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ABSTRACT: Naturally occurring strength-impacting defects in timber, such as grain deviation and knots, are common 
in commercial timber. Additionally, defects caused by the environment such as fungal decay and termite damage are also 
attributed to strength reduction which can lead to the failure of structural timber. This work provides a demonstration, of 
applying Uniform Manifold Approximation and Projection (UMAP), a novel feature extraction tool, for the purpose of 
identifying such defects in structural timber, with the use of an ultrasonic-based examination of the test specimens. Two 
case studies are presented, the first demonstrating UMAP’s capability in identifying grain deviation and knots in timber, 
and the second, showing its ability to distinguish healthy sections from that with known internal damage. In both case 
studies, 54kHz pressure waves were transmitted transversely through pre-defined sections of known damage state and 
were analysed with UMAP – producing highly favourable clustering and data separation between defect states, compared 
to wavelet packet decomposition, a state-of-the-art signal analysis framework. The key contributions of the study are –
UMAP is successfully applied for the first time for damage identification in commercial bare timber, and it is 
demonstrated to be able to identify signals sent through sections of different defect types. This demonstration in this area 
opens the door to future works, which may then scrutinise in-depth material-specific factors for the aim of defect 
characterisation in timber and timber composites using UMAP.
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1 INTRODUCTION 456

Strength-reducing defects are highly common in 
commercial timber and are either naturally occurring at 
growth, or induced due to the service environment or 
loading. Some examples of these defects include grain 
deviations and knots, associated with the former, and that 
related to termite damage, fungal decay and splitting 
damage associated with the latter. Additionally, local 
splitting failure caused by the rupturing of in-service
structural timber due to higher loads also leads to the 
creation of weak zones. These weak zones incited by these 
defects have been shown to often be the initiation point of 
further damage [1], and hence their detection while in-
service can be used to inform rehabilitation decisions. 

Non-destructive testing (NDT) methods used for the 
purposes of assessing defects in timber have evolved over 
the last few decades. Current ultrasonic-based NDT 
techniques adopted on timber [2] to investigate these 
defects, face challenges in the signal processing stage. 
Wavelet packet decomposition (WPD) is one of the
leading current signal processing approaches adopted for 
these purposes in the literature [3]. In [4], the structural 
integrity of timber utility poles was assessed using WPD, 
and their embedment depth has also been investigated 
using similar techniques [5]. In these studies, it was found 
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that its chief challenge was parameter calibration. In 
WPD, different hyperparameters (levels of 
decomposition, choice of mother wavelet and filter 
functions) need to be trialled in order to attain separation 
of data between healthy sections and defective sections –
a time-consuming and multi-variate process.

In this paper, a novel dimensionality reduction and feature 
extraction tool, Uniform Manifold Approximation and 
Projection (UMAP) [6], is applied for the first time, for 
the purposes of timber defect identification. The study is 
presented in two case studies. In the first case study, a 
timber specimen exhibiting multiple states including
healthy sections, a section with visible grain deviation, 
and one with a visible knot are tested ultrasonically. The 
choice to adopt a test specimen with visible defects is 
justified in the study via the following consideration – the 
received signal is a function of the medium it was 
propagated through, regardless of the external visibility of 
the defect. Hence, the same outputs can be drawn from a 
test specimen with identical defects that were not 
externally visible. Accordingly, through visual 
inspection, the ground truth of the defect state of the 
specimen can be ascertained and thereafter compared with 
the output of the adopted signal analysis techniques, 
serving as an evidence-based mechanism in this study to 
demonstrate the efficacy of the algorithm. 
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54 kHz ultrasonic pressure waves (P-waves) are 
transmitted between the sections transversely, and the 
signals are analysed first using WPD. Thereafter, the 
signals are comparatively analysed using UMAP, with the 
differences between the two methods examined and the 
superiority of the latter being demonstrated. In the second 
case study, a test specimen exhibiting healthy sections is 
adopted, with a void fabricated internally in the middle, 
creating loss of material – serving as a proxy for a piece 
of timber that has experienced interior termite damage, 
fungal decay or internal splitting damage. 54 kHz P-
waves were transmitted transversely through pre-defined 
discretised locations in the timber. Similar to the first case 
study, the signals were analysed with WPD first, and 
thereafter compared with a UMAP analysis, their results 
further discussed.  
 
