2023 IEEE Wireless and Microwave Technology Conference (WAMICON 2023)

Melbourne, Florida, USA 17 – 18 April 2023

IEEE Catalog Number: CFP23WMC-POD **ISBN:**

979-8-3503-9865-6

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP23WMC-POD
ISBN (Print-On-Demand):	979-8-3503-9865-6
ISBN (Online):	979-8-3503-9864-9

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

WAMICON 2023 IEEE Wireless & Microwave Technology Conference Papers List

Filename (.pdf)	Title/Authors
M1A-3	Co-Design of Doherty Power Amplifier and Post-Matching Bandpass Filter65 Haifeng Lyu, Ricardo Lovato, Shakthi Priya Gowri, Xun Gong, and Kenle Chen
M1A-4	Load-Modulated Double-Balanced Amplifier with Quasi-Isolation to Load144 Jiachen Guo and Kenle Chen
M1A-5	A High-IP3 Harmonic Tuned Wideband 40 dBm RF Power Amplifier for 5G Applications5 Heather Song and Tanghid Rashid
M2A-1	Laser Enhanced Direct-Print Additive Manufacturing (LE-DPAM) of mm-Wave Antenna using LTCC Dielectric Paste for High Temperature Applications125 Seng Loong Yu, Christopher Curran, Anton Polotai, and Eduardo A. Rojas- Nastrucci
M2A-2	Ultra Wideband Power Detector for W-Band Applications Using a Novel Additively Manufactured Wave Mode Transducer69 Tobias Bader, Andreas Hofmann, Konstantin Lomakin, and Gerald Gold
M2A-3	3D Printed Composite Mesh for EM Shielding Applications156 Isabela Buitron-Burbano, Carlos Andres Perez-Lopez, and Alba Avila
M2A-4	PRINTED, PLANAR MICROWAVE CONNECTOR WITH MULTIPLE SIGNAL LINES45 Jotham Kasule, Alkim Akyurtlu, and Craig Armiento
M2A-5	3D-Printed Low-Profile X-Band Tunable Phase Shifter29 Hanxiang Zhang, Ryan Bahr, and Bayaner Arigong
M1B-1	Dynamic Supply Modulation of a 6 – 12 GHz Transmit Array140 Connor Nogales, Laila Marzall, Gregor Lasser, and Zoya Popovic

M1B-2	A Dual-Channel 15 Gb/s PRBS Generator for a D-Band PMCW Radar Transmitter in 22 nm FDSOI129
	Florian Probst, Andre Engelmann, Manuel Koch, and Robert Weigel
M1B-3	A Fully-Integrated Band-Switchable CMOS Low Noise Amplifier61 S. Babak Hamidi and Debasis Dawn
M1B-4	Sub-6 GHz GaAs pHEMT SPDT Switch with Low Insertion Loss and High Power Handling Capability Using Dual-Gate Technique49 Jaehyun Kwon, Jinho Yoo, Jaeyong Lee, Taehun Kim, and Changkun Park
M2B-1	Gas-Liquid Two-Phase Flow Monitoring Using Sub-THz Radar Imaging133 Davi V. Q. Rodrigues, Daniel Rodriguez, Victor Pugliese, Marshall Watson, and Changzhi Li
M2B-2	A Hybrid Skin, Fat, and Muscle Human Body Tissue-Mimicking Biological Phantom and Antenna Testbed117 Michael D. Grady and Thomas M. Weller
M2B-3	Frequency Characterization for Glucose Detection with Software Defined Radio148 Faheem Shaikh and Soumyasanta Laha
M2B-4	Real Time Monitoring of Helicopter Turbine Blade Temperature Using Passive Wireless Sensor152 Sreekala Suseela, Taofeek Orekan, Swadipta Roy, Joshua McConkey, and Reamonn
	Soto
M1C-1	A Miniaturized UHF RFID Tag Antenna Attached to a Container of Filled Liquid17 Minh-Tan Nguyen, Hua-Ming Chen, Chien-Hung Chen, and Yi-Fang Lin
M1C-2	Computation of Input Impedance of Rectangular Waveguide-backed Metasurface Arrays with Feed Networks using Coupled Dipole Framework105 Insang Yoo and David Smith
M1C-3	Advanced Cascaded Filter Synthesis9 Wael Fathelbab
M1C-4	A New Axial Mode Helix Antenna: "The Archimedean Screw Antenna"109 Francis E Parsche

