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ABSTRACT: Multi-storey timber buildings are becoming increasingly popular due to advancements in engineered 
timber technology. Sophisticated timber connections in such buildings play a critical role in both the performance and 
safety of the structure, particularly in accidental and earthquake situations. Therefore, a thorough understanding of timber 
connection behaviour is necessary for safe and efficient building design. However, few existing studies capture timber 
connection behaviours in a sufficiently comprehensive manner to be applied to the complex loading conditions that can 
occur in accidental situations. This study develops a computational modelling approach that can predict intricate pre- and 
post-failure behaviours of timber beam-column connections under various loading conditions. First, the commercially 
available Finite Element software package Abaqus was used to model a timber beam-column connection. Then, nonlinear 
quasi-static analyses were performed under shear and moment conditions. Finally, sensitivity analyses were conducted to 
ensure that the model produces consistent results. The computational results obtained agree well with experimental results 
available in the literature. The developed numerical modelling approach is thus shown to have potential for simulating
the complicated behaviour of timber connections under loads and, hence, for the design of safe, efficient timber 
connections. 
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1 INTRODUCTION 345

Engineered timber is built up from mechanically or 
adhesively connected timber lamellae to form larger, 
more homogeneous structural sections suitable for the 
construction of larger timber structures. Engineered 
timber is increasingly seen as an alternative to 
conventional construction materials such as concrete and 
steel for reducing CO2 emissions in the construction 
sector [1] - [2]. As a result, engineered timber is now 
being used extensively in multi-storey building 
construction [3]. 

Commonly used engineered timber products are glued
laminated timber (glulam), laminated veneer lumber 
(LVL) and cross-laminated timber (CLT) [4]. These 
materials are predominantly used in three main building 
types [5]: Light-timber frame structures, composed of 
dimensional lumber and engineered timber that are 
regularly spaced and fastened together to create floor and 
wall cassettes: CLT buildings, composed of solid CLT
floor and wall panels in a platform-type construction
arrangement: and post-and-beam structures, consisting of 
continuous vertical posts and horizontal beams that are, 
usually, pin-connected to each other. Post-and-beam 
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structures are thought to offer the greatest potential for
realising timber buildings taller than 10 storeys [6] and the 
heights of such buildings are rapidly increasing [7]. 

Figure 1: Disproportionate collapse

The greater the heights of timber buildings, the more acute 
the need for thoughtful consideration of abnormal 
conditions such as fire [8] or disproportionate collapse in 
design. Disproportionate collapse is a structural collapse 
in which there is a pronounced disproportion between the 
initial damage caused by an abnormal event and the extent 
of the ensuing collapse [9]. A graphical representation of 
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this concept is depicted in Figure 1. The key design 
strategy against this phenomenon is to ensure adequate 
resistance against failure propagation, i.e., robustness. By 
limiting the initial damage progression from (b) to (c) in 
Figure 1, a sufficiently robust structure can be obtained. 
 
Timber beam-column connections, which are often made 
of steel or aluminium, play a vital role in ensuring reliable 
robustness of multi-storey timber buildings. These 
connections provide ductility and continuity to buildings, 
and with sufficient strength and deformation capacities, 
they can allow the formation of alternative load paths 
(ALPs) during initial damage [10] - [11]. These ALPs 
bridge or bypass a local failure zone; preventing failure 
propagation throughout the structure and hence averting 
disproportionate collapse. Examples of such ALPs are 
catenary, arching and membrane actions [12]. 
Understanding connection performance under load is thus 
crucial for achieving a robust building design. However, 
limited literature is available on timber post-beam 
connection behaviour [13] - [14].  
 
Computational methods can be a cost-effective and 
efficient approach for capturing connection behaviours. 
With recent developments in computational mechanics 
and failure theories, it may be possible to simulate 
isotropic metals, anisotropic timber and their combined 
behaviour in timber connections beyond initial failure. 
The majority of existing studies are limited to linear 
elastic-plastic behaviour [15] or simple dowel-type 
connections [16] or one material/parameter performance 
[17]. Some studies employ pre-defined failure surfaces to 
initiate failure [18] - [19] but these may not be suitable for 
all types of loading because of the need to predefine 
failure. In addition, the numerical solving methods used 
in these studies may not be suitable to simulate complex 
pre- and post-failure material behaviour in timber 
connections [20]. Therefore, a comprehensive modelling 
technique is required to capture the behaviours of timber 
connections under any mechanical loading condition. 
 