2 THEORETICAL BACKGROUND 
The theoretical background behind the two signal analysis 
approaches compared in this study is briefly recalled in 
the succeeding sections. 
 
2.1 WPD METHODOLOGY 
WPD is a technique used to fundamentally capture the 
frequency characteristics of the assessed signal while 
time-domain information is still retained [3]. A two-stage 
process is used in the decomposition: (1) The signal is 
processed with a wavelet transform, wherein features of 
the signal similar to the adopted mother wavelet are 
extracted at a particular scale and time. The mother 
wavelet is scaled and translated over the input signal with 
the aid of discrete scaling and translation parameters in 
the transform function. This wavelet transform is recalled 
in Equation 1. Thereafter; (2) A pair of low-pass filters 
(LPF) and high-pass filters (HPF) are used to conduct sub-
band coding on the signal to delineate time-frequency 
features, in which the approximate and detail wavelet 
coefficients are obtained, respectively. The LPF and HPF 
formulas are recalled in Equation 2 and 3. 
 

 (1) 

where G = wavelet coefficients,  mother wavelet 
function, k = scaling parameter and j = translation 
parameter. 
 

 (2) 

 

 (3) 

where f = input signal, c = low-pass filter impulse 
response factor, u = high-pass filter impulse response 

factor, t = translation parameter and v = subsampling 
parameter.  
 
The level of decomposition is an inherent hyperparameter 
to be chosen when conducting the analysis.  
Representations of both the two-level and three-level sub-
band coding schema are presented in Figure 1.  
 

 

Figure 1: Illustration of the sub-band coding schema for a 2 
and 3-level wavelet packet decomposition. 

Apart from the level of decomposition, another key 
hyperparameter to select would be the mother wavelet, 
with a large variety of popular wavelet types adopted in 
the literature [7-10]. In this study both the Daubechies’ 
‘db2’ and ‘db4’ wavelets were investigated, and both 2 
and 3-level decompositions were conducted, their results 
assessed in the succeeding sections.  
 
2.2 UMAP METHODOLOGY 
UMAP as an algorithm exists in the dimensionality 
reduction space, wherein the signal is represented as a 
point in a multi-dimensional space whose coordinates 
correspond to its amplitudes. UMAP then reduces the 
dimensions of the space to an easily comprehensible 
output graph. 
 
The aim of the algorithm is to cluster signals with similar 
characteristics together and accurately and distinctively 
separate those with differing characteristics. It does so in 
two main stages. The first stage involves constructing the 
data’s high dimensional topology as simplicial 
complexes. The Nerve theorem is applied, such that each 
signal is established as a 0-simplex and connections are 
made between each closely related signal – thereby 
approximating the topology of the high dimensional 
distribution of signals. These connections are made 
through the following process: (1) Spheres of varying 
radii are created around each signal based on density, 
through a fuzzy cover, wherein connections are formed 
with signals of intersecting radii. Mathematically, this is 
accomplished by first constructing the high dimensional 
signals on a Riemannian Manifold and establishing the 
spheres around each signal with a unit size. The required 
variable radii property is achieved through the 
homeomorphisms of these unit sized spheres on the 
manifold and their counterparts in Euclidian space, the 
latter allowing for such a property via varying notions of 
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distance. To maintain the same number of neighbouring 
signals allowed around each signal, fed into the algorithm 
as a hyperparameter, smaller notions of distance are used 
in Euclidian space for regions in the topology with higher 
density, and vice versa. (2) For efficient processing of the 
connections for each signal, concepts of Random 
Projection Trees [11] and Nearest Neighbour Descent [6] 
are utilised. (3) Connections between signals are 
mathematically represented through connection 
probabilities, considered via a ‘neighbouring’ matrix 
which holds each individual connection probability 
between signals in the original high dimension. In some 
regions of the topology, signals could have multiple 
connection probabilities associated with neighbouring 
signals in different metric spaces, due to the overlap of 
multiple spheres, and hence, distances of notion. 
Probability theory is utilised to condense these multiple 
connections to a single ideal connection between pairs of 
signals, by considering the combined probability of all 
connections between the signal pair.  
 
