
HYSTERESIS - A PYTHON LIBRARY FOR ANALYSING STRUCTURAL
DATA

Christian Slotboom1

ABSTRACT: Researchers studying the design of timber structures are often required to generate and process a large
amount of data from experimental and numerical studies. Hysteretic data coming from seismic tests is particularly
challenging to work with, because the x/y curve will change direction through testing. This paper provides an overview
of Hysteresis, a software library written in the Python programming language that can be used to quickly process and
analyse structural data, including hysteretic curves.
The main structure and algorithms used in the software package are presented, including a summary of how data is
represented in the package, and how it can be used. Two case studies are then presented where data is processed using
the Hysteresis package. In the first, experimental and numerical data from tests on a shear wall are processed and
compared in a variety of ways. The second, Hysteresis is used in an optimization analysis, where a genetic algorithm is
used to fit non-linear material data to a structural element.

KEYWORDS: Hysteresis, Connection Testing, Data Analysis, Genetic Algorithm.

1 INTRODUCTION 234

In seismically active areas, wood structural elements and
connections will be exposed to repeated loading. For these
elements it’s important to understand not just the initial
behaviour of the specimen to load, but how the response
of the system change over repeated loading in a force
deformation hysteresis. Experimentalists testing
structural elements and connections will often have to
apply load protocols, such as the CUREE method
proposed in Krawinkler et al. [1], to their test specimens
to understand this behaviour. Common tasks may include
finding the area under a curve, finding the back-bone
curve of a hysteresis, or fitting a new curve to a back bone,
such as in the Equivalent Energy Elastic-Plastic procedure
outlined in ASTM E2126 [2]. These data processing tasks
are often very time consuming and take away time from
high level research.
Structural researchers are also frequently working with
hysteretic data coming from a finite element numerical
analysis. In addition to processing this data, there are
many common tasks that require researchers compare
output data a numerical model to those from experiment
to see their similarity. Researchers also may want to fit
parameters of a non-linear material model, for example
Steel02 [3] or pinching4 [4] from the OpenSees [5,6]
library, to their experimental data. These tasks are often
completed manually, due to the difficulty in matching
different hysteresis.
To address these challenges in processing experimental
and numerical data, a library in the Python programming
language has been developed. This library can be used to
work with simple x/y curves, as well as hysteretic data that
changes direction in cycles. The following paper

1 Christian Slotboom, Graduate Engineer, Fast+Epp,
cslotboom@fastepp.com

describes the Hysteresis library, its main features, and
showcases several key use-cases.

2 HYSTERESIS PACKAGE SUMMARY
2.1 BACKGROUND
Data from structural tests is generally represented by a
series of (x,y) points, commonly force vs. deformation. In
the case of structural data, it can be useful for curves to be
divided into regions where the y values are “mostly”
increasing or decreasing monotonically. For a CLT wall
loaded in shear loaded may have a force deformation
curve that increases to a peak value, then decreases after
this value. Figure 1 demonstrates this, using the final
cycle from a force deformation hysteresis tested by
Drexlar et. al. [7], where the cycle has been split into
regions of interest.

Figure 1: A data from a shear wall split into regions that are
mostly increasing (orange) or decreasing (blue).

2166https://doi.org/10.52202/069179-0287

Structural data will also occur in cycles, where the x axis
values are either increasing or decreasing monotonically.
This commonly occurs in reverse cyclic loading for
seismic testing. Figure 2 shows a hysteresis of the same
shear wall in Figure 1, highlighting distinct regions where
the x values are mostly unchanging. Similar to the
monotonic load case, it’s often useful to determine where
these cycles occur in data.

Figure 2: A positive cycle (orange), and negative cycle (red)
noted in a shear wall hysteresis.

In both Figure 1 and Figure 2, there are small regions
where the graph will decrease slightly in a roughly
increasing zone. These irregularities are often not
important to the data but can complicate finding data.

2.2 ABSTRACTIONS AND CLASS STRUCTURE
To represent x/y curves of structural data, the hysteresis
Python package contains three main classes of curve
objects:

- The “MonotonicCurve”, where the x/y curve
does not change in in its vertical axis and its
horizontal axis.

