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ABSTRACT: Cross-laminated timber (CLT) joints play an essential role in ensuring co-working performance 
between CLT structural parts and dissipating seismic energy when structures suffer earthquake. The variation of 
mechanical properties of CLT joints would further affect the whole structural safety. Thus, evaluating and 
predicting the loading behaviors of CLT joints is critical. In this research, the authors proposed a recurrent neural 
network (RNN)-based method to predict monotonic loading behaviors of CLT joints. Two RNNs models were 
adopted, including long short-term memory (LSTM) and gated recurrent unit (GRU). Further, the prediction 
performance of two RNNs models was compared using statistical and mechanical property index. Prediction 
results demonstrate that both LSTM and GRU models can predict the failure stage of the CLT joint with R2 more 
than 0.90, S and T larger than 0.98. In the statistical index, the GRU model outperformed the LSTM model, 
although both models achieved the same accuracy in the mechanical property index. Overall, the RNN-based 
prediction method proposed in this study can provide an outstanding prediction performance for the monotonic 
mechanical behavior of CLT joints.
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1 INTRODUCTION 6

Cross-laminated timber (CLT), as an engineering timber 
product, has recently become more popular in high-rise 
building construction due to its low carbon footprint and 
excellent mechanical properties[1]. For high-rise CLT 
constructions, joints play important roles in structural 
safety. Thus, it is significant to understand and predict 
mechanical properties of CLT joints.

To obtain loading behaviors of the CLT joint, many 
mechanical researches have been conducted. He et al. 
tested 3-layer and 5-layer CLT panels for bending, shear, 
and compressive strength. The research revealed the 
various failure modes of CLT bending and shear 
specimens, suggesting that the numerical model of the 
CLT bending specimens can predict initial elastic 
stiffness Ke and ultimate load-resisting capacity Fmax [2]. 
Dong et al. taken research on the CLT shear wall anchored 
with tensile connections. The strength, stiffness, and 
ductility of sixty-eight groups of hold-down connections 
were investigated. The result demonstrated that the 
connections employed in their test could produce
reasonably high ductility while avoiding the metal bracket 
fracture failures [3].
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Mechanical tests can undoubtedly determine the loading 
behaviors of the CLT joint, but they are destructive and 
time-consuming. With the emerging improvement of 
artificial intelligence, machine learning algorithms have
been utilized in predicting loading behaviors non-
destructively and validated their feasibility. For example, 
Chen et al. evaluated and predicted damage degree of the 
bolt joint in glulam timber constructions via machine 
learning and received a high predicting accuracy of 96%
[4]. When utilized for data-driven prediction, recurrent 
neural networks (RNNs) have the advantage of boosting 
efficiency and extracting damaged information from data
as one of the machine learning algorithms [5]. In civil 
engineering, RNN models used to predict loading 
behaviors have made substantial progress. High accuracy 
prediction in hysteretic or constitutive behavior and 
nonlinear seismic response is made using RNN, such as 
long short-term memory (LSTM) and gated recurrent unit 
(GRU) [6]. However, no research towards predicting CLT 
joint loading behaviors has been published.

The purpose of this article is to predict the monotonic 
loading failure procedure of the CLT joint. Section 2 
describes the mechanical tests of the CLT joint and 
explains the theory of the RNN models utilized in this 
paper. Section 3 displays the RNN model parameters and 
prediction result evaluation indexes. Section 4 and 5 
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contain the discussion and conclusion of the prediction 
results.

2 METHODOLOGY
Experiments were carried out in the methodology to 
determine the mechanical properties of the CLT joint and 
the materials. The tested values were then trained by two 
RNN models to predict the failure stage in the loading 
procedure. Finally, multiple indexes were used to evaluate 
the predicted load value. Figure 1 depicts the 
methodology's flowchart.

Figure 1: Flowchart of the methodology

2.1 MATERIALS AND PROPERTIES
The CLT panel was made with Canadian hemlock lumber 
and had a width of 300 mm and a height of 400 mm. Each 
panel was fabricated with 35/35/35 mm layups and a total 
thickness of 105 mm. According to the formal research, 
the connection used in this study employed energy-
consuming rubber to reduce the interlayer displacement 
and improve the anti-seismic property, as shown in figure 
2 [7]. The loading procedure in Hassanieh and Zhou's 
study included CLT joint failure with steel panel yielding, 
self-tapping screw cutting, and CLT panel broking [8,9]. 