In the second stage of the algorithm, the higher 
dimensional simplicial complex is projected to an easily 
comprehendible lower dimensional space. This done 
through a cross-entropy process, applied on the 
complexes, to cluster signals of similar characteristics 
together, and separate those with dissimilar features, 
projecting the topology into a two-dimensional graph [6]. 
The former, considered an attractive component between 
signals in the operation, is a commonly found trait of 
modern dimensionality reduction tools. UMAP’s strength 
lies in the latter component of the cross-entropy process, 
considered a ‘repulsive’ operation, wherein the requisite 
distances between dissimilar signals are established. This 
results in the final output graph attained at the end of the 
algorithm. 
 
The key hyperparameters to be calibrated for the 
algorithm are: (1) ‘k’ nearest neighbours – the number of 
nearby signals allowed for a given signal in the local 
metric space; (2) Minimum distance – referring to that 
between nearby signals in the final output. This 
hyperparameter is known to assist with the visualisation 
and cluster depiction; (3) Distance model – chosen for the 
mathematical calculation of distance between each signal.  
 
3 ULTRASONIC TESTS ON TIMBER 

SPECIMENS 
3.1 CASE STUDY 1 
To investigate the versatility of the algorithm in structural 
defect detection and localisation in plain timber, the 
following test was conducted. The test specimen features 
an externally visible knot and grain deviation. 
 
3.1.1 Specimen description 
A 300mm long piece of machine-graded Australian 
radiata pine (MGP10), 90mm in width and 45mm in 
thickness was utilised, shown in Figure 2. Figure 2 also 
shows a schematic of the visible features in the test 

specimen. The knot in the specimen can be considered 
‘dead’ due to a visible loss of fibre continuity between 
itself and the surrounding pieces of wood. The specimen 
was discretised into 4 sections. The centre of the knot is 
aligned with Section 4, and the grain direction change due 
to the presence of the knot is also within Section 3. 
Sections 1 and 2 did not show any visible signs of defects 
in the timber and featured longitudinally aligned grains - 
hence being classified as healthy sections. 
 
 

 

Figure 2: Machine Graded Pine (MGP10) specimen (left) and 
schematic expressing defects (right). 

3.1.2 Time signals 
P-waves of 54 kHz were transmitted transversely through 
the specimen, parallel to its 45mm thickness, in the 
perpendicular to grain direction. At each section of the 
specimen, 10 signals were transmitted with the transmitter 
on one end and the receiver on the other, thereafter having 
their positions swapped and measuring another 10 signals 
- amounting to a total of 20 signals at each measured 
section, summarised in Table 1. 
 
Table 1: Case Study 1 - Section information summary 

Section Defect Status Number of signals 
1 Healthy 20 
2 Healthy 20 
3 Grain Deviation 20 
4 Knot 20 

Total number of signals 80 
 
Figure 3 illustrates a sample of the ultrasonic signals sent 
through the timber specimen. The vertical axis represents 
signal energy, and for clearer visualisation, they are 
translated vertically with respect to each other. From 
visual inspection of the signals, the presence of the knot 
in Section 4 causes the most disruption to the received 
signal relative to the grain deviation in Section 3, when 
benchmarked against the signals from the healthy sections 
(1 and 2). The signal from Section 4 exhibits significantly 
lower wave energy than that of healthy sections, while the 
signal from Section 3 has similar wave amplitudes.  
 
