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ABSTRACT: Researchers studying the design of timber structures are often required to generate and process a large 
amount of data from experimental and numerical studies. Hysteretic data coming from seismic tests is particularly 
challenging to work with, because the x/y curve will change direction through testing. This paper provides an overview 
of Hysteresis, a software library written in the Python programming language that can be used to quickly process and 
analyse structural data, including hysteretic curves.  
The main structure and algorithms used in the software package are presented, including a summary of how data is 
represented in the package, and how it can be used. Two case studies are then presented where data is processed using 
the Hysteresis package. In the first, experimental and numerical data from tests on a shear wall are processed and 
compared in a variety of ways. The second, Hysteresis is used in an optimization analysis, where a genetic algorithm is 
used to fit non-linear material data to a structural element. 
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1 INTRODUCTION 234

In seismically active areas, wood structural elements and 
connections will be exposed to repeated loading. For these 
elements it’s important to understand not just the initial 
behaviour of the specimen to load, but how the response 
of the system change over repeated loading in a force 
deformation hysteresis. Experimentalists testing 
structural elements and connections will often have to 
apply load protocols, such as the CUREE method
proposed in Krawinkler et al. [1], to their test specimens
to understand this behaviour. Common tasks may include
finding the area under a curve, finding the back-bone 
curve of a hysteresis, or fitting a new curve to a back bone, 
such as in the Equivalent Energy Elastic-Plastic procedure 
outlined in ASTM E2126 [2]. These data processing tasks 
are often very time consuming and take away time from 
high level research. 
Structural researchers are also frequently working with 
hysteretic data coming from a finite element numerical 
analysis. In addition to processing this data, there are 
many common tasks that require researchers compare
output data a numerical model to those from experiment 
to see their similarity. Researchers also may want to fit 
parameters of a non-linear material model, for example 
Steel02 [3] or pinching4 [4] from the OpenSees [5,6]
library, to their experimental data. These tasks are often 
completed manually, due to the difficulty in matching 
different hysteresis.
To address these challenges in processing experimental 
and numerical data, a library in the Python programming 
language has been developed. This library can be used to 
work with simple x/y curves, as well as hysteretic data that 
changes direction in cycles. The following paper 
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describes the Hysteresis library, its main features, and 
showcases several key use-cases.

2 HYSTERESIS PACKAGE SUMMARY
2.1 BACKGROUND
Data from structural tests is generally represented by a 
series of (x,y) points, commonly force vs. deformation. In 
the case of structural data, it can be useful for curves to be 
divided into regions where the y values are “mostly” 
increasing or decreasing monotonically. For a CLT wall 
loaded in shear loaded may have a force deformation 
curve that increases to a peak value, then decreases after 
this value. Figure 1 demonstrates this, using the final 
cycle from a force deformation hysteresis tested by 
Drexlar et. al. [7], where the cycle has been  split into 
regions of interest. 

Figure 1: A data from a shear wall split into regions that are 
mostly increasing (orange) or decreasing (blue).
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Structural data will also occur in cycles, where the x axis 
values are either increasing or decreasing monotonically. 
This commonly occurs in reverse cyclic loading for 
seismic testing. Figure 2 shows a hysteresis of the same 
shear wall in Figure 1, highlighting distinct regions where 
the x values are mostly unchanging. Similar to the 
monotonic load case, it’s often useful to determine where 
these cycles occur in data. 
 

 
Figure 2: A positive cycle (orange), and negative cycle (red) 
noted in a shear wall hysteresis. 

In both Figure 1 and Figure 2, there are small regions 
where the graph will decrease slightly in a roughly 
increasing zone. These irregularities are often not 
important to the data but can complicate finding data.  
 
2.2 ABSTRACTIONS AND CLASS STRUCTURE 
To represent x/y curves of structural data, the hysteresis 
Python package contains three main classes of curve 
objects:  

- The “MonotonicCurve”, where the x/y curve 
does not change in in its vertical axis and its 
horizontal axis.  

- The “SimpleCycle”, where data changes only in 
the y axis only.  

- The “Hysteresis”, where data in the x/y curve can 
change in both the both the x and y direction.  

