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MOISTURE PREDICTION OF TIMBER FOR DURABILITY
APPLICATIONS USING DATA-DRIVEN MODELLING

Seyyed Hasan Hosseini', Jonas Niklewski?, Philip Bester van Niekerk?

ABSTRACT: Durability and service life assessment is a major challenge for the design and use of timber in outdoor
weather exposed environments. Rate of deterioration by fungal decay is closely linked to variations in wood moisture
content. The objective of the present paper is to test and evaluate different data-driven models based on the multilinear
regression (MLR) and artificial neural network (ANN) approach. Moisture content was predicted at the surface and core
of a rain-exposed wooden element in the context of durability and service life assessment. Synthetic data stemming from
a numerical model were used to fit time-series weather variables, including different combinations of time-lagged daily
precipitation, relative humidity, and temperature, to temporal variations of daily average wood moisture content. Based
on a set of statistical and qualitative analyses, using the weather variables lagged by 0 — 11 days as input variables for 11
mm depth moisture prediction, ANN showed the highest accuracy and least sensitivity to its initial setups, and could
significantly outperform the MLR with the same input variables. The resulting models for surface and core moisture
prediction were then tested against two different datasets consisting of measured data from wood specimens subjected to
outdoor exposure.
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1 INTRODUCTION Using a modelling approach, the wood moisture content
is estimated based on these indirect factors and in a

Service life assessment is a major concern for timber in subsequent step, used with dose-response models to
weather exposed environments. The problem largely predict service life. Figure 1 shows how indirect variables
stems from the natural deterioration caused by fungal (weather) can be used via numerical modelling to estimate
decay, a mechanism that is exacerbated by poor moisture direct variables (moisture content), which can then be
management and suboptimal use of materials. Recent used via empirical damage functions to model wood
efforts to systemise service life assessment of timber have decay. The limit state defines the acceptable response in
resulted in various performance-based design guidelines terms of material deterioration and the service life is

for European conditions. The guideline in [1] is based on defined as the period until the limit state is reached.
a dose-response relationship where the rate of fungal

decay is expressed as a function of wood moisture content
and temperature. Therefore, dose-response models enable
service life assessment based on wood moisture content
and temperature [2].

Numerical modelling of moisture transport in wood is an
integral part of several branches of wood technology.
Common applications include the migration of free water
from green lumber during drying [7] and moisture
) ) ) gradients of sheltered structural timber during service [8].
Wood moisture content is a measure of the material These models transfer poorly to predictions of service life
microclimate and one of the main vectors for biotic where the wood surface is subject to cycles of wetting and
deterioration by fungal decay. In general, the moisture drying and the main region of interest lies above cell wall
variation of wood depends on various factors such as local saturation. The simple numerical model developed in [6]
weather, the wooden element’s distance to ground, and was made specifically for use with dose-response models

detailing. Brischke et al. [3] categorize these influences as and integration with performance-based service life
‘indirect’, since they are primarily linked to service life design.

via their effect on moisture content. For modelling
purposes, moisture content can either be obtained by

) The integration of numerical moisture modelling in
measurement [4] or modelling [5,6].

service life prediction led to improved accuracy, but
simultaneously introduced a dependency on commercial
software and increased the computational time. These
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Figure 1: Framework to predict moisture content and damage
from environmental variables.

downsides limit the practicality of numerical modelling.
Alternatively, data-driven (DD) models that are
considerably less computationally expensive than
numerical models can easily be integrated into digital
design tools for applications of service life prediction.