Prior studies have been conducted using stress waves in 
timber, wherein recorded phase velocities of signals 
transmitted transversely (perpendicular to grain) are 
smaller to that transmitted longitudinally (parallel to 
grain) - showcasing the significant effect that grain 
direction has on phase velocities [12,13]. 
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Figure 3: Sample of time signals measured for each section in 
Case Study 1. The vertical axis represents signal energy, 
although each signal has been translated vertically for clarity. 
The signals are presented in order, with Section 1 featured as 
the lowermost and Section 4 as the uppermost signal. 

Where phase velocities are concerned in this test, Sections 
1 and 2 exhibited similar P-wave speeds, with an average 
of 1660 m/s. However, in Section 3 with the presence of 
grain deviation, the average recorded phase velocity was 
1838 m/s. In Section 4, wherein the largest disruption of 
grain direction was visible with the presence of the knot, 
the recorded average phase velocity of 2340 m/s was the 
fastest of all sections. This feature is in-line with findings 
from the aforementioned literature [12,13] demonstrating 
that in Sections 3 and 4, the grains were deviating in such 
a way that they were becoming more aligned with the 
transmitted signals, amounting to a parallel to grain 
transmission compared to the perpendicular to grain 
transmission conducted in Sections 1 and 2. This is also 
complementary with visual inspection of the test 
specimen shown in Figure 2.  
 
The signal window used for the analysis with UMAP 
needs to be calibrated prior to use. P-waves exhibit higher 
phase velocities than surface waves, the latter being a 
component of ultrasonic signals that are often found to 
succeed the former [14]. As evidenced in Figure 3, it can 
be seen that the P-wave component of the signal cannot 
be easily identified due to significant overlap with the 
surface wave components. As such, beginning from the 
largest recorded arrival time from the 80 signals, the upper 
bound of the signal window used for the analysis needs to 
be calibrated in order to fine tune the results obtained, 
while the lower bound of the signal window is set at the 
start of the signal – although it should be noted that the 
sensitivity of the output of UMAP to this calibration is 
low. 
 

3.1.3 Wavelet analysis results and discussion 
Firstly, all 80 signals measured in Case Study 1 were 
analysed using WPD. The two key hyperparameters of 
WPD to be trialled are levels of decomposition, and 
mother wavelet type. For this study, both 2 and 3 levels of 
decomposition are conducted, and both the Daubechies' 
'db2' and 'db4' mother wavelets have been trialled in this 
study.  
 
2-level decomposition 
Once both the detail and approximate wavelet coefficients 
are extracted, following Equation 1 to 3, their wave 
energies are then calculated. To encapsulate the outputs of 
the analysis in a single graph, a matrix scatter plot can be 
used – allowing the relationships of the wave energies of 
the decomposed signals between frequency band pairs to 
be expressed. This is represented in the off-diagonal plots 
presented in Figure 4, making any dependencies between 
the frequency band pairs easily discernible. The 
distribution of the wave energies of the decomposed 
signals within the associated frequency band is plotted on 
the diagonal plots in Figure 4, allowing single variable 
dependence to be ascertained.  
 
 

 
Figure 4: Case Study 1 - Scatter plot of the signal energies in 4 
frequency bands - decomposition level 2 and 'db2' mother 
wavelet. 

Some of the scatter plots shown in Figure 4 demonstrate 
some separation between data from Section 4 (knot) and 
the other sections. In particular, plots comparing 
frequency bands (2,1 – 2,0) show a promising separation 
of the majority of the wave energies of Section 4 from the 
rest, although notably there is still some overlap of the 
wave energies of some decomposed signals of Section 4 
and healthy sections (1 and 2). The same can be said about 
the overlap of data from Section 3 and that of healthy 
sections (1 and 2). Investigating the other off-diagonal 
scatter plots, it can be seen that no distinct separation 
between data from the sections of each defect type and 
that of healthy sections can be discerned. The distribution 
for the wave energies of the individual studied frequency 
bands computed in each diagonal plot also illustrates 
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some separation between the section categories, with 
frequency band (2,1) showcasing the most promise - 
albeit significant overlap between the studied section 
categories is still present, with no high-confidence 
separation between the data. 
 