This research project aims to develop a computational 
modelling technique that can capture complex pre- and 
post-failure behaviour of timber beam-column 
connections under various loads. This paper presents the 
initial stages of building the complete computational 
model. First, material properties and connector details are 
outlined. Second, the modelling approach and results are 
discussed. Third, a parametric study is demonstrated. 
Finally, the conclusions of the study so far are presented.  
 
2 TIMBER CONNECTION 
A T-section connector tested by Masaeli et al. [21] and 
shown in Figure 2 was selected from the literature as an 
initial experimental benchmark for the development of the 
computational modelling technique. Full experimental 
details are provided by Masaeli et al [21] with key 
properties reproduced here. The tests used Douglas fir 
LVL timber column and beam sections of sizes 

360 × 360 mm2 and 600 × 252 mm2 respectively. The T-
section was made of AW 6005-A aluminium alloy, and 
the connection was composed of two rows of six 16 mm 
(M16 grade 8.8) bolts and ten 16 mm steel dowels (S355). 
The connector was tested experimentally under shear and 
moment quasi-statically [21], and the testing 
arrangements adopted are illustrated in Figure 3. These 
experimental results are used in this paper to evaluate the 
performance of the Finite Element (FE) model. 
 

 
 

Figure 2: T-connector details, redrawn after Masaeli et al. 
[21] 

 

 
 
Figure 3: Experimental testing setups, redrawn after Masaeli 
et al. [21] 
 
Material properties adopted in the FE analyses are given 
in Table 1 and Table 2 for timber and metals respectively. 
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The majority of these material properties including 
Young's modulus (E), Poisson’s ratio (υ), shear modulus 
(G) and shear strengths (fv) are those reported by Masaeli 
et al. [21]. Strains (ε) for metals are obtained from the 
wider literature [22]. Steel and aluminium are considered 
as isotropic materials whereas timber is modelled as an 
orthotropic material. Principal material directions for 
timber are depicted in Figure 4.  
 

 
 

Figure 4: Timber material directions 
 
Numerical subscripts for each timber material property 
represent these principal directions. Subscripts “c”, “v”, 
“y” and “m” denote compression, shear, yield and 
maximum respectively. “f”, “σ”, “εm” and “εtf” refer to 
strength, stress, engineering strain at maximum stress and 
true fracture strain respectively. 
 
Table 1: Material properties for LVL timber [21] 

Parameter Unit Value 
E11 MPa 15500 
E22 = E33  MPa 470 
υ12 = υ13  0.37 
υ23  0.38 
G12 = G13  MPa 660 
G23 MPa 132 
fc11 MPa 46.4 
fc22 = fc33  MPa 8.8 
fv12 = fv13  MPa 7 
fv23 MPa 1.4 

 
Table 2: Material properties of metals [21] - [22] 

Parameter Unit Bolt Dowel Connector 
Density kg/m3 8050 8050 2710 
E  GPa 207 209 70 
υ  0.3 0.3 0.23 
σy MPa 861 556 187 
σm MPa 956 597 221 
εm  0.09 0.1 0.0553 
εtf  1.03 0.90 1.10 

 
3 FINITE ELEMENT MODEL 
All the parts of the connection were drawn separately and 
assembled as depicted in Figure 5 using the FE software 
package Abaqus [23].  

 
 

Figure 5: FE model of the timber beam-column connection 
 
For the aluminium connector, small 8 mm chamfers were 
introduced at 900-degree corners to avoid numerical 
singularities. To define relationships between the 
components, 35 separate contact interactions were 
defined and constitutive models for metals and timber 
were specified to simulate their individual behaviour 
under loads. After performing a mesh sensitivity analysis 
for each component, boundary conditions and loadings 
were applied to simulate both shear and moment 
behaviour of the connector. These are discussed in detail 
in this section. 

 
3.1 HILL CRITERION FOR TIMBER 
The constitutive relationship for timber is defined in this 
study assuming orthotropic material properties. Only the 
ductile behaviour of timber under compression was 
considered in this paper. An elastic-perfectly plastic 
material model based on the Hill criterion with anisotropic 
yielding was employed using the properties given in Table 
1. The Hill criterion has been successfully used in timber 
modelling to define plastic yielding [24]. Equation (1) 
shows the Hill criterion. Yielding occurs when the 
function reaches the value of 1. 
 