This paper explores new DD approaches for moisture
content prediction of rain-exposed wood. The aim is to
develop an efficient alternative to existing numerical
models for moisture content prediction, with minimal loss
in accuracy. For this purpose, synthetic data obtained
from the numerical model in [9] were used for model
development. A set of DD models based on the multiple
linear regression (MLR) and artificial neural network
(ANN) approaches, under various settings and input
variable assumptions, were developed and evaluated via
statistical and qualitative methods. The models are then
tested against two different data sets based on real
measurements.
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2 METHOD

2.1 Data

2.1.1 Synthetic data for model development

Each data set (synthetic or measured) includes time-series
of the moisture content at a specific depth from the wood
surface (response/output variable) and relative humidity,
precipitation, and temperature (predictor/input variables).
A model was first fitted and verified against a set of
synthetic data obtained from a one-dimensional numerical
model for moisture transport in Norway spruce (Picea
abies) wood [3]. The model geometry was modelled as 22
mm, reflecting the thickness, and transport properties
reflecting moisture flux perpendicular to the grain
direction. More details regarding the dataset can be found
in [10], where the same data was used to map the decay
hazard in a variety of different climates.

2.1.2 Measured data for testing

Two different datasets were used for testing the model
against real measurements of varying moisture content.
Both datasets consisted of measurements of moisture
content obtained for Norway spruce boards in outdoor
conditions, with weather data recorded in parallel.
Moisture content was measured by resistance-type
moisture sensors using insulated electrodes in both cases.
Important to note is that the valid range of resistance-type
measurements is (generally) below the point of cell wall
saturation.

The first data set came from [11] and spanned a period of
about 2.5 years. Measurements of moisture content were
obtained from horizontal boards with a thickness of 22
mm. The top face was exposed to precipitation while the
bottom face was considered sheltered and end-grain
surfaces were sealed by silicone-based adhesive.
Measurements were obtained at a depth of 11 mm from
the top face, i.e., at half of the board’s thickness. The
geometry and exposure setup of the dataset were
consistent with the numerical simulations used for DD
modelling.

The second dataset came from [12] and spanned a period
of about two years. Measurements of moisture content
were obtained from inclined (45°) boards with a thickness
of 20 mm. The test included specimens with both planed
and pre-weathered top faces. Here, only the
measurements obtained from pre-weathered samples were
used. All short sides as well as the back face of the boards
were sealed by silicone-adhesive, leaving only the top
face exposed to the ambient weather. Surface moisture
content was monitored every 5 minutes. After 18 months
of exposure, the test setup was sheltered from
precipitation, but remained outdoors for an additional 6
months. The specimens were similar to the geometry used
for producing the synthetic data, but it should be noted
that the specimen thickness was 2 mm less, the backside
was sealed, and the boards were inclined. However, the
small discrepancy in thickness nor the sealed bottom face
were expected to have a significant influence on the
surface moisture content of the exposed face.

https://doi.org/10.52202/069179-0495



2.2 MODELLING

The study includes several approaches for DD moisture
prediction of rain-exposed wood, preliminary based on
MLR and ANN approaches with various assumptions of
input variables. The simplest MLR model can be defined
as:

U = fo+ P1 X RHy + B, X Ty + 3 X p; ()

where ¢ is the index of time, and fy, f1, f2, and [ are
constants relating the relative humidity RH, temperature
T, and precipitation p to the moisture content u at a given
depth of a horizontal wood specimen (e.g., 11 mm). The
reference values for u were outputs of a numerical model
developed based on an average year of exposure for
different climate data of about 550 sites across Europe
[10]. More complex MLR could be achieved by relating
u; to RH, T, and p from ¢, t-1, ¢-2, ..., t-L where L is a
maximum time lag to consider potential contributions
from previous time steps. The constants, as expected from
eq. 1 (o, ..., Pa+nx3), were obtained using the
conventional least square method for a set of known u
(synthetic data by numerical model). A suitable range of
L was primarily estimated by cross-correlation analysis,
which evaluates linear relationship between u and time-
lagged versions of p, T, and RH. Then, L was fixed after
evaluating the performance of ANN with multiple options
from the estimated range, to take the non-linear
relationships into account. These analyses were done for
the 11 mm depth moisture content, but the resultant L was
assumed valid for shallower depths too.