 
Figure 5: Case Study 1 - Scatter plot of the signal energies in 4 
frequency bands - decomposition level 2 and 'db4' mother 
wavelet. 

A similar scatter plot to the 'db2' decomposition can be 
plotted using the 'db4' mother wavelet, as in Figure 5 – the 
outcome of this analysis also being similar - showing a 
low sensitivity of the final output to changes in the 
Daubechies' mother wavelet type.  Although some 
separation in signal energies corresponding to frequency 
band pairs (2,1 – 2,0) can be seen, none of the off-diagonal 
scatter plots depict a high-confidence separation of wave 
energies related to the desired section categories. The 
distributions of each frequency band plotted on the 
diagonal also feature large portions of overlap between 
signal energies of different section categories, also 
amounting to an undesirable outcome. Ultimately, the 
analysis using wavelet packet decomposition at 2 levels 
of decomposition with both the 'db2' and 'db4' mother 
wavelet does not achieve the desired data separation and 
clustering required to be able to tell the studied sections 
apart based on defect status. 
 
3-level decomposition 
Similar to the 2-level decomposition, a 3-level 
decomposition can be conducted on the transmitted 
signals. As expressed in Figure 1, at the third level of the 
sub-band coding schema, 8 frequency bands can be 
analysed, identified from (3,0) to (3,7).  
 
When comparing the wave energies of the 'db2' wavelet 
decompositions of all 80 measured signals amongst the 8 
frequency band pairs in the scatter plot matrix shown in 
Figure 6, it is clear that the majority of the frequency band 
pair plots do not show adequate separation between the 
section categories - a similar result being obtained when a 
decomposition with the 'db4' wavelet is done, shown in 

Figure 7. Notably, in Figure 6, some separation of the 
wave energies of Section 4 is seen, away from that of 
Sections 1, 2 and 3 in frequency band pairs (3,1 - 3,0) and 
(3,2 - 3,0). 
 

 
Figure 6: Case Study 1 - A sample set of decomposed signals 
over 8 frequency bands with mother wavelet 'db2'. 

 
Figure 7: Case Study 1 - A sample set of decomposed signals 
over 8 frequency bands with mother wavelet 'db4'. 

However, the distinction of wave energies in Section 3 
from Sections 1 and 2 is not sufficient in these frequency 
band pairs. This feature is missing when studying the 
scatter plot output of the 'db4' decomposition (Figure 7), 
revealing the increased sensitivity of the output to the 
Daubechies' mother wavelet choice at this level of 
decomposition. 
 
In summary, the preceding investigation could not yield a 
high-confidence separation between the signals 
transmitted through healthy sections and defective 

798https://doi.org/10.52202/069179-0109



 

 

sections. Moreover, no separation between signals sent 
through sections of varying defect types was discernible.    
 
3.1.4 UMAP analysis results and discussion 
The UMAP algorithm was also used to analyse the 
signals. It should be noted that for the UMAP analysis, the 
same signal window as that used in WPD was adopted. 
The key hyperparameters needed to be set were: (1) target 
embedment dimension, (2) k-nearest neighbours, (3) 
minimum distance, and (4) distance model. (1) refers to 
the dimension of the final output graph – a value of 2 
dimensions being selected for simplicity of 
comprehension of the final results, additionally allowing 
for an easy comparison of the UMAP output with that of 
WPD demonstrated in the preceding sections. (2) and (3) 
work to control the level of clustering of the signals, 
changing how condensed or sparsely spaced the data 
points are, wherein the former sets the number of 
neighbouring signals which can be associated with a given 
signal, and the latter controls the minimum separation 
between neighbouring signals in the output graph. For this 
investigation, (2) was set at a value of 0.07 and (3) was set 
to 15 as they provided the most distinct clustering – 
although it should be noted that the sensitivity of the final 
output on these parameters is very low. (4) refers to the 
model used to express the distance between each signal, 
with many options available in the literature [15-18]. In 
this study, the Chebyshev distance model [18] was 
adopted, due to the highly favourable results obtained 
with this choice.  
 