 

       (1) 
 

where: 
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where  is the reference yield stress and . 

 
3.2 PLASTICITY MODEL FOR DUCTILE 

MATERIALS   
An elastic-plastic material model was applied for ductile 
metals. Material properties given in Table 2 were utilised 
to obtain the engineering stress-strain curves for bolts, 
dowels and aluminium connector. Yielding was defined 
using the Von Mises yield surface with isotropic 
hardening. This criterion has shown promising results in 
the literature [22]. Von Mises yield criterion is given in 
Equation (2) and yielding occurs when : 
 

 

  ]             (2) 
 

where  is the Von Mises (equivalent) stress and  
are the principal material directions. 
 
Abaqus requires an equivalent stress-strain curve as input 
to simulate this yielding of metals. Therefore, engineering 
stress-strain curves were first converted to true stress-
strain curves using Equation (3) and Equation (4): 
 

                                (3) 
 

                                   (4) 
 

where  is the true stress,  is the engineering stress,  
is the true strain and is the engineering strain. As these 
equations are valid only up to necking, Hollomon’s 
extrapolation method [25] was used to obtain the full 
curve. The true stress-strain curves were then converted 
to equivalent stress-strain curves, noting that the true 
stress-strain curve and equivalent stress-strain curve up to 
necking are the same. After necking, the Gromada 
correction factor was applied to account for the tri-axial 
stress state [25]. The resulting equivalent stress-strain 
curves are presented in Figure 6. Continuum damage 
modelling techniques were also employed after necking 
to simulate the ductile failure of materials [23]. 
 
3.3 MESH  
Separate mesh sensitivity analyses were conducted for 
each component of the connection. From these, a suitable 
mesh arrangement was chosen for each component to 
maintain accuracy. A total of 268502 8-node linear 
hexahedral elements (C3D8R) are used in this model. 
Reduced integration and relax-stiffness hourglass options 
were included in these elements to minimise shear 
locking, computational effort and zero-energy 
deformation modes.  
 
3.4 CONTACTS AND BOUNDARY CONDITIONS 
The general contact algorithm in Abaqus was utilized with 
element-based surface definitions to define contacts in the 
connection model. These element-based contact surface 
pairs were specified individually to avoid numerical 

problems and unwanted energies. To simulate the sliding 
behaviour of these contacts, a friction coefficient of 0.3 
was applied for the tangential direction. For the normal 
direction, a generalised Lame function proposed by Dorn 
[26] was employed to characterise pressure-overclosure 
(resistance to penetration) behaviour of surfaces. This 
accounts for the softening of timber near bolts and dowel 
holes. 
 

 
 

Figure 6: Equivalent stress-strain curves of bolts, dowels and 
aluminium connector 
 
For numerical efficiency, finite sliding with balanced 
contact weighting was used. This is beneficial for 
simulating large deformations and for minimising 
unrealistic node penetrations in contact surfaces. 
Furthermore, a penalty constraint was also applied to 
allow these small penetrations in contacts and, therefore, 
to reduce artificial resisting forces that can cause 
numerical instabilities. This is particularly useful when 
circular shapes, such as bolts and dowels, are included in 
the model. 
 
Boundary conditions were also employed to replicate both 
shear and moment loading conditions for the connection. 
The top and bottom surfaces of the column were fixed as 
shown in Figure 7. A distance of 250 mm between the 
connector and the fixed boundary conditions was kept to 
eliminate influence from the fixity to the connector. For 
the shear analysis, translational degrees of freedom 
(DOFs) in - and -directions at the end of the beam were 
restrained to resemble the shear behaviour. 
 
3.5 LOADING 
For all the numerical analyses conducted, only 
displacement-based loads were specified to capture 
moment and shear responses. First, a small displacement 
of 10 nm was applied to all the parts near contacts for 
initiating the contacts and eliminating numerical 
problems. This imposed displacement was then removed 
while enforcing new vertical displacements to simulate 
the required responses of the connector.  
 