While the input variables used for MLR and ANN could
be the same, the way they were related to moisture content
was different. The equations used for ANN, are usually
better described using an architecture resembling the
neural network of a human brain, as exemplified in Figure
2.

For the example of Figure 2, each black node on the input
layer includes a data vector corresponding to an average
daily value of an input variable (e.g., RH). Then, each red
neuron on the first hidden layer (HL) multiplied the input
variables by a corresponding scalar weight w and added a
scalar bias b to the sum of all weighted input variables.
Finally, a transfer function (f) was applied to give a value
n to the neuron. Thus, the mathematical expression for a
neuron on the first HL (4=1) can be written as:

N p=1 = f(Xiea (X X Wi jr=1) + bjr=1) 2)

where j is the index of neuron (j=1, ..., 5 for h=I).
Generally, a neuron on the second HL considers the
results of the neurons on the first HL as input variables,
and so forth for the next HL and output layer. To calibrate
the parameters of ANN (w and b), an iterative
optimization problem was solved to minimize the mean
squared error (MSE) between the estimated and reference
moisture u. The process starts with random initial
parameters (variable between -1 and 1, similar range as
the normalized input variables), which were changed at
multiple iterations until a minimum MSE was achieved.

https://doi.org/10.52202/069179-0495

Figure 2: A feedforward ANN architecture, connecting input
variables X1-X4 to output variable y through two hidden layers
(HLs) with five and three neurons (red) between input layer
(black) and output layer (blue).

Then, f had a mathematical form, making MSE
differentiable with respect to the parameters w and b. In
this study, f{n)=n for the output layer, and
fn)=(exp(2xn)—1) / (exp(2xn)+1) for the HLs as a
conventional method. The suitable ANN architecture is
usually a trial-and-error problem, and this study used up
to two HLs and 4-20 neurons per HL.

Conventional ANNSs are usually prone to overfitting due
to the use of many parameters (i.e., perfect fit to the
calibration data, but noisy for new data). To prevent this,
a stopping rule was defined based on a part of the data
(validation portion) separate to the data used for direct
calibration of the ANN (training portion). This study used
a so-called, “maximum validation fail (MVF)” criterion,
which monitors validation MSE at the iterations. This
criterion stops modelling when the MSE in the validation
dataset increases for 10 consecutive iterations regardless
of possible improvement in training for additional
iterations. As a result, the parameterization is fixed based
on the iteration that resulted in minimum validation
dataset MSE (rather than training dataset MSE). The
length of the study’s dataset was near two hundred
thousand, i.e., number of sites x (365 — L) days, due to the
use of time-lagged inputs, which was quite long compared
to the number of ANN parameters. So, overfitting could
be less problematic. However, the MVF criterion was still
useful to address the possible issue of ANN converging at
a local minimum. To clarify, it is favourable to stop an
ANN parameterization based on the MVF criterion and
repeat it with new random initial parameters that are likely
to end at a new final parameterization and exit the local
minima. Finally, the ANN with minimum validation MSE
among all repeats was selected. Alternatively, a hybrid of
outputs from a few top ranked ANNs by validation MSE
could be used, which was shown useful for generalization
of the ANN outputs for other DD problems (see e.g. [13]).

As said at the beginning of this section, different models
were developed based on various assumptions of input
variables. These assumptions were different in, firstly, the
number of lags used to consider effects of previous
weather conditions, and secondly, the definition and
number of principle components of the time-lagged input
variables used based on the PCA method [14]. Thus,
while L increased the number of input variables, PCA was
a method to combine and reduce them. Thus, 12 different
input variable combinations were defined as follows.
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Direct_inputs, where all the time-lagged versions of
the three weather variables (lags 0, 1, ..., L days) were
directly used (without any reduction via PCA). So, in
total, there were 3%(L+1) input variables.

All_PCAS, All_PCA6, All_PCA7, All_PCAS8, and
All_PCA9, where all variables in Direct_inputs were
reduced, in total, to 5, 6, 7, 8, and 9 variables,
respectively, via PCA.