 
Figure 8: Case Study 1 - UMAP two-dimensional (2D) 
reduction output. 

The UMAP results are shown in Figures 8 and 9. There is 
strong clustering of points with respect to each section. 
Clusters from both Sections 3 and 4 are separated from 
that of 1 and 2. Notably, wave behaviour in Section 3 is 
not clustered together with Section 4, showing the 
separation between a defect location characterised by 
grain deviation within a part of the specimen which is still 
intact with fibre continuity, and a defect location 
characterised by the centre of a dead knot. 

 
Figure 9: Case Study 1 - UMAP two-dimensional (2D) cluster 
topology. 

A schematic of the relevant visual features of the 
specimen is shown in Figure 2. The outcome is highly 
desirable, especially since the results are not as sensitive 
to hyperparameter calibration, compared to the wavelet 
approach. The results are congruent with visible findings 
of the timber specimen, clearly distinguishing regions 
with material defects from those without any. The results 
demonstrate UMAP's capability of ultimately 
distinguishing between sections of sound wood and those 
with strength-reducing characteristics. Additionally, its 
ability to separate sections experiencing different types of 
strength-reducing characteristics is highly useful in 
structural health monitoring applications. 
 
3.2 CASE STUDY 2  
To examine the behaviour of both WPD and UMAP for 
defects caused by fungal decay, termite damage or 
splitting damage – ultimately eventuating in fibre 
discontinuity or voids in the centre of the cross-section, 
Case Study 2 was developed.  
 
3.2.1 Specimen description 
A piece of machine-graded Australian radiata pine 
(MGP10), similar to that used in Case Study 1 was 
employed. The specimen features a 190mm width and 
45mm thickness. The specimen was carefully selected, 
such that no grain deviation or knots were present, with 
only longitudinally aligned grains visible – signifying a 
standard healthy section of timber.  
 
3 sections were devised for the case study, a picture of the 
test specimen and its schematic shown in Figures 10a and 
10b, respectively. Sections 1 and 2 are located within the 
healthy zone of the timber. To simulate the loss of 
material and fibre discontinuity due to the aforementioned 
defects, a hole was drilled at the centre of the cross-
section, with a 6mm drill bit, as shown in Figures 10a and 
10b. This method of simulating either splitting damage or 
that due to decay or termite attack is justified with two 
considerations: (1) Termite attack and fungal decay have 
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been shown to manifest as a material loss with the creation 
of voids within structural timber [19]; (2) Splitting 
damage manifests as longitudinally aligned cracks along 
the length of the timber element, with similar creation of 
voids used to artificially recreate such damage, as utilised 
in previous studies [20]. 
 

       
Figure 10a: Case Study 2 – Test specimen 

 
 

 
Figure 10b: Case Study 2 – Specimen schematic 

A point directly aligned over the position of the created 
void was marked as Section 3, representing the fabricated 
defective section.  
 
3.2.2 Time signals 
54 kHz P-waves were transmitted over each of the 
sections, similar to the process adopted in Case Study 1. 
10 ultrasonic signals were transmitted with a given 
transmitter and receiver position, and another 10 were 
recorded with their positions swapped, amounting to 20 
signals measured at each location, and 60 signals 
measured in total for the analysis. A summary of the 
recorded signals is reflected in Table 2.  
 
Table 2: Case Study 2 - Section information summary 

Section Defect Status Number of signals 
1 Healthy 20 
2 Healthy 20 
3 Drilled 20 

Total number of signals 60 
 
The measured time signals reflected a similar phase 
velocity across all sections, with the recorded averages 
being 2152 m/s, 2157 m/s and 2159 m/s for Sections 1, 2 
and 3 respectively. It can be seen that they have negligible 
differences between each other, as evidenced by a largely 
similar wave pattern comparing Section 3 with that of 
Section 1 and 2, observed in Figure 11, which illustrates 

a sample of the signals, recorded at each section. This 
could possibly be due to the small size of the void. 
 