These vertical displacements were assigned to reference 
points using a fifth-order polynomial function until failure 
occurs [23]. The location of the reference point changes 
depending on the behaviour the numerical model tries to 
capture: moment or shear. In the case of the moment test, 
the end of the beam was constrained to a reference point 
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using coupling constraints with continuum distribution as 
illustrated in Figure 8. This constrains the DOFs of the 
nodes in the connecting surface to the DOFs of the 
reference point. By doing so, imposed displacement to the 
reference point is distributed in an average sense to the 
connecting nodes by producing realistic results. A similar 
procedure was followed for the shear test, but now the 
connecting surface is at the top of the beam as shown in 
Figure 8. Accordingly, from the results of numerical 
models tested in moment and shear, moment-rotation and 
load-displacement curves were extracted respectively. 
 

 
 

Figure 7: Boundary conditions of FE models 
 

 
 

Figure 8: Coupling constraints and reference points for the 
moment (left) and shear (right) simulations 
 
3.6 SOLVER 
Owing to the complexities of the behaviour modelled, the 
commonly used Abaqus standard solver is not suitable for 
analysing such timber connections. The reason is that this 
solver solves for equilibrium [23], which means that 
problems become difficult to solve when a large number 
of contacts, failure mechanisms and non-linearities are 
involved. Abaqus explicit solver, on the other hand, 
solves equations of motion, which means that the 
calculation remains straightforward, and the overall 
analysis is efficient. However, this method is more 
commonly applied for dynamic analyses.  
 
In order to perform a quasi-static analysis using the 
explicit solver, two sensitivity analyses have to be 
conducted to keep the kinetic energy acceptably low. One 
analysis is to identify a load rate that produces zero kinetic 
energy. It is impractical, even with high-power 
computing, to recreate the actual load rate used in the 
experimental tests due to the large number of time 
increments needed for the analysis. Therefore, a 

computationally less expensive load rate must be selected. 
However, increasing the load rate alone may not be 
sufficient to achieve a computationally efficient analysis.  
 
Mass scaling is another parameter used to aid quasi-static 
analyses. This speeds up the analysis by increasing the 
time increment of the solver. However, by doing so, the 
kinetic energy of the system increases. Therefore, a 
sensitivity analysis must be performed to find a mass 
scaling factor. Both these sensitivity analyses are trial-
and-error processes. Therefore, a separate dynamic 
analysis was performed to find the natural frequency of 
the model, and this was used to decide an initial trial value 
for the load rate. The resulting selected load rates are 
0.25 m s-1, 0.5 m s-1 and 1 m s-1 and the chosen mass 
scaling factors are 5, 10 and 20. 
 
The model developed for the moment test was utilised in 
these two sensitivity analyses. Displacements were 
applied as described in Section 3.5 using the three 
different load rates and mass scaling factors. The moment 
vs rotation plots are shown in Figure 9.  
 
Kinetic energies for each test were also compared to 
ensure that the kinetic energy is less than 5% of the 
internal energy.  It can be seen that the results converge 
when the load rate and the mass scaling factor decrease, 
meaning that kinetic energy is low. Therefore, 
considering computational cost and kinetic energy, a load 
rate of 0.25 m s-1 and a mass scaling factor of 10 were 
chosen. The rest of the analyses were conducted using 
these selected parameters.  
 

 
 

Figure 9: Sensitivity analysis for mass scaling and load rate 
 
4 RESULTS AND DISCUSSION 
The developed numerical connection model was analysed 
under shear and moment. Displacement-based loads were 
applied as described in Section 3.5 with the load rate and 
mass scaling factor obtained in Section 3.6.  
 
Figure 10 illustrates the moment-rotation prediction in 
contrast to experimental results in [21]. The 
computational model captures the moment-rotation 
response of the connector including post-failure 
behaviour with good accuracy. The predicted initial 
stiffness, rotational capacity and maximum moment 
capacity agree well with the experimental results. It 
should be noted that, for the maximum moment capacity, 
there is a deviation of 1% from the average experimental 
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result. This distinction, however, lies within the 
experimental envelope and is due to the insignificant 
dynamic behaviour after elements start to fail. The 
predicted failure mechanism shown in Figure 11 matches 
well with the experimental observations of Masaeli et al. 
[21] – tearing near bolt holes and fracturing at the flange-
web interface of the aluminium connector. However, in 
the FE model, the fracture at the interface is partial in 
contrast to the experimental fracture.  
  

 
 
Figure 10: Experimental [21] and numerical moment vs 
rotation response 
 
The shear response of the connector was also estimated 
and is presented in Figure 12. Overall, the load vs 
displacement behaviour is similar to the experimental 
behaviour. However, FE values over-predict the force 
response and under-predict the displacement response 
with a maximum variation of 28% and 65% from the 
average experimental result for the forces and 
displacements respectively. This may be primarily 
because of the exclusion of timber brittle failure under 
tension in these FE models.  
 