Lags PCA3, Lags PCA4, Lags PCAS, and
Lags PCA6, where, for each of the three weather
variables, the L+1 time lagged versions were reduced
to 3, 4, 5, and 6 variables; so, in total, there were 9
(=3%3), 12 (=3x4), 15 (=3%5), and 18 (=3x6) input
variables, respectively.

Variables PCA1, and Variables PCA2, where, for
each of 0, 1, ..., L lags, the three weather variables
were reduced to 1, and 2 variables; so, in total, there
were (L+1), and (L+1)X2 input variables, respectively.

The developed ANNs based on the above combinations of
input variables were evaluated for a verification portion
(Figure 3), separated entirely from the training and
validation portions, using the modelling performance
criteria Nash-Sutcliffe Efficiency (NSE) that is:

(@ — uy)?
(u; — p)?

NSE =1-— )

where, i and u stand for estimated and reference moisture
content, u is average of u, and i denotes the index of the
verification data. NSE can be reformulated as NSE=A-B—

A~

C; where A=2 x g X p, B=(§)2, C=(%)2, A and & are
mean and standard deviation of #, p is correlation
coefficient (perfect linear relationship between @ and u is
p=1, while the lack of linear correlation is p=0), and ¢ is
standard deviation of . Hence, NSE is different from the
coefficient of determination (R>=p?), in that it includes
additional elements considering the biases in estimates of
variance (in B) and mean (in C), along with p (in A) to
describe the modelling performance. The perfect accuracy
is NSE=1 while NSE<O is a condition worse than the use
of u as a simple estimator. NSE is widely used as an
independently interpretable performance index of DD
predictive modelling relying on weather data in various
fields (e.g., [15,16]).

It is noted that, for a fair distribution of variable moisture
data, in all portions in Figure 3, the Scheffer climate
index, SCI, as described in [17], was calculated for the
studied sites to classify them into 40 classes, with a
frequency of 13 to 14 sites per SCI class, equivalent to 0—
2.5,2.5-5, ..., 95-97.5, 97.5-100 percentiles of SCI as
shown in Figure 4. Then, from each class, one site was

randomly selected for “verification”, another for
“validation”, and the remaining 11-12 for “train”.
Train Validation Verification

Figure 3: Splitting of the data length into portions.
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Figure 4: Classification of the sites into 40 classes of SCI.
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3 RESULTS AND DISCUSSION

3.1 Model performance against synthetic data

To predict daily wood moisture content via ANN and
MLR, L was defined first. Based on the cross-correlation
analysis in Figure 5, among all weather variables, the
highest correlation (p~0.55) was observed for RH at L=2;
meaning that » had the highest linear relationship to
relative humidity of two days earlier. For RH, p remains
above 0.4 for up to L=10 and gradually decreases with
further increases of L. Negative p for T indicates reverse
changes of u and temperature. Among the variables, the
absolute value of p dropped the fastest (slowest) for
precipitation (temperature) from the max p at L=2 to the
more stabilized p at higher L. Generally, a suitable range
of options for L was estimated not to exceed 6 — 13 days,
when p stabilized for different variables. Therefore, the
development of ANNs using the 12 input variable
combinations (as defined in section 2.2) was repeated for
each choice of L between 6 — 13. The NSE of the ANNs
are summarized in Figure 6a (for L=6-9) and Figure 6b
(for L=10-13).

0.6

N, BT [JrRH

0.4

0.2

10 12 14 16 18 20

L (days)
Figure 5: Cross-correlation between 11 mm depth synthetic
moisture content and three weather variables lagged by 0 — 20

days.
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Figure 6: Boxplots representing the range of NSE obtained from up to 25 repeats of ANNs developed for 11-mm depth
moisture content modelling using time-lagged input variable combinations. On the horizontal axis, n gives the total number
of input variables based on (a) L=6-9 days and (b) L=10-13 days. Red plus markers show outliers.