M2C-1	Millimeter-Wave Silicon Photonics Circuits with Automatic Calibration for Wireless Communications37
	Kamran Entesari, Ramy Rady, Samuel Palermo, and Christi Madsen
M2C-2	Active and Passive Reconfigurable Intelligent Surfaces at mm-Wave and THz
	Suresh Venkatesh, Hooman Saeidi, Kaushik Sengupta, and Xuyang Lu
M2C-3	An Inkjet-Printed Capacitive Sensor for Ultra-Low-Power Proximity and Vibration Detection73
	Steven D. Gardner, Muklasur R. Opu, and Mohammad R. Haider
M2C-4	A Low-Cost Consumable Radio Frequency Emitter for Adversary Threat Emulation81
	Timothy M. Graziano, Zachary C. Wolsborn, Sebastien B. Wilkinson, Samuel J. Della-Santina, and Kirk A. Ingold
T1A-2	Magnetic-Less Simultaneous Transmit and Receive Front End using Highly Efficient GaN-Based Quadrature Balanced Amplifier101 Niteesh Bharadwaj Vangipurapu and Kenle Chen
T1A-3	Wide Band CMOS Power Amplifier with High Flatness Using Inter-Digit Transformer and RC-Feedback53
	Jaeheon Cho, Jaeyong Lee, and Changkun Park
T1A-4	Temperature Dependent Large-Signal Modeling of GaN HEMTs at Ka-Band using the ASM-HEMT21
	Nicholas C. Miller, Alexis Brown, Michael Elliott, and Ryan Gilbert
T1A-5	A High-Power RF GaN Amplifier Using Bondwire Transformer for Interstage Match57 Marvin Marbell
T2A-2	Conformal Retrodirective TM System for Future Generation Launch Vehicles89 Umair Naeem and Neil Buchanan
T2A-3	Higher-Order Filtering Attenuator Design Considerations for Filter Shape Optimization85 Jonathan M. Knowles, Hialti H. Sigmarsson, and Jay W. McDaniel
	, ,

T2A-4	Bonding Film Based 280 GHz Circularly Polarized Antenna Array Design33 Seiji Nishi, Kazuhiko Tamesue, Toshio Sato, San Hlaing Myint, Takuro Sato, and Tetsuya Kawanishi
T2A-5	Highly Energy Efficient 64-element Array Antenna Based on Cu/Co Metaconductor and Fused Silica137
	Hae-In Kim, Alexander Wilcher, Woosol Lee, Shelby Nelson, and Yong-Kyu Yoon
T1B-1	Cellular Digital Post-Distortion: Signal Processing Methods and RF Measurements25 Huseyin Babaroglu, Lauri Anttila, Guixian Xu, Matias Turunen, Markus Allén, and Mikko Valkama
T1B-2	EM Side-Channel Analysis of Data Leakage Near Embedded Bluetooth Low Energy Modules97 Vishnuvardhan V. Iyer and Ali E. Yilmaz
T1B-3	Performance Analysis of 5G New Radio V2X Communication1 G. G. Md. Nawaz Ali, Sameer Ahmed Sharief, Mohammad Nazmus Sadat, and Md. Suruz Miah
T1B-4	Low-Power Smart Selective LTE Jammer for Search and Rescue Applications using Software-Defined Radio93 Christian Dorn, Andreas Depold, Thomas Kurin, Fabian Lurz, and Amelie Hagelauer
T2B-1	Intelligent Spectrum Sharing Between LTE and Wi-Fi Networks using Muted MBSFN Subframes13 Merkebu Girmay, Pablo Avila-Campos, Vasilis Maglogiannis, Dries Naudts, Adnan Shahid, and Ingrid Moerman
Т2В-2	Deep Learning-based RF Fingerprint Authentication with Chaotic Antenna Arrays121 Justin McMillen, Gokhan Mumcu, and Yasin Yilmaz
T2B-3	Automated Radar Data Labeling through Computer Vision77 Jasmin Gabsteiger, Timo Maiwald, Simon Wünsche, Robert Weigel, and Fabian Lurz
T2B-4	Deep Learning-Based ASM-HEMT High Frequency Parameter Extraction41 Fredo Chavez and Sourabh Khandelwal