- The “SimpleCycle”, where data changes only in
the y axis only.

- The “Hysteresis”, where data in the x/y curve can
change in both the both the x and y direction.

The structure of each curve object is nested, so that
Hysteresis objects can be broken up into SimpleCycle
objects, and SimpleCycle can be broken up into of
MonotonicCurve objects.
Hysteresis and SimpleCycle objects divide themselves
into sub-curves by finding reversal points in either the x
data, or peaks in the y data. Signal filtering functions from
the Python library Scipy [8] are used to find these local
extreme values in the data. These functions also allow
peaks/reversals to be selected based on various criteria,
such as number of data points between extremes, or the
prominence of the peaks/reversals from other lower
points. Providing a method of filtering out smaller peaks
in the data allows the main objects to ignore minor
irregularities within the input data.
MonotonicCurve, SimpleCycle, and Hysteresis objects all
inherit from a common “CurveBase” class that provides
functionality to all objects. Included in this base class are
a number of methods that can be used to numerically find
properties like the curve, such as slope, cumulative

change in x, arclength, or area under the curve. Figure 3
showcases some of these properties for a SimpleCycle
object. By default, slope and area is calculated with
second order finite difference schemes.

Figure 3: A SimpleCycle object cycle with its numerically
calculated slope, and area under the curve.

The CurveBase class also includes a number of methods
that allow for the curve to be easily plotted. Built in
methods include: making a x/y plot of the curve, plotting
the cumulative area under the curve, or plotting a curves
x value against the index. Plots can also be made to show
peak values or reversal points. All plots produced by the
hysteresis module make use of the Matplotlib Python
library [9] and can be modified with well-known
commands. Figure 4 shows two of the plot functions, for
the hysteresis in Figure 2 with reversal points highlighted,
and the same data with x values plotted against index.

Figure 4: Top, experiment hysteresis with reversal points
highlighted. Bottom, the x displacement plotted against the
index used, with reversal points highlighted.

The Hysteresis package was designed to allow users to
customize the behaviour of its key objects. At the time of
object creation, functions are assigned to each object. For

2167 https://doi.org/10.52202/069179-0287

example, the “areaFunction” is set, reading from a
environment object that contains the default functions
used by all objects. The stored areaFunction will then be
called later when a request is made to calculate area. Users
can implement custom behaviour by either directly
overwritten the desired function in individuals object, or
by setting a new function in the environment variable.
Changing the environment will affect the behaviour of all
objects created afterwards.
Figure 5 summarizes the main classes used in the
Hysteresis package, and some of their key methods.
Arrows represent inheritance relationships, where one
class is a subclass of another class, while diamonds
represent composition where objects are stored in other
objects. Hysteresis classes will contain SimpleCycles in a
list of “cycles”, and similarly SimpleCycles contain
MonotonicCurves in a list of subcycles.

Figure 5: Class diagram for the Hysteresis package's main
abstractions, and some key methods for each class.

2.3 BASIC FUNCTIONS
In addition to the basic numerical analysis and plotting
functionality provided by the CurveBase class, there are a
number of functions in the Hysteresis package that allows
users to operate on hysteresis objects. Different object
types can be combined can be combined with the
“concatenate” function. This allows for more complex
objects, such as the SimpleCycle or Hysteresis, to be built
up from its component curves, or lists of x/y data.
Another desirable feature is the ability to take an input
curve and resample it, which allows for data to be
compressed or expanded. The Hysteresis package has a
“resample” function, which allows for the number of x
axis points to be increased or decreased using linear
interpolation. When called on the MonotonicCurve or
SimpleCycle Object, resample will change the total
number of points in the curve, while when Hysteresis
objects are resampled the number of points in each sub-
curve is changed. This highlights a major benefit of the
class structure used, because complex objects such as the
Hysteresis are broken into simpler objects, it’s possible to
easily resample entire hysteresis by resampling its
components. Resampling can be done based on a number
of increments between the maximum and minimum x
value or based on a sample change in x direction distance.
Figure 9 shows the final cycle shown in Figure 1, where
the curve has been resampled to only include 5 segments.