The type of delayed response seen in Figure 5 and
discussed in the previous paragraph is typical for moisture
transport phenomenon. The delay primarily depends on
the transport properties and depth. The increase in
moisture content stemming specifically from lagged
precipitation tends to decrease with decreasing distance to
the rain-exposed surface. Therefore, less lags could be
used for predicting the response at 1 mm (e.g., compared
to 11 mm) depth. As mentioned earlier, the lags were,
however, not varied between the two depths.

In Figure 6, for every input variable combination (e.g.,
Direct_inputs), eight boxplots are presented,
corresponding to different choices of L. Each boxplot
shows the range of obtained NSE for the repeats, where
the bottom and top of each box corresponds to the first
and third quartiles (q; and q3, respectively), and the line
within the box depicts the median NSE. The whiskers
extend to the most extreme NSE, with outliers shown by
the '+' marker. Outliers were greater than qs+wx(qs—qi) or
less than qi—wx(qs—qi), where w was 2.7x(standard
deviation of NSE). All the outliers in Figure 6 are located
below the boxes (least NSE), which could mean that the
outliers belonged to the repeats where ANN was trapped
within the local minima of MSE.

https://doi.org/10.52202/069179-0495
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As a result, while higher NSE is favourable, smaller
intervals between the q3 and q; (i.e., shorter boxes), show
less sensitivity of modelling to the employed ANN
architecture and initial random parameters in repeats. The
shortest boxes were primarily observed for the ANN
models using Direct_inputs, and Lags PCAx (when x=6,
5, or 4). However, Direct_inputs resulted in the highest
NSE that increased with increases of L, e.g., from 6 to 9
days (Figure 6a). Further increases of L, e.g., from 10 or
11 to 13 days (Figure 6b), did not result in a significant
NSE increase for Direct_inputs. Lags PCAx generally
showed sensitivity to x rather than L.

Thus, the accuracy of predictions using input variable
combinations of the form Lags PCAx was mainly
controlled by the adopted number of principal
components, e.g., see the jumps in NSE values from
Lags PCA3 to Lags PCA4 (Figure 6).

In view of the above, Direct_inputs and L=10 or 11 days
seem to be enough for accurate prediction of the synthetic
wood moisture content with a minimum sensitivity to
ANN architecture and initial random parameters. Using
such a combination for input variables, ANN could
significantly outperform MLR. For example, by =10, the
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corresponding NSE for MLR was 0.86, so 10% smaller
than the least (outlier) NSE shown in Figure 6b for ANN
under Direct inputs and L=10 (0.96). Also, for an
arbitrary ANN (not the best) with the same inputs, mean
absolute error in verification of ANN was three times
smaller than that of MLR (0.004 vs 0.013).

So far, the evaluations are based on the statistical
performance criteria of the DD moisture content
prediction at 11-mm depth. Figures 7 and 8 help to
visually examine the predicted moisture content by ANN
versus the synthetic moisture content by numerical model
(as reference) at 11- and 1-mm depth, respectively. The
box plots (Figures 7a and 8a) compare the synthetic and
modelled data variability while the scatter plots (Figures
7b and 8b) compare the exact data points with the 45-
degree line equivalent to the best fit for verification.
Based on Figure 7a, except for a few top outliers (“+”
markers), the elements of the boxplots for ANN and
synthetic data match together, which is supported by the
scatter plot (Figure 7b) showing a generally good
agreement between ANN and synthetic data except for a
few data points of synthetic values above 0.3 that are
underestimated by ANN. Similarly favourable results can
be observed for 1-mm moisture prediction in Figure 8.
However, as seen in Figure 8b, the extreme data points
(e.g., synthetic data below 0.2 and above 0.6) do not show
significant over- or underestimations by ANN, and the
highest discrepancies were observed for data points
between 0.2 and 0.4.
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Figure 8: Comparison of synthetic vs modelled (ANN) 1-mm
moisture data in box plot (a) and scatter plot (b).
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Further evaluations of the moisture content predictions by
the selected ANNSs are described below by comparing the
modelling outputs with the experimental measurements.