The structure of each curve object is nested, so that 
Hysteresis objects can be broken up into SimpleCycle 
objects, and SimpleCycle can be broken up into of 
MonotonicCurve objects.  
Hysteresis and SimpleCycle objects divide themselves 
into sub-curves by finding reversal points in either the x 
data, or peaks in the y data. Signal filtering functions from 
the Python library Scipy [8] are used to find these local 
extreme values in the data. These functions also allow 
peaks/reversals to be selected based on various criteria, 
such as number of data points between extremes, or the 
prominence of the peaks/reversals from other lower 
points. Providing a method of filtering out smaller peaks 
in the data allows the main objects to ignore minor 
irregularities within the input data. 
MonotonicCurve, SimpleCycle, and Hysteresis objects all 
inherit from a common “CurveBase” class that provides 
functionality to all objects. Included in this base class are 
a number of methods that can be used to numerically find 
properties like the curve, such as slope, cumulative 

change in x, arclength, or area under the curve. Figure 3 
showcases some of these properties for a SimpleCycle 
object. By default, slope and area is calculated with 
second order finite difference schemes. 
 

 
Figure 3: A SimpleCycle object cycle with its numerically 
calculated slope, and area under the curve. 

The CurveBase class also includes a number of methods 
that allow for the curve to be easily plotted. Built in 
methods include: making a x/y plot of the curve, plotting 
the cumulative area under the curve, or plotting a curves 
x value against the index. Plots can also be made to show 
peak values or reversal points. All plots produced by the 
hysteresis module make use of the Matplotlib Python 
library [9] and can be modified with well-known 
commands. Figure 4 shows two of the plot functions, for 
the hysteresis in Figure 2 with reversal points highlighted, 
and the same data with x values plotted against index. 
 

 
Figure 4: Top, experiment hysteresis with reversal points 
highlighted. Bottom, the x displacement plotted against the 
index used, with reversal points highlighted. 

The Hysteresis package was designed to allow users to 
customize the behaviour of its key objects. At the time of 
object creation, functions are assigned to each object. For 
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example, the “areaFunction” is set, reading from a 
environment object that contains the default functions 
used by all objects. The stored areaFunction will then be 
called later when a request is made to calculate area. Users 
can implement custom behaviour by either directly 
overwritten the desired function in individuals object, or 
by setting a new function in the environment variable. 
Changing the environment will affect the behaviour of all 
objects created afterwards. 
Figure 5 summarizes the main classes used in the 
Hysteresis package, and some of their key methods. 
Arrows represent inheritance relationships, where one 
class is a subclass of another class, while diamonds 
represent composition where objects are stored in other 
objects. Hysteresis classes will contain SimpleCycles in a 
list of “cycles”, and similarly SimpleCycles contain 
MonotonicCurves in a list of subcycles.

Figure 5: Class diagram for the Hysteresis package's main 
abstractions, and some key methods for each class.

2.3 BASIC FUNCTIONS
In addition to the basic numerical analysis and plotting 
functionality provided by the CurveBase class, there are a 
number of functions in the Hysteresis package that allows 
users to operate on hysteresis objects. Different object 
types can be combined can be combined with the 
“concatenate” function. This allows for more complex 
objects, such as the SimpleCycle or Hysteresis, to be built 
up from its component curves, or lists of x/y data. 
Another desirable feature is the ability to take an input 
curve and resample it, which allows for data to be 
compressed or expanded. The Hysteresis package has a 
“resample” function, which allows for the number of x 
axis points to be increased or decreased using linear 
interpolation. When called on the MonotonicCurve or 
SimpleCycle Object, resample will change the total 
number of points in the curve, while when Hysteresis 
objects are resampled the number of points in each sub-
curve is changed. This highlights a major benefit of the 
class structure used, because complex objects such as the 
Hysteresis are broken into simpler objects, it’s possible to 
easily resample entire hysteresis by resampling its
components. Resampling can be done based on a number 
of increments between the maximum and minimum x 
value or based on a sample change in x direction distance.
Figure 9 shows the final cycle shown in Figure 1, where 
the curve has been resampled to only include 5 segments.

Figure 6: The x/y curve shown in Figure 1, and a resampled 
version of that curve.

A feature enabled by the resample function is the ability 
to various Curve objects of the same type. Two curves can 
be compared using the “compare” function by resampling 
each curve, then summing the Euler distance over all the 
resulting set of points. Equations (1,2) below overview 
this calculation for a SimpleCycle and Hysteresis 
respectively, where: “j” is an index that counts the number 
of sample point; and “i” is an index that counts the number 
of SimpleCycles that make up a hysteresis object. While
the actual sum of the two curves is not physically 
significant, it’s size will indicate how similar two curves 
are, and reduce to zero when curves coincide. Like 
resampling, Hysteresis curves are compared by summing 
the comparison between the monotonic cycles of each 
object. Figure 7 showcase the process comparison 
process, where the final output is the average distance 
between each point on the curve.

