Polynomials with Coefficients in the Field of Rationals	82
Bhavani Sampathkumar (University of Utah, USA), Bailey Martin	
(University of Utah, USA), Ritaja Das (University of Utah, USA),	
Priyank Kalla (University of Utah, USA), and Florian Enescu (Georgia	
State University, USA)	

Session 3A: Signal/Data Processing

Delta-Sigma Domain Signal Processing: A Review with Relevant Topics in Stochastic Computing Takao Waho (Sophia University, Japan), Akihisa Koyama (Sophia University, Japan), and Hitoshi Hayashi (Sophia University, Japan)	. 88
PAM-4 Data Transmission Quality Evaluation using Two- and Three-Dimensional Mapping of Received Symbols	94
 Evaluation and Symbol Classification of Multi-Valued Signaling using Two-Dimensional Symbol Mapping with Linear Mixture Model	99
Data Mining using Multi-valued Logic Minimization <i>Tsutomu Sasao (Meiji University, Japan)</i>	105

Session 3B: Algebra & Clone

Kleene Algebra With Tests for Weighted Programs Igor Sedlár (The Czech Academy of Sciences, Institute of Computer Science, Czech Republic)	111
On Quotient Algebras of Normal eo-Algebras by Congruences Mayuka F. Kawaguchi (Hokkaido University, Japan) and Michiro Kondo (Tokyo Denki University, Japan)	117
Search for Some Majority Operation and Studies of Its Centralizing Monoid Hajime Machida (Hitotsubashi University, Japan)	122
Weak Bases for Maximal Clones Mike Behrisch (Technische Universität Wien, Austria)	128

Session 4A: Quantum Circuits

Towards an Automated Framework for Realizing Quantum Computing Solutions Nils Quetschlich (Technical University of Munich, Germany), Lukas Burgholzer (Johannes Kepler University Linz, Austria), and Robert Wille (Technical University of Munich, Germany; Johannes Kepler University Linz, Austria)	134
Optimized Density Matrix Representations: Improving the Basis for Noise-Aware Quantum Circuit Design Tools Thomas Grurl (University of Applied Sciences Upper Austria, Austria; Johannes Kepler University Linz, Austria), Jürgen Fuß (University of Applied Sciences Upper Austria, Austria), and Robert Wille (Technical University of Munich, Germany; Software Competence Center Hagenberg GmbH (SCCH), Austria)	141
Using S Gates and Relative Phase Toffoli Gates to Improve T-Count in Quantum Boolean Circuits David Clarino (Ritsumeikan University, Japan), Shohei Kuroda (Ritsumeikan University, Japan), and Shigeru Yamashita (Ritsumeikan University, Japan)	147
Quick Computation of the Lower Bound on the Gate Count of Toffoli-Based Reversible Logic Circuits Takashi Hirayama (Iwate University, Japan), Rin Suzuki (Iwate University, Japan), Katsuhisa Yamanaka (Iwate University, Japan), and Yasuaki Nishitani (Iwate University, Japan)	153

Session 4B: SAT Solvers

Benchmarking Łukasiewicz Logic Solvers with Properties of Neural Networks Sandro Preto (University of São Paulo, Brazil), Felip Manyà (Artificial Intelligence Research Institute, Spain), and Marcelo Finger (University of São Paulo, Brazil)	158
Linking Łukasiewicz Logic and Boolean Maximum Satisfiability Sandro Preto (University of São Paulo, Brazil), Felip Manyà (Artificial Intelligence Research Institute, Spain), and Marcelo Finger (University of São Paulo, Brazil)	164
A Tableau Calculus for Signed Maximum Satisfiability Shuolin Li (Aix-Marseille Université, Université de Toulon, France), Jordi Coll (IIIA, CSIC, Spain), Djamal Habet (Aix-Marseille Université, Université de Toulon, France), Chu Min Li (Université de Picardie, France; Aix-Marseille Université, Université de Toulon, France), and Felip Manyà (IIIA, CSIC, Spain)	170
From Ramon Llull To Lov Grover: Towards a Universal Logic Machine George Opsahl (Portland State University) and Marek Perkowski (Portland State University)	176

Session 5A: Security

 Multiple-Valued Logic Physically Unclonable Function in Photonic Integrated Circuits Duncan L. MacFarlane (Southern Methodist University, USA), Hiva Shahoei (Southern Methodist University, USA), Ifeanyi G. Achu (Southern Methodist University, USA), Evan Stewart (Anametric, Inc., USA), Willam V. Oxford (Anametric, Inc., USA), and Mitchell A. Thornton (Southern Methodist University, USA) 	184
Higher-Order Boolean Masking Does Not Prevent Side-Channel Attacks on LWE/LWR-Based	190
Kalle Ngo (KTH Royal Institute of Technology, Sweden), Ruize Wang (KTH	170
Royal Institute of Technology, Sweden), Elena Dubrova (KTH Royal	
Institute of Technology, Sweden), and Nils Paulsrud (KTH Royal	
Institute of Technology, Sweden)	
Efficient DFA-Resistant AES Hardware Based on Concurrent Fault Detection Scheme	196
Rei Ueno (Tohoku University, Japan), Yusuke Yagyu (Tohoku University,	
Japan), and Naofumi Homma (Tohoku University, Japan)	

Session 5B: Emerging Applications

A Logical Method to Predict Outcomes After Coronary Artery Bypass Grafting Tsutomu Sasao (Meiji University, Japan), Anders Holmgren (Umeå University, Sweden), and Patrik Eklund (Umeå University, Sweden)	202
Discovering Emerging Applications of Multi-valued Logic: Protocols for Human-Autonomy	
Teaming	209
Peter Shmerko (University of Calgary, Canada), Svetlana Yanushkevich	
(University of Calgary, Canada), Marek Perkowski (Portland State	
University, USA), Yumi Iwashita (California Institute of Technology,	
USA), and Adrian Stoica (California Institute of Technology, USA)	
Some Consistency Criteria for Many-Valued Judgment Aggregation Christian G. Fermüller (Vienna University of Technology, Austria)	215
Author Index	221