As seen in Figure 13, experimentally observed tensile 
failure perpendicular to grain [21] was not captured in FE 
simulations. Instead, the applied loads primarily 
concentrated on the aluminium connector leading to 
higher resistance and lower displacement capacity. Hence 
failure occurred in the connector in simulations. Despite 
this, the numerical model captures the maximum strength 
capacity well, with a deviation of 2.4%. 
 
In all these analyses, energy outputs of the FE models 
such as artificial energy, kinetic energy, contact penalty 
energy, etc., were checked against the recommended 
limits to ensure that the results are accurate [23]. 
 
5 PARAMETRIC STUDY 
Parametric studies were conducted to identify the effects 
of three different parameters. These are discussed in detail 
in this section. 
 
5.1 BEAM-COLUMN GAP 

In the computational models, a small gap between the 
column and the beam was kept, as displayed in Figure 14. 
The gap of 23 mm represents the weakened hollow 
portion of the beam due to machine cut – since this is a 
concealed connector – and was set to provide 4 mm initial 
clearance between the bolt nut and the timber. The 

inclusion of the gap is beneficial in avoiding complicated 
contacts and reducing computational effort. To explore 
the influence of this gap, another FE model was developed 
in which the beam touches the column by fully enclosing 
the connector. The moment-rotation and load-
displacement responses are plotted in Figure 15 and 
Figure 16 for both models. 
 

 
 
Figure 11: Failure mode under moment test 
 
From Figure 15, it can be seen that the results of the FE 
model without the gap deviate significantly from the 
experimental results. The maximum moment capacity 
predicted has a variation of 14.3%. Furthermore, the 
rotational capacity is under-predicted by approximately 
1°. This indicates that if the weakened hollow portion of 
the beam is not appropriately modelled artificially high 
resistance against rotation may be observed. 
 
The shear response of the model without the gap shows 
similar peak resistance but less ductility than the FE 
model with the gap. For FE models without the gap, a 
2.6% higher peak shear resistance and a 30% lower 
deformation capacity compared to the FE model with the 
gap were noted, and these may be a result of increased 
contact area between the connector and the timber beam. 
Failure modes of both moment and shear simulations are 
similar to the original FE models. These results suggest 
that a gap between the column and the beam can be 
employed to minimise the above-mentioned discrepancies 
in modelling these types of timber connections. 
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Figure 12: Experimental [21] and numerical load vs 
displacement response 
 

 
 

Figure 13: Failure mode under shear test 
 

 
 

Figure 14: Column-beam gap 
 
5.2 CHARACTERISTIC ELEMENT LENGTH 

In continuum damage modelling, a total plastic 
deformation parameter is defined to simulate ductile 
damage of metals [23]. This parameter is constant for a 
particular material, and when an element reaches the 
specified total plastic deformation, element deletion 
occurs. Total plastic deformation ( ) is given in 
Equation (5).  

                                                     (5) 
 

where  is the characteristic element length,  is the true 
plastic strain at fracture and  is the true plastic strain at 
necking.  and  are material properties and are 
independent of element properties.  

 

 
 

Figure 15: Experimental [21] and numerical moment vs 
rotation response of models with and without the gap 
 

 
 
Figure 16: Experimental [21] and numerical load vs 
displacement response of models with and without the gap 
 
Characteristic element length depends on the element 
geometry and formulation. Same-size elements with an 
aspect ratio of unity are usually recommended to achieve 
a uniform in the mesh. If the of elements in the mesh 
varies significantly from that specified in the damage 
model, damage behaviour can be different from that 
defined. As the mesh varies near the holes and the T-joint 
of the aluminium connector, a sensitivity analysis was 
conducted for the connector to investigate the impact of 

on the analysis. 
 
In the original FE model, a value of 2.34 mm was used as 

for modelling damage in the connector. This value was 
determined based on the average dimensions of elements 
in the connector mesh. Another two values were 
selected for  keeping the mesh constant; = 2.10 mm 
and = 2.60 mm. These two values adequately represent 
possible element sizes in the mesh. The moment-rotation 
curves obtained using each  value are illustrated in 
Figure 17. 
 