Figure 6: The x/y curve shown in Figure 1, and a resampled
version of that curve.

A feature enabled by the resample function is the ability
to various Curve objects of the same type. Two curves can
be compared using the “compare” function by resampling
each curve, then summing the Euler distance over all the
resulting set of points. Equations (1,2) below overview
this calculation for a SimpleCycle and Hysteresis
respectively, where: “j” is an index that counts the number
of sample point; and “i” is an index that counts the number
of SimpleCycles that make up a hysteresis object. While
the actual sum of the two curves is not physically
significant, it’s size will indicate how similar two curves
are, and reduce to zero when curves coincide. Like
resampling, Hysteresis curves are compared by summing
the comparison between the monotonic cycles of each
object. Figure 7 showcase the process comparison
process, where the final output is the average distance
between each point on the curve.

଴ߝ =
σ ට൫ݕ௝ − ௝ିଵ൯ଶݕ + ൫𝑥௝ − 𝑥௝ିଵ൯ଶேೕ௝ ௝ܰ (1)

௛௬௦ߝ = ෍σ ට൫ݕ௝ − ௝ିଵ൯ଶݕ + ൫𝑥௝ − 𝑥௝ିଵ൯ଶேೕ௝ ௝ܰ
ே೔
௜ (2)

Figure 7: The average difference in the x/y space between each
point for the resampled curves.

2.4 ENVELOP FUNCTIONS
The Hysteresis library also has functions that can be used
to extract data from the envelop of a Hystersis class. A

2168https://doi.org/10.52202/069179-0287

common task researchers will face is finding the backbone
of a hysteresis. Because the reversal points in an input
Hysteresis are automatically stored, the Hysteresis library
can be used to quickly extract the backbone of data
coming from a numerical or experimental hysteresis. A
function “getBackbone” can be applied to the curve in
question to extract the correct points from an input
Hysteresis. Figure 8 shows a backbone curve extracted
from a numerical model of a seismic damper [11]. By
default the getBackbone function will return all reversal
points, but the user can provide the number cycles each
step in the load protocol has to the function to skip certain
points, for example return only the first cycle.
In addition to the getBackbone function, a second
function called “getBackboneAvg” can be used. This
function extracts the positive and negative backbones of a
Hysteresis objects, takes the absolute value of each x/y
points, then an averages to the two curves.

Figure 8: The extracted backbone curve from a hysteresis.

A specialized feature of the Hysteresis package is
automatically fit an Equivalent Energy Elastic-Plastic
(EEEP) Curve to a Hysteresis. In this process, the
backbone of the hysteresis is first extracted using the
average backbone function and rules outlined in ASTM
2126 [2]. Figure 9 shows a typical use case, where a EEEP
curve is fit to the shearwall data from Figure 2.

Figure 9: Raw data from a shearwall test SPC1, overlayed with
the calculated back-bone curve and fitted EEEP curve.

3 CASE STUDIES
3.1 POST PROCESSING OF SHEAR WALL

DATA
In the following example, experimental data from a self-
centring CLT shear wall is postprocessed, then compared
to data coming from numerical models of the shear wall.
The CLT wall was approximately 4.5m tall, and a post-
tensioned steel tendon was used to apply an initial
compression force to the wall. Lateral force was applied
to the system in a number of cycles, and the force-
deformation of the wall was recorded. A detailed
discussion of the experimentation can be found in Ganey
[10], where it is labelled as TS1. Data for the numerical
model is generated in OpenSees [5] using a models similar
to those presented in Slotboom [11]. Figure 10 below
shows both models, where both data sets have been
“cropped”, so they both end at approximately 0.15m of
drift.
First the experimental data will be checked to see if
reversal have been correctly extracted properly. The
“plotLoadProtcol” method is used to clearly see which
peaks have been picked up, and can be seen in figure XX.
It’s noted that that not all of the reversal points alternate
between positive and negative, and one of the peaks has
a value similar to the prior peak. This incorrectly detected
point is removed by recalculating the reversal points using
a prominence filter that will removes reversal points
which do not change much compared to other points. The
updated plot can be seen in Figure XX.
Often data from numerical and experimental studies are
compared by plotting directly on top of each other, similar
to Figure 12. While this can be used to understand general
trends in the data, it is often difficult to tell how each curve
compares at different points in the analysis. Using the
hysteresis package, it’s possible easily extract specific
cycles of the curve for comparison. Two other metric can
easily be employed to see how similar each curve is at
different points:

- Cumulative energy observed by each model.
- A direct comparison of the “error” between each

curve.
Figure 13 shows a cycle of the produced by the Hysteresis
package, while Figure 14 and Figure 15 overview the
cumulative energy and error of each cycle respectively.
Looking at the Figure 14 it easily be observed that the
experimental model absorbed much more energy per
cycle than the numerical model did, something which
would have been difficult to observe from Figure 12
alone. Through Figure 13, it can be concluded that the
experimental hysteresis was asymmetric, and had an open
hysteresis that was absorbing energy, while the numerical
model was symmetric and had a purely elastic behaviour.
Noting quickly noting these differences could allow the
researcher make changes to their experimental setup or
numerical model if needed.

2169 https://doi.org/10.52202/069179-0287

Figure 10: The raw experimental hysteresis (top), and analysis
hysteresis (bottom).

Figure 11: A plot of detected peaks before (top) and after
(bottom) filtering.

Figure 12: A typical comparison of experiment/numerical data.

Figure 13: Experiment and analysis results compared for a
single cycle in the hysteresis.

Figure 14: The energy absorbed by each cycle in the hysteresis.

Figure 15: The average difference between the experiment and
numerical analysis.

2170https://doi.org/10.52202/069179-0287

3.2 PARAMETER FITTING USING GENETIC
ALGORITHMS

A second case study is presented where a nonlinear
numerical models are calibrated to match experimental
data using a genetic algorithm and the Hysteresis package.
As part of a testing program on self-centring shear walls,
Ganey tested a number of U-shaped Flexural Plate (UFP)
steel dampers. These dampers showed a stable response
with a full hysteresis until failure. It’s desired to make
numerical models of this damper, which can be applied to
model of the wall system.
The numerical models of the damper were developed in
with the Python implementation of OpenSees,
OpenSeesPy [6-7]. A zero-length element was used to
model the damper, with a steel02, a Giuffre-Menegotto-
Pinto steel material, applied to the element. Force was
applied to one of the zero length element’s nodes, and the
load protocol used matched the testing from Ganey’s
experiment. To match the damper to experimental results,
the OpenSees analysis was first parameterized to take in
set of values about the zero-length damper. The
significant parameters chosen to be varied were: Fy, the
yield strength; E0, the slope of the elastic tangent; b, the
strain hardening ratio between the elastic and plastic
tangent lines; and R0, CR1, and CR2, which are parameters
influence how the material transfers from it’s elastic to
plastic tangent lines.
Once the function was parameterized, the genetic
algorithm was set up to iterate through possible values
until an optimum was reached. The genetic algorithm
used a scheme where a pool of 30 genes was tested over
100 generations. Each gene consisted of the six
parameters used to . Initially parameters were randomly
generated, with the bounds for the parameters defined in
Table 1.
During each generation, all genes in the population were
tested by running a OpenSeesPy with those values, then
using the Hysteresis Compare function to quantify how
similar the experimental and analysis hysteresis was. In
each generation, 8 pairs of genes are chosen to pass on
their genes to the next round, and results that closely
matched experiment were more likely to be chosen. The
remaining 14 genes were filled up by randomly generated
values within the range of Table 1. Both crossover, where
information is swapped between pairs of genes, and
mutation, where genes are randomly changed were
considered. After 100 generations the analysis was ended,
and the optimal value was taken, and is presented in Table
1.

Table 1: Genetic algorithm parameters and solution.

Parameter Minimum Maximum Solution
Fy (kN) 0 32 23
E0 (kN/m) 0 4x106 2.9 x106
b 0 0.023 0.002
R0 0 29 4
CR1 0 1.4 0.57
CR2 0 .23 0.15

Figure 16 compares results from the experimentally tested
damper to the solution chosen by the genetic algorithm,
showing a close fit between the two hysteresis curves. The
Hysteresis package is small part of this process, but it
provides a crucial comparison between experiment and
numerical data, needed to tell which parameters are good,
and which are bad.