So the mechanical properties of the steel panel, self-
tapping screws, and CLT panels would influence the 
performance of the CLT joint. The mechanical properties 
of timber, self-tapping screws, and steel are tested 
according to the relevant standards and listed in table 1.

Figure 2: Connection with energy-consuming rubber

Table 1: Value of material properties

Material properties Value
Shear stiffness of rubber 0.6 GPa
Damping ratio of rubber 0.2
Number of self-tapping screws 25
Shear stiffness of self-tapping screws 0.31 GPa
Tensile strength of steel 0.32 GPa
Elastic module of timber 15.31 GPa
Shear module of timber 1.17 GPa
Moisture content of timber 10.39%

2.2 TEST SETUP AND PROCEDURE
The monotonic loading approach used a two-stage 
displacement-control method (preloading procedure and 
formal loading procedure) according to ASTM D5652
[10]. The load was raised to 10% of the estimated peak 
load value during the preloading procedure, then unloaded
after 2 minutes. In the formal loading procedure, the load 
was stopped when the joint reached the peak load or the
displacement of 60 mm. Throughout the procedure, the 
loading speed is 1.5 mm/min. The CLT joint specimen 
and loading equipment are shown in figure 3.

Figure 3: CLT joint specimen and loading equipment

2.3 TEST RESULTS
Figure 5 depicts the load-displacement curve of the 
monotonic loading procedure. The entire procedure, as 
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shown by the curve, is divided into three stages: elastic, 
plastic, and failure.
The wood fibers began to cut and crackle when the 
displacement reached 3 mm, and the joint entered the 
plastic stage. Following that, a part of the steel panel of 
the connection broke, causing the load suddenly decrease 
at the displacement of 33 mm, indicating that the 
procedure had entered the failure stage. The load was then 
supported by the energy-consuming rubber, the remaining
steel panel, and the self-tapping screws. Finally, at the 
displacement of 38 mm, shear failure of the self-tapping 
screws resulted in the joint breaking and the load dropping
precipitously.

Figure 4: Load-displacement curve

2.4 RECURRENT NEURAL NETWORKS
Recurrent neural networks (RNNs) have been widely 
adopted as a kind of machine learning algorithm to predict 
sequential data [11]. One of the most widely used RNNs 
models is long short-term memory (LSTM). Long-term 
dependencies in the LSTM model are improved over
traditional RNN models due to the gate functions
introduced in the cell structure. Compared with the LSTM 
model, the gated recurrent unit (GRU) model has one 
fewer gate function, which may reduce the computational 
burden [12]. The LSTM model has been utilized to predict 
fracture growth rates of L-shape concrete specimens as 
well as the dynamic response of the nonlinear structure
[13,14]. The GRU model has also been used in structural 
health monitoring (SHM) of civil structure buildings [15]. 
As a result, both the LSTM and the GRU models are
effective methods for predicting loading behavior in civil 
engineering.

2.4.1 LSTM model
The LSTM model was initially introduced in 1997 and has 
received much attention in sequence prediction [16]. As 
shown in figure 3, variable weight matrixes are 
implemented by adding the input gate (It), forget gate (Ft), 
and output gate (Ot) in LSTM. Each gate includes a 
neural network layer and a pointwise multiply operation: ܫ௧ = ௧𝑊௫௜ܺ)ߪ + ௧ିଵ𝑊௛௜ܪ + ܾ௜) (1)𝐹௧ = ௧𝑊௫௙ܺ)ߪ + ௧ିଵ𝑊௛௙ܪ + ௙ܾ) (2)௧ܱ = ௧𝑊௫௢ܺ)ߪ + ௧ିଵ𝑊௛௢ܪ + ܾ௢) (3)
where Xt means input. Ht-1 means the hidden state. is the 
activation function. W means the weight matrix, the first 
subscript of W refers to the input, and the second subscript 

refers to the gate. b means bias, and the subscript of b
refers to the gate.

