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ABSTRACT: Climate change affects the growth conditions for Norway spruce (Picea abies) which is the most important 
species for the European construction timber industry. As a countermeasure, the species mix in European forests is being 
changed to include more hardwood, but also more drought-resistant softwood species, for example Douglas-fir 
(Pseudotsuga menziesii). Previous research has shown that Douglas-fir can on the one hand be suitable to produce high-
strength material. On the other hand, however, Douglas-fir wood can also have a considerably lower strength than what 
is expected from spruce. Therefore, there is need for improved strength prediction and strength grading methods for 
Douglas-fir, to enable the correct allocation of Douglas-fir roundwood to the most suitable target product. In the present 
study, computed tomography (CT) image reconstructions of 53 Douglas-fir logs were used to predict the strength of the 
sawn timber and thus to identify logs which are suitable to produce glulam lamellas. To achieve this, statistical modelling 
was combined with Finite Element (FE) modelling of destructive tensile tests, based on simulated fibre orientations for 
the boards. 
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1 INTRODUCTION 678 
Europe aims to proceed towards a sustainable bio-based 
economy, which should be less dependent on fossil 
resources [1]. Forest based products, including 
construction timber products, are an important element in 
this strategy. At the same time, the growth conditions are 
declining for spruce (Picea abies) which is Europe's most 
important wood species for construction timber products 
– due to climate change, temperatures are rising, and the 
risk of drought is increasing. Douglas-fir (Pseudotsuga 
menziesii) is seen as one of the tree species which could 
complement spruce in the future, due to its drought 
resistance, fast growth and interesting material properties 
[2]. Sauter [3], e.g., observed an average tensile strength 
of more than 40 N/mm², but with unusually high 
coefficients of variation (CoV) of 50%-60%. Rais et al. 
[4] reported, for material from a plant density trial, 
average tensile strengths between 17 N/mm² and 
25 N/mm² with CoV in the range of 30%-40%. Such high 
variations in sawn timber properties can be a challenge for 
the construction timber industry. Therefore, our study 
presents methods to predict the sawn timber strength 
already at the roundwood stage and thus to allow 
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identification of suitable raw material for glulam 
production. 
 
2 MATERIAL AND METHODS 
2.1 MATERIAL 
For this study, 53 Douglas-fir logs from two stands (age 
of 60 years) close to Vienna (Austria) were selected, 
focusing on qualities which are typically used for 
construction timber production. The share of quality class 
A according to Austrian wood trade practices was 9%, 
that of quality class B 76%. 15% of the wood 
corresponded to the quality class C. The roundwood 
diameters were between 25 cm and 46 cm. 
 
2.2 ROUNDWOOD SCANNING AND SAWING 
The logs were scanned with the roundwood CT scanner at 
the Forest Research Institute Baden-Württemberg in 
Freiburg, Germany. Based on the CT image 
reconstruction, several wood properties were extracted, 
among them heartwood, knots and pith. For the knots, 
parametric descriptions similar to Johansson et al [5] were 
computed. 
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Further, the longitudinal eigenfrequency ݂ of each log 
was measured using a Microtec ViScan device, and the 
dynamic modulus of elasticity ܧௗ௬௡ ,௟௢௚  was calculated for 
each log using Equation (1): ܧௗ௬௡ ,௟௢௚ = 4 ∙ ݈)௟௢௚ߩ ∙ ݂)ଶ (1) 

 
Where ߩ௟௢௚ was the average log density from CT scanning 
and ݈ was the log length. 
The logs were sawn according to the cutting patterns 
given in Figure 1. 14 logs were sawn according to pattern 
a, 23 logs according to pattern b, and 16 logs according to 
pattern c. One log in pattern c was accidentally sawn so 
that it had four more side boards. In total, sawing yielded 
267 main boards and 156 side boards. The boards were 
dried to a target moisture content (MC) of 12%. The main 
boards were planed to a thickness of 45 mm; the side 
boards were all planed to a thickness of 25 mm. 
 

 

Figure 1: Cutting patterns used for sawing the Douglas fir logs 
(board dimensions in mm). One of the logs in pattern c had 4 
additional side boards of the dimensions 30 x 100 mm². 