Figure 16: Experiment (blue) vs. Optimal solution (orange) for
the chosen genetic algorithm.

4 CONCLUSIONS
The Hysteresis Python package can be used to quickly
post process structural data, with an emphasis on
hysteretic data. The main structure and algorithms used in
the package was overviewed, highlighting the three key
types of curves (Monotonic, SimpleCycle, and
Hysteresis) used to represent structural data. These curve
classes all have built in functions for plotting and doing
numerical analysis on their data. These classes were
designed with customization in mind, and the user can
modify these methods by changing the underlying
functions in the environment. In addition to the basic
functionality, there also exists a number of functions that
can be used to extract parameters from an envelop of a
Hysteresis object, with some key functions being
“getBackbone”, and “compare”.
Two case studies are then presented, showing how the
hysteresis python package can be used to speed up data
processing, and enable different types of analyses. The
Hystersis package can be used to quickly compare
numerical and experimental data in a number of ways.
Also, by enabling two hysteresis curves to be compared,
the Hysteresis package allows for advanced algorithms or
machine learning models to work with Hysteresis dat.

ACKNOWLEDGEMENT
The Author would like to acknowledge data provided by
Fast+Epp and Professor Thomas Tannert from the
University of Northern British Columbia.

REFERENCES
[1] Krawinkler H, Parisi F., Ibarra L., Ayoub A., Medina

R, Development of a Testing Protocol for
Woodframe Structures, 2001

[2] ASTM E2126, Standard Test Methods for Cyclic
(Reversed) Load Test for Shear Resistance of
Vertical Elements of the Lateral Force Resisting

2171 https://doi.org/10.52202/069179-0287

Systems for Buildings, ASTM International, West
Conshohocken, PA, 2018

[3] Lowes L, Mitra, N, A Beam-Column Joint Model for
Simulating the Earthquake Response of Reinforced
Concrete Frames, Pacific Earthquake Engineering
Research Center, Report 2003/10, University of
Washington, 2003

[4] Filippou, F. C., Popov, E. P., Bertero, V. V., Effects
of Bond Deterioration on Hysteretic Behavior of
Reinforced Concrete Joints, Report EERC 83-19,
Earthquake Engineering Research Center.,
University of California, Berkeley. 1983

[5] Mckenna F, OpenSees: A Framework for Earthquake
Engineering Simulation, Computing in Science and
Engineering, 2011

[6] Zhu, Minjie, McKenna, Frank, Scott, Michael H.
OpenSeesPy: Python library for the OpenSees finite
element framework, 2018

[7] Drexler M, Dires S, Tannert T, Internal perforated-
steel-plate connections for CLT shear walls., In
proceedings of World Conference for Timber
Engineering, Santiago de Chile., 2021

[8] Virtanen P, Gommers R, Oliphant T/, Haberland M.,
Reddy T., Cournapeau D., Burovski E., Peterson P.,
Weckesser W., Bright J., van der Walt S., Brett M.,
Wilson J., Millman K., Mayorov N., Nelson R, Jones
E., Kern R., Larson E., Carey C., Polat I, Feng Y.,
Moore E., VanderPlas J., Laxalde D., Perktold J.,
Cimrman R., Henriksen I., Quintero E., Harris C.,
Archibald A., Ribeiro A., Pedregosa F., Mulbregt P.,
and SciPy 1.0 Contributors. (2020) SciPy 1.0:
Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17(3), 261-272.

[9] Hunter, J. D., Matplotlib: A 2D graphics
environment, computing in Science & Engineering,
9(3) 2007

[10] Ganey, R., Seismic Design and Testing of Rocking
Cross Lamiated Timber Walls, MASC. thesis, 2015

[11] Slotboom, C., Numerical Analysis of Self-centering
Cross-laminated Timber Walls, MASC thesis, 2020

2172https://doi.org/10.52202/069179-0287