=
− + 𝑥 − 𝑥 (1) 

=
− + 𝑥 − 𝑥

(2) 

Figure 7: The average difference in the x/y space between each 
point for the resampled curves. 

2.4 ENVELOP FUNCTIONS
The Hysteresis library also has functions that can be used 
to extract data from the envelop of a Hystersis class. A 
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common task researchers will face is finding the backbone 
of a hysteresis. Because the reversal points in an input 
Hysteresis are automatically stored, the Hysteresis library 
can be used to quickly extract the backbone of data 
coming from a numerical or experimental hysteresis. A 
function “getBackbone” can be applied to the curve in 
question to extract the correct points from an input 
Hysteresis. Figure 8 shows a backbone curve extracted 
from a numerical model of a seismic damper [11]. By 
default the getBackbone function will return all reversal 
points, but the user can provide the number cycles each 
step in the load protocol has to the function to skip certain 
points, for example return only the first cycle. 
In addition to the getBackbone function, a second 
function called “getBackboneAvg” can be used. This 
function extracts the positive and negative backbones of a 
Hysteresis objects, takes the absolute value of each x/y 
points, then an averages to the two curves.

Figure 8: The extracted backbone curve from a hysteresis.

A specialized feature of the Hysteresis package is 
automatically fit an Equivalent Energy Elastic-Plastic 
(EEEP) Curve to a Hysteresis. In this process, the 
backbone of the hysteresis is first extracted using the 
average backbone function and rules outlined in ASTM 
2126 [2]. Figure 9 shows a typical use case, where a EEEP 
curve is fit to the shearwall data from Figure 2. 

Figure 9: Raw data from a shearwall test SPC1, overlayed with 
the calculated back-bone curve and fitted EEEP curve.

3 CASE STUDIES
3.1 POST PROCESSING OF SHEAR WALL 

DATA
In the following example, experimental data from a self-
centring CLT shear wall is postprocessed, then compared 
to data coming from numerical models of the shear wall. 
The CLT wall was approximately 4.5m tall, and a post-
tensioned steel tendon was used to apply an initial 
compression force to the wall. Lateral force was applied 
to the system in a number of cycles, and the force-
deformation of the wall was recorded. A detailed 
discussion of the experimentation can be found in Ganey 
[10], where it is labelled as TS1. Data for the numerical 
model is generated in OpenSees [5] using a models similar 
to those presented in Slotboom [11]. Figure 10 below 
shows both models, where both data sets have been 
“cropped”, so they both end at approximately 0.15m of 
drift.
First the experimental data will be checked to see if 
reversal have been correctly extracted properly. The 
“plotLoadProtcol” method is used to clearly see which 
peaks have been picked up, and can be seen in figure XX. 
It’s noted that that not all of the reversal points alternate 
between positive and negative, and  one of the peaks has 
a value similar to the prior peak. This incorrectly detected 
point is removed by recalculating the reversal points using 
a prominence filter that will removes reversal points 
which do not change much compared to other points. The 
updated plot can be seen in Figure XX.
Often data from numerical and experimental studies are 
compared by plotting directly on top of each other, similar 
to Figure 12. While this can be used to understand general 
trends in the data, it is often difficult to tell how each curve 
compares at different points in the analysis. Using the 
hysteresis package, it’s possible easily extract specific 
cycles of the curve for comparison. Two other metric can 
easily be employed to see how similar each curve is at 
different points:

- Cumulative energy observed by each model.
- A direct comparison of the “error” between each 

curve.
Figure 13 shows a cycle of the produced by the Hysteresis 
package, while Figure 14 and Figure 15 overview the 
cumulative energy and error of each cycle respectively. 
Looking at the Figure 14 it easily be observed that the 
experimental model absorbed much more energy per 
cycle than the numerical model did, something which 
would have been difficult to observe from Figure 12
alone. Through Figure 13, it can be concluded that the 
experimental hysteresis was asymmetric, and had an open 
hysteresis that was absorbing energy, while the numerical 
model was symmetric and had a purely elastic behaviour. 
Noting quickly noting these differences could allow the 
researcher make changes to their experimental setup or 
numerical model if needed.
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Figure 10: The raw experimental hysteresis (top), and analysis 
hysteresis (bottom). 