 
Figure 11: Sample of time signals measured for each section in 
Case Study 2. The vertical axis represents signal energy, 
although each signal has been translated vertically for clarity. 
The signals are presented in order, with Section 1 featured as 
the lowermost and Section 3 as the uppermost signal. 

Similar to the observation made in Case Study 1, the 
distinction between the P-wave component of the signals 
and the surface waves is not evident from visual 
inspection and hence, calibration of the signal window for 
the output of UMAP is required, just as was done in Case 
Study 1.  
 
3.2.3 Wavelet analysis results and discussion 
All 60 recorded signals were analysed using WPD, with 
both 2 and 3 levels of decomposition trialled, and the 
‘db2’ and ‘db4’ mother wavelet applied – the identical 
analysis approach adopted in Case Study 1.  
 
2-level decomposition 
Figure 12 provides a depiction of a concise plot 
comparing the wave energies of all 60 decomposed 
signals of all 3 sections within pairs of frequency bands to 
visualise their dependencies, similar to that depicted in 
Case Study 1. The outcome of the analysis shows 
significant overlap between the signal energies of the 
defective section, shown in red, and the healthy sections 
shown in green, in the off-diagonal scatter plots. The plots 
comparing wave energies in frequency band pair (2,2 – 
2,1) show the strongest positive correlation, with no 
discernible separation between signals of healthy sections 
and that of the defective section. The plots comparing 
frequency band pairs (2,1 – 2,0), and (2,2 – 2,0) show 
some promising separation, but notably, it can be 
observed that there is still some overlap between the 
signals – an unfavourable outcome. This outcome is akin 
to that demonstrated in Case Study 1.  
 
The same analysis was conducted with the ‘db4’ mother 
wavelet, the final scatter plot is shown in Figure 13. Of 
note, the strong positive correlation of frequency band 
pairs (2,2 – 2,1) which was evident with the ‘db2’ mother 
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wavelet analysis is missing with the ‘db4’ mother 
wavelet. 

 
Figure 12: Case Study 2 - Scatter plot of the signal energies in 
4 frequency bands - decomposition level 2 and 'db2' mother 
wavelet. 

 
Figure 13: Case Study 2 - Scatter plot of the signal energies in 
4 frequency bands - decomposition level 2 and 'db4' mother 
wavelet. 

The wave energies are more scattered in the plots 
compared to that shown in Figure 12, signifying a reduced 
correlation between the frequency band pairs when ‘db4’ 
is adopted, relative to ‘db2’. The outcome of the analysis, 
however, is still not favourable, with no high-confidence 
separation in the data seen in the bivariate relationship 
comparisons in the off-diagonal plots, or the univariate 
analyses depicted on the diagonal plots.  
 
 
3-level decomposition 
Just as was conducted in Case Study 1, 3-level 
decompositions can also be carried out with the 60 

measured signals. As depicted in Figure 1, the 3-level 
decomposition yields 8 frequency bands ranging from 
(3,0) to (3,7) – amounting to 56 possible frequency band 
pair comparisons – shown on the off-diagonal plots, and 
8 plots visualising the distribution of wave energies within 
a given frequency band – shown on the diagonal plots. 
Figure 14 depicts this analysis with the use of the ‘db2’ 
mother wavelet and Figure 15 features that conducted 
with the ‘db4’ mother wavelet. In the former, several of 
the frequency band pairs – (3,2 – 3,1), (3,4 – 3,1), (3,4 – 
3,2) – show a strong positive correlation, with high levels 
of overlap between signals of healthy sections and that of 
the defective section. This feature is missing from the 
‘db4’ analysis, an artefact also found in the 2-level 
decomposition described in the preceding section.  
 
Similar to that shown in Case Study 1, both the ‘db2’ and 
‘db4’ analyses yield an ultimately unfavourable result, 
with no high-confidence separation of the wave energies 
between healthy and defective sections, as intended.  
 