Candidate memory 𝐶ሚ௧ is expressed as:𝐶ሚ௧ = 𝑡𝑎𝑛ℎ(ܺ௧𝑊௫௖ + ௧ିଵ𝑊௛௖ܪ + ܾ௖) (4)

Memory cell Ct is expressed as:𝐶௧ = 𝐹௧ ٖ 𝐶௧ିଵ + ௧ܫ ٖ 𝐶ሚ௧ (5)

Hidden state Ht is expressed as:ܪ௧ = ௧ܱ ٖ tanh(𝐶௧) (6)

Figure 5: Frame diagram of LSTM models

2.4.2 GRU model
To decrease the computation burden, the LSTM model 
was improved into the GRU model with some cell states 
improved [17]. As shown in figure 6, the three gates in the 
LSTM model are integrated into the reset gate (Rt) and the 
update gate (Zt) in the GRU model:𝑅௧ = ௧𝑊௫௥ܺ)ߪ + ௧ିଵ𝑊௛௥ܪ + ܾ௥) (7)ܼ௧ = ௧𝑊௫௭ܺ)ߪ + ௧ିଵ𝑊௛௭ܪ + ܾ௭) (8)
where refers to the activation function, Xt means input, 
Ht-1 means the hidden state, W represents the weight refers 
to different inputs and gates, b refers to bias.

The candidate hidden state ܪ෩௧ is expressed as:ܪ෩௧ = tanh(ܺ௧𝑊௫௛ + (𝑅௧ ٖ ௧ିଵ)𝑊௛௛ܪ + ܾ௛) (9)

The hidden state Ht is expressed as:ܪ௧ = ܼ௧ ٖ ௧ିଵܪ + (1 − ܼ௧) ෩௧ܪٖ (10)

Figure 6: Frame diagram of GRU models

3 PREDICTION SETTINGS AND 
EVALUATION INDEX

3.1 PARAMETER SETTINGS
The load-displacement data obtained from the monotonic 
loading test are time-sequential. The mechanical testing 
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machine collected 300 data points per minute, fro a total 
of 8207 data points in the dataset. At that point, each data 
point contains the corresponding load, displacement, and 
material parameter. Although some parameters, such as 
the mechanical properties of CLT and steel, would change 
when entering the plastic stage, this study assumes that 
these material parameters would not change for 
simplification. In both LSTM and GRU models, the 
number of neurons is 8. The proportions of training and 
validation sets are 0.8 and 0.2, respectively. 
 
In this research, rectified linear unit (ReLU) was adopted 
as the activation function to avoid the problem of 
disappearing gradients and to speed up training. 
Explained by equation (11) and figure 7: 𝑓௫ = max (0, 𝑥) (11) 
where x is the output value from the previous layer. 
 

 
Figure 7: Function image of ReLU 
 
Mean square error (MSE) is taken as the loss function in 
order to facilitate convergence: 𝑀ܵܧ =

σ ௜ݕ) − 𝑥௜)ଶ௡௜ୀଵ 𝑛  (12) 

where xi means real value, yi means predicted value, n is 
the number of data. 
 
Adaptive momentum is adopted to optimize. Furthermore, 
early stopping is employed for defending overfitting. 
Other parameter settings are listed in Table 2. 
 

Table 2: Parameter settings in RNN models 

Parameter Value 
Time step 40 
Dropout 0.1 
Epoch 100 
Validation split 0.1 
Batch size 32 

 
3.2 EVALUATION INDEX 

This paper presents two kinds of performance 
evaluation indexes (statistical and mechanical property 
indexes). Statistical indexes assess the fitness between 
predicted and real monotonic behavior obtained during 
the test. Mechanical property indexes are proposed as a 
mean of estimating predicted mechanical properties. 

3.2.1 Statistical index 
The statistical index contains mean absolute error (MAE), 
root mean square error (RMSE), and coefficient of 
determination (R2). MAE and RMSE both indicate the 
error to the real value. Lower values of MAE and RMSE 
mean better prediction performance. The degree of fitness 
between predicted and real values is donated by R2. When 
R2 is close to 1.00, the prediction is more accurate. Three 
indexes are listed in equation (13-15): 𝑀𝐴ܧ =

σ ௜ݕ| − 𝑥௜|௡௜ୀଵ 𝑛  (13) 

𝑅𝑀ܵܧ = ඨσ ௜ݕ) − 𝑥௜)ଶ௡௜ୀଵ 𝑛  (14) 

𝑅ଶ = 1 −σ (𝑥௜ − ௜)ଶ௡௜ୀଵσݕ (𝑥௜ − 𝑥ҧ)ଶ௡௜ୀଵ  (15) 

where xi means real load value,x means mean real load 
value, yi means predicted load value, n is the number of 
data in the load-displacement curve. 
 