 
2.3 SAWN TIMBER SCANNING AND TESTING 
After planing, the boards were strength graded with a 
Microtec GoldenEye 706 machine including X-ray and 
eigenfrequency measurement. At the laboratory of 
Holzforschung Austria, the boards underwent destructive 
tensile testing according to EN 408 [6], including 
measurement of dry wood density and MC on a small 
clear sample of each tested board, and corrections of the 
values according to EN 384 [7]. However, it was decided 
to exclude the 28 side boards of dimension 27x150 mm² 
from destructive testing, as their number was so small. 
Further, 14 main boards and 14 side boards had to be 
excluded due to various reasons, like breakage during 
machine strength grading or excessive wane. 
The final yield was: 253 main boards with the cross 
sections 45x145 mm² and 45x230 mm², and 104 side 
boards with 25x90 mm² and 25x185 mm². 
 
2.4 TRACKING OF TIMBER POSITIONS 
The position of each board in the respective log was 
tracked using log end templates [8]. Those templates were 
sheets of paper containing the log ID as well as angular 
information and distance to the pith (see Figure 2a). The 
sheets were glued to one log end and remained there 
during sawing, drying, planing, industrial strength 
grading and destructive testing (Figure 2b). At the end of 
the process, the templates on the boards were scanned and 
manually arranged to reconstruct the original positions of 

the then dry boards in the green log CT reconstruction. To 
easily arrange the images, a dedicated tool was 
programmed by the authors (Figure 2c) using R [9] and 
the shiny package [10]. 
 
a 

b 

c 

Figure 2: Log end templates. a) glued to the log end, 
b) remaining on the board throughout the board processing, 
c) detail screenshot of the tool to arrange the scans. 

2.5 VIRTUAL SAWING 
 
Using the reconstructed board positions, virtual boards 
were created from the CT images of the log. For each 
virtual board, descriptive variables were calculated, 
including heartwood density, distance from pith and 
percentage of knot volume. Further, a board X-ray scan 
was simulated by calculating average densities along the 
direction of the board thickness, which resulted in density 
data arrays of the dimensions “board width” by “board 
length”. These green densities were assumed to have been 
measured at an MC of ݑ = 29% (fibre saturation point) 
and were corrected to an MC of ݑref = 12% using 
Equation (2) (EN 384 [7]). ߩ = ൫1(ݑ)ߩ − ݑ)0.005 −  ref)൯ (2)ݑ

 
2.6 SIMULATION OF FIBRE ORIENTATIONS 
Based on the parametric knot descriptions calculated on 
the CT images and using the reconstructed board position, 
fibre orientations were simulated along the length and 
width of the central plane for each board at a resolution of 
one grid point per mm, using the approach described by 
Huber et al. [11]. A detail of such reconstructed fibre 
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orientations is shown in Figure 3. For the figure, the 
resolution was reduced to one grid point per 5mm. 
 

 

Figure 3: Detail of simulated fibre orientations: flow of fibres 
around three knots in board 23047. Each line segment 
corresponds to one grid point, colours indicate the magnitude 
of the grain deviation. 

 
2.7 FINITE ELEMENT MODEL 
Using COMSOL Multiphysics® [12], tensile tests were 
simulated on a two-dimensional plane stress model of 
each board. The calculated fibre orientations (section 2.6) 
were used to generate a locally varying coordinate system. 
This system transforms the three-dimensional cylindrical 
(LRT) material properties defined by the reference 
stiffness tensor C [13] to the two-dimensional model of 
the board – see Equation (3). 

(ߩ)ܥ  = ,ݔ)ߩ ௥௘௙ߩ(ݕ  
⎣⎢⎢
⎢⎢⎡11162 504 435 0 0 0866 281 0 0 0528 0 0 0620 0 ݉ݕݏ0 500 023⎦⎥⎥

⎥⎥⎤ (3) 

 
Due to the density dependence of this stiffness tensor the 
local values were linearly scaled from the reference 
density of ߩ௥௘௙ = 390 kg/m3 according to the local density (ݕ,ݔ)ߩ obtained from the virtual board (section 2.5). The 
discretization was performed with a uniform quadrilateral 
mesh with a resolution of 1 mm. In order to determine the 
Young’s Modulus one side of the board was constrained 
in both spatial directions while the other side was 
prescribed a displacement of 5 mm along the x-axis. From 
the reaction forces, the Young's Modulus was calculated 
for each board. 
 