In summary, all of the trialled hyperparameter variations 
in the study – levels of decomposition and mother wavelet 
type – were unable to yield a desirable outcome. Although 
some separation of signals was observed in certain cases, 
as established in the preceding discussion, the lack of 
complete, high-confidence separation of signal clusters 
points to an inability of the adopted WPD methodology 
and trialled hyperparameters to accurately serve the 
purpose of the detection of a defect of this nature in 
timber.  
 

 
Figure 14: Case Study 2 - Scatter plot of the signal energies in 
4 frequency bands - decomposition level 3 and 'db2' mother 
wavelet. 
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Figure 15: Case Study 2 - Scatter plot of the signal energies in 
4 frequency bands - decomposition level 3 and 'db4' mother 
wavelet. 

3.2.4 UMAP analysis and results 
All 60 signals were thereafter analysed with UMAP, 
similar to Case Study 1. The hyperparameters used in the 
analysis were similar to that used in Case Study 1, with 
minimum distance being set to a value of 0.07 and k-
nearest neighbours being set to 15. It should be noted that 
just as in Case Study 1, the values of both minimum 
distance and k-nearest neighbours had minimal impact on 
the output graph, primarily altering the density of the 
clustering of the signals and influencing the cluster 
separation. The Chebyshev distance model was adopted 
for the analysis. The 2-dimensional output graph is shown 
in Figure 16, with the associated data topology shown in 
Figure 17.  
 

 
Figure 16: Case Study 2 - UMAP two-dimensional (2D) 
reduction output. 

 
Figure 17: Case Study 2 - UMAP two-dimensional (2D) cluster 
topology. 

As depicted, the output of the UMAP analysis is highly 
favourable, with complete and distinct separation between 
signals sent through the defective Section 3, and that sent 
through healthy Sections 1 and 2. Signals from Sections 1 
and 2 are treated as being part of the same cluster, as 
shown in the cluster topology in Figure 17. This positive 
outcome is congruent to that found in Case Study 1.  
 
4 CONCLUSIONS 
This study attempts for the first time to investigate the 
effectiveness of a novel feature extraction algorithm for 
the purpose of identifying defects within the timber. 
UMAP proved to be very effective in separating signals 
from damaged and healthy sections in timber, requiring 
little calibration, and providing an easily visualisable 
output graph. UMAP was versatile in performing 
successfully under differing defect types in timber. In the 
first case study, UMAP was able to successfully 
distinguish between healthy sections and those with 
naturally occurring defects such as grain deviation and 
knots. A key positive attribute of the algorithm is its 
ability to separate the signals of sections featuring 
differing defect types as opposed to merely clustering 
them together – providing further insight into the different 
material characteristics inherent in sections of starkly 
different grain orientation and fibre make-up. In the 
second case study, the algorithm proved to be able to 
successfully distinguish signals transmitted through 
healthy sections and a defective section fabricated with a 
void in the centre of the cross-section, meant to simulate 
material loss and fibre discontinuity caused by defects 
such as fungal decay, termite damage or splitting damage. 
The study also juxtaposes the highly favourable outputs 
of UMAP against competing wavelet-based frameworks, 
proving the former’s robustness and applicability for the 
intended purpose proposed in the study, compared to the 
latter. The low sensitivity of the final output of UMAP 
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due to changes in its hyperparameters, and the versatility 
of the algorithm in being able to identify various defect 
types in timber demonstrates the capability of the 
algorithm for the application of defect identification in 
timber. 
 
This study acts as an initial proof-of-concept for the 
viability of UMAP as a signal analysis tool for defect 
identification in timber. The positive demonstration of the 
algorithm can hence open the door to future works 
investigating in-depth the efficacy of the algorithm in 
more complex, built-up sections of engineered timber, 
wherein the occurrences of defects are not visible from the 
exterior of the element. These investigations are currently 
in progress by the authors.   
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