3.2.2 Mechanical property index 
It is significant to evaluate the mechanical properties of 
the predicted results, which represent the loading behavior 
of the actual experiment. The broken steel panel and self-
tapping screws of the CLT joint caused a sudden drop in 
load. As a result, the load value at these two points is 
adopted to evaluate the mechanical properties during the 
failure stage. 
 
Based on the formal research [7], this study takes the 
coefficient of peak steel panel load S as the normalized 
value of the predicted peak steel panel load based on the 
real value: ߣௌ = 𝐹ௌ,௣௥௘/𝐹ௌ,௥௘௔௟  (16) 
where FS,pre means the predicted peak steel panel load, the 
FS,real means the real peak steel panel load. 
 
The coefficient of peak self-tapping screws load T is 
similar to S: ்ߣ = 𝐹்,௣௥௘/𝐹்,௥௘௔௟  (17) 
where FT,pre means the predicted peak self-tapping screws 
load, the FT,real means the real peak self-tapping screws 
load. 
 
The closer S and T get to 1.00 representing a higher 
prediction accuracy. 
 
4 RESULTS AND DISCUSSION 
Figure 8 depicts the loading behaviors predicted by the 
LSTM and GRU models. Only the failure procedure is 
predicted. Load curves predicted by the LSTM and GRU 
models are both fit closely to the real load curve. Table 3 
lists three statistical evaluation indexes. Both MAE and 
RMSE of the GRU model are lower than LSTM model’s, 
while R2 is higher, indicting that the GRU model's 
predicted results are statistically more precise than the 
LSTM model's. 
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Figure 8: Real and predicted load-displacement curve

Table 3: Statistical index

Model
Statistical index LSTM GRU

MAE (kN) 2.14 0.67
RMSE (kN) 2.58 1.62
R2 0.91 0.97

Table 4 lists the peak loads predicted by the LSTM and 
GRU models for the steel panel and self-tapping screws, 
respectively. S and T are calculated according to the real 
and predicted load values. The S and T of the LSTM and 
GRU model are both higher than 0.98, which are close to 
1.00. The LSTM model achieves S of 0.99, which is 
higher than the 0.98 predicted by the GRU model. While
the values of  T are the opposite. The high value of 
mechanical property indexes demonstrates the precise 
prediction ability of LSTM and GRU models.

Table 4: Mechanical property index

Model
Mechanical 
property index

Real LSTM GRU

FS (kN) 99.50 98.80 97.20
FT (kN) 94.61 92.30 94.20

S -- 0.99 0.98
T -- 0.98 1.00

As stated in section 2.4, the GRU model has a lower 
computational burden than the LSTM model. The LSTM 
model consumed 14 seconds and 92 milliseconds in this 

study, while the GRU model took 14 seconds and 54 
milliseconds. Given that the number of predicted data 
points in this monotonic loading test is 1641, the GRU 
model consums only 38 milliseconds less than the LSTM 
model. In case of tests containing a large amount of data 
points, such as hysteretic loading tests or other complex 
and time-consuming tests, the computation reduction and 
time-saving effect of the GRU model will be more 
obvious. 

5 CONCLUSIONS AND PROSPECT
The authors proposed an RNNs-based prediction method 
for the failure procedure of CLT joint under monotonic 
loading in this paper. Statistical indexes (MAE, RMSE, 
and R2) and mechanical property indexes ( S and F) are 
used to evaluate the predicted load-displacement curves..
The MAE of the LSTM and GRU model are both no 
higher than 2.14 kN, while the RMSE of the two RNN 
models is no higher than 2.58 kN, and R2 is greater than 
0.91. The values of the three statistical indexes indicated
that the error between the predicted value and real value 
is small. Furthermore, both S and T of the LSTM and 
GRU model are greater than 0.98, indicating that the two 
models predict the peak load of the steel panel and self-
tapping screws of the joint with a high accuracy . The high 
value of the prediction indexes demonstrates that both the 
LSTM and GRU models accurately predicted the failure
procedure of CLT joint under monotonic loading 
precisely, with the GRU model outperforming the LSTM 
model in terms of statistical indexes.

Prediction accuracy demonstrated the feasibility and 
effectiveness of using the RNN-based method to predict 
the failure procedure of CLT joints, providing a reference 
for CLT construction mechanical properties research.

The mechanical properties of the materials in the RNN 
model, on the other hand, remained constant throughout 
the loading procedure, whereas the stress varies with 
strain during the actual loading procedure. Therefore, in 
the future work, the constitutive model of the materials 
would be considered for more accurate physics expression 
and prediction results.
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