3.2 Model performance against measured data

Figure 9 shows the predicted daily average moisture
content with measured data. Qualitatively, the model
captures the seasonal variation, the timing of the peaks
and the width of the peaks at the surface with reasonable
accuracy. It should be emphasized that, due to
measurement limitations, the amplitude of the rain-
induced peaks cannot be compared. The final months of
the measurement confirm that the model performs well in
the absence of precipitation.

The comparison at a depth of 11 mm indicates that the
model, at least initially, overestimates the rain-induced
peaks, but is able to reproduce the seasonal variation quite
well. The limitation regarding the valid moisture range is
less problematic in the core of the sample, since the
moisture content generally remains within the valid
measurement range.

The vertical shaded lines indicate periods of time when
one or several weather variables were missing. It can be
noted that every instance of missing inputs results in a gap
in the output equal to the window of missing data plus an
additional 11 days (considering the required lagged inputs
for DD modelling). So, the size of these gaps is consistent
with L. To reduce the impact of missing data, smaller gaps
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Figure 9: ANN model compared against measured data (top row) from two different experiments where the moisture content was
measured at different depths (surface and 11 mm) together with weather data over the respective periods (bottom row). Shaded vertical
lines indicate periods when at least one weather variable is missing.
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can be filled by interpolation of weather prior to the
estimations by modelling. Relative humidity and
temperature can be interpolated linearly with reasonably
low errors since the variation between adjacent days is
usually small. Instances of missing precipitation can be
substituted by zeros or data from near locations. A single
missing rain event will then introduce an unknown degree
of uncertainty in the following 11 days of predicted
moisture content (if L=11 days) due to the usually high
variability of spacetime precipitation. The related error
will generally be significant a few days after the missing
rain event, and will decrease as the weight of the lagged
inputs decrease.

Figure 10 shows the relative time spent above a certain
moisture content near the surface. Accordingly, the
minimum and maximum measured daily average moisture
content are approximately 10% and 32%, respectively,
whereas the corresponding modelled values are 10% and
>35%. The modelled time spent above a certain threshold
remains accurate up until a threshold of u=23%, after
which the modelled values increasingly exceed the
measurements. As noted in section 2.1.2, this discrepancy
can be mainly explained by the nature of the resistance-
type measurements. Unless carefully calibrated (see e.g.
[18]), measurements based on this technique tend to
underestimate the moisture content in the over-
hygroscopic moisture range. Consequently, model
accuracy cannot be evaluated in the over-hygroscopic
region and predicted values should be interpreted and
used with caution. The discrepancy already at 23%
moisture content is likely related to aggregation of the
measurements to daily averages. To clarify, while
measurements are relatively accurate up to around 25%
moisture content, a daily average of 23% can include sub-
daily measurements exceeding 25%. This limitation can
be dealt with in durability applications by interpreting any
values exceeding 25% as being favourable for fungal
decay, and/or by adapting the decay model by reducing
the critical moisture-threshold [2].
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Figure 10: Measured and modelled relative time spent above a
certain moisture content-threshold near the surface.
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4 CONCLUSIONS

Data-driven models can be used to predict moisture
content of rain-exposed wood. Contrary to numerical
models, data-driven models are efficient and deployable
and can thus be integrated into existing digital
performance-based service life design frameworks for
wood. This will potentially lead to improved and
accessible service life prediction of wood.

Using simulated data for model fitting is not ideal, as any
errors stemming from the numerical model are transferred
to the DD model. In addition, the range of wood species
for which the numerical model is valid is limited. On the
other hand, when fitting a model to measured data, any
uncertainties and limitations (such as the valid
measurement range) of the system are instead transferred
to the model.

In future work, the model will be used to map decay risk
based on data sets with high spatial resolution (on
different scales) and longer timespans (multiple years),
where numerical models are too computationally
expensive.
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