All three plots follow the same experimental moment-
rotation response until approximately 6° of rotation. 
However, considerable differences between the plots start 
to appear near the failure point. For = 2.6 mm the 
analysis over-predicts the maximum moment capacity by 
6%, whereas for = 2.1 mm the analysis under-predicts 
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by 5%. In terms of rotational capacity, = 2.6 mm shows 
good agreement with the experimental value while 

= 2.1 mm shows about 1° lower rotational capacity.  
 

 
 

Figure 17: Experimental [21] and numerical moment vs 
rotation response for characteristic element length analysis 
 
Failure modes for = 2.1 mm, = 2.34 mm and 

= 2.6 mm are shown in Figure 18, Figure 11 and Figure 
19 respectively. Three different failure modes were 
identified. FE models with = 2.1 mm and = 2.34 mm 
exhibit tearing of aluminium as was seen in experiments, 
and in the = 2.1 mm model, even the complete fracture 
near the web-flange interface can be observed. When

= 2.6 mm, failure first occurs in the bolts near the 
column as presented in Figure 19. Failure modes for the 
shear tests were similar for all three cases as the actual 
failure occurred in the timber beam.  
 

 
 

Figure 18: Numerical failure mode of FE models with Lc = 2.1 
mm 
 
The three failure behaviours observed – tearing and partial 
fracture, tearing and complete fracture, and bolt failure – 

are possible alternatives for this connection under 
moment loading. Therefore, one should consider all such 
possible mechanisms in order to make predictions and 
designs if a mesh size of a part varies. In such cases, it is 
advisable to conduct a parametric study for . This will 
also take into account the material property variability 
indirectly in the simulations. Nevertheless, the FE model 
with average element length may yield overall good 
results for moment and shear responses. 
 

 
 

Figure 19: Numerical failure mode of FE models with Lc = 2.6 
mm 
 
5.3 SYMMETRY OF THE MODEL 
To reduce the computational cost, the symmetry of the 
connection was considered. Based on that, half-models as 
shown in Figure 20 were created for both moment and 
shear simulations. 
 
In addition to the boundary conditions and constraints 
discussed in Section 3.4, symmetric boundary conditions 
were employed as depicted in Figure 20. Note that, these 
are applied to the boundary surface excluding the nodes 
that are involved in contact definitions. This eliminates 
over-constraint issues. For symmetric boundary 
conditions, translational DOF in the -direction and 
rotational DOFs in the - and -directions were restrained. 
Then, the models were analysed under shear and moment 
loading conditions to investigate the effectiveness of 
taking symmetry into account. Moment-rotation and load-
displacement curves are shown in Figure 21 and Figure 
22, respectively. 
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Figure 20: Half-model and symmetric boundary conditions 
 

 
 

Figure 21: Experimental [21] and numerical moment vs 
rotation response of full and half models 
 

 
 

Figure 22: Experimental [21] and numerical load vs 
displacement response of full and half models 
 
The results of the half-model for both moment and shear 
match closely with the full-model predictions. Therefore, 
symmetry can be utilised in simulating such timber 
connections, and this also reduces the computational cost.  
 
6 CONCLUSIONS 
This study aims to develop a computational modelling 
technique that can capture complex pre- and post-failure 
behaviour of timber beam-column connections under 
various loads. This paper presents the initial stages of 
building the complete computational model. A numerical 
modelling technique was developed using the FE package 
Abaqus. This technique was then used to analyse a T-
section connector under shear and moment to demonstrate 
the performance of the method. A parametric study was 
also conducted to increase the accuracy of the model 
predictions and to evaluate the consistency of the 
modelling approach adopted. The following conclusions 
can be drawn: 

 
1. The developed numerical model demonstrates 

potential in capturing complex pre- and post-
failure behaviours of timber connections through 
large deformations and under different loading 
situations.  

2. For concealed connections, introducing a 
suitable gap between the column and the beam in 
the FE models to account for weakening of the 
hollow portion may provide more realistic 
results.  

3. A sensitivity analysis for the characteristic 
element length is needed if damage modelling 
for ductile metals is employed with non-uniform 
meshes. This is particularly important for FE 
predictions and designs. An average element 
length, however, was found to yield overall good 
results. 

4. The symmetry of connections can be taken into 
account in numerical modelling of connections 
of this type to improve computational efficiency. 
 

This technique has potential to support design and 
optimisation of timber connections, especially for 
robustness. Future works will develop this model to 
include tensile failure of timber.  
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