 
Figure 11: A plot of detected peaks before (top) and after 
(bottom) filtering. 

 
 

 
Figure 12: A typical comparison of experiment/numerical data. 

 
Figure 13: Experiment and analysis results compared for a 
single cycle in the hysteresis. 

 
Figure 14: The energy absorbed by each cycle in the hysteresis. 

 
Figure 15: The average difference between the experiment and 
numerical analysis. 
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3.2 PARAMETER FITTING USING GENETIC 
ALGORITHMS 

A second case study is presented where a nonlinear 
numerical models are calibrated to match experimental 
data using a genetic algorithm and the Hysteresis package. 
As part of a testing program on self-centring shear walls, 
Ganey tested a number of U-shaped Flexural Plate (UFP) 
steel dampers. These dampers showed a stable response 
with a full hysteresis until failure. It’s desired to make 
numerical models of this damper, which can be applied to 
model of the wall system. 
The numerical models of the damper were developed in 
with the Python implementation of OpenSees, 
OpenSeesPy [6-7]. A zero-length element was used to 
model the damper, with a steel02, a Giuffre-Menegotto-
Pinto steel material, applied to the element. Force was 
applied to one of the zero length element’s nodes, and the 
load protocol used matched the testing from Ganey’s 
experiment. To match the damper to experimental results, 
the OpenSees analysis was first parameterized to take in 
set of values about the zero-length damper. The 
significant parameters chosen to be varied were: Fy, the 
yield strength; E0, the slope of the elastic tangent; b, the 
strain hardening ratio between the elastic and plastic 
tangent lines; and R0, CR1, and CR2, which are parameters 
influence how the material transfers from it’s elastic to 
plastic tangent lines.  
Once the function was parameterized, the genetic 
algorithm was set up to iterate through possible values 
until an optimum was reached. The genetic algorithm 
used a scheme where a pool of 30 genes was tested over 
100 generations. Each gene consisted of the six 
parameters used to . Initially parameters were randomly 
generated, with the bounds for the parameters defined in 
Table 1.  
During each generation, all genes in the population were 
tested by running a OpenSeesPy with those values, then 
using the Hysteresis Compare function to quantify how 
similar the experimental and analysis hysteresis was. In 
each generation, 8 pairs of genes are chosen to pass on 
their genes to the next round, and results that closely 
matched experiment were more likely to be chosen. The 
remaining 14 genes were filled up by randomly generated 
values within the range of Table 1. Both crossover, where 
information is swapped between pairs of genes, and 
mutation, where genes are randomly changed were 
considered. After 100 generations the analysis was ended, 
and the optimal value was taken, and is presented in Table 
1. 

Table 1: Genetic algorithm parameters and solution. 

Parameter Minimum Maximum Solution 
Fy (kN) 0 32 23 
E0 (kN/m) 0 4x106 2.9 x106 
b  0 0.023 0.002 
R0 0 29 4 
CR1 0 1.4 0.57 
CR2 0 .23 0.15 

 

Figure 16 compares results from the experimentally tested 
damper to the solution chosen by the genetic algorithm, 
showing a close fit between the two hysteresis curves. The 
Hysteresis package is small part of this process, but it 
provides a crucial comparison between experiment and 
numerical data, needed to tell which parameters are good, 
and which are bad. 
 

 
Figure 16: Experiment (blue) vs. Optimal solution (orange) for 
the chosen genetic algorithm. 

4 CONCLUSIONS 
The Hysteresis Python package can be used to quickly 
post process structural data, with an emphasis on 
hysteretic data. The main structure and algorithms used in 
the package was overviewed, highlighting the three key 
types of curves (Monotonic, SimpleCycle, and 
Hysteresis) used to represent structural data. These curve 
classes all have built in functions for plotting and doing 
numerical analysis on their data. These classes were 
designed with customization in mind, and the user can 
modify these methods by changing the underlying 
functions in the environment. In addition to the basic 
functionality, there also exists a number of functions that 
can be used to extract parameters from an envelop of a 
Hysteresis object, with some key functions being 
“getBackbone”, and “compare”. 
Two case studies are then presented, showing how the 
hysteresis python package can be used to speed up data 
processing, and enable different types of analyses. The 
Hystersis package can be used to quickly compare 
numerical and experimental data in a number of ways. 
Also, by enabling two hysteresis curves to be compared, 
the Hysteresis package allows for advanced algorithms or 
machine learning models to work with Hysteresis dat. 
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