2.8 MODELLING THE SAWN TIMBER 

STRENGTH GRADING 
We wanted to predict the grade yield achieved by the 
GoldenEye 706 sawn timber strength grading machine. 
For this purpose, we modelled the GoldenEye Indicating 
Property (IP) for strength with linear regression, based on 

descriptive variables extracted from the virtual boards, the 
Young's Modulus from the FE model, as well as the ܧௗ௬௡ ,௟௢௚ in various combinations. The regression 
coefficients were calculated on the training data set, 
which encompassed 60% of the logs in the study (33 logs, 
208 boards). The following predictors for the GoldenEye 
706 strength IP were calculated: 

 VB ("virtual board") using the virtual board's 
knottiness, heartwood density and distance to 
pith information (section 2.2); 

 VB+FE, using in addition the Young's Modulus 
from the FE model (section 2.7); 

 VB+Edyn,log, which combined the virtual 
board's knottiness and heartwood density with 
the ܧௗ௬௡ ,௟௢௚  (section 2.2). 

 
2.9 YIELD PREDICTION 
For the GoldenEye strength IP, a setting ܵ for strength 
grading into strength class T14 was calculated on the 
training set, using a simplified approach based on EN 
14081-2 [14]. The T14 strength class is defined in EN 338 
[15] with the following properties: 5th percentile of tensile 
strength ( ௧݂,௞) at least 14 N/mm²; average tensile modulus 
of elasticity (ܧ௧,଴,௠௘௔௡) at least 11 kN/mm², and fifth 
percentile of the density (ߩ௞) at least 350 kg/m³. T14 is 
one of the most important strength classes for producing 
glue laminated timber (glulam) of strength class GL24h 
[16]. 
Boards with an IP below the setting value ܵ  were rejected, 
and all other boards were assigned to T14. The same 
setting ܵ was applied to the three IP predictors calculated 
on the log scanning data (section 2.8). This was used to 
predict the yield of T14 boards from the sawn timber 
strength grading. 
 
2.10 LOG PRESORTING 
Log pre-sorting was done by assigning only such logs to 
the production of T14 boards where the predicted yield 
was above a certain threshold ܶ, which we varied from 
0% to 100%.  
The efficiency of the pre-sorting was defined as obtaining 
as many T14 boards as possible from the given logs while 
producing as few rejected boards during the sawn timber 
strength grading as possible. 
This trade-off was visualised using the following two 
quantities in Equations (4) and (5). 14ܶ ݈݀݁݅ݕ ݈ܽݐ݋ݐ =  ்݊ଵସ,௚௥௔ௗ௜௡௚݊௕௢௔௥ௗ௦,௦௔௪௡  (4) 

14ܶ ݈݀݁݅ݕ ݁ݒ݅ݐ݈ܽ݁ݎ =  ்݊ଵସ,௚௥௔ௗ௜௡௚݊௕௢௔௥ௗ௦ ,௚௥௔ௗ௜௡௚  (5) 

where ்݊ଵସ,௚௥௔ௗ௜௡௚  means the number of boards assigned 
to T14 during strength grading, ݊௕௢௔௥ௗ௦ ,௦௔௪௡ means the 
number of all boards sawn from all logs, and ݊௕௢௔௥ௗ௦ ,௚௥௔ௗ௜௡௚  means the number of boards sent to the 
strength grading process. Thus, the 14ܶ ݈݀݁݅ݕ ݈ܽݐ݋ݐ is the 
percentage of T14 boards relative to the number of all 
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boards sawn from all logs, and the 14ܶ ݈݀݁݅ݕ ݁ݒ݅ݐ݈ܽ݁ݎ is 
the percentage of T14 boards relative to the number of 
boards sent to strength grading. 
 
To get a more complete picture, the whole range of pre-
sorting thresholds was calculated, which resulted in a 
curve of values in the diagram 14ܶ ݈݀݁݅ݕ ݈ܽݐ݋ݐ vs. 14ܶ ݈݀݁݅ݕ ݁ݒ݅ݐ݈ܽ݁ݎ. These curves were compared 
between the three predictors VB, VB+FE and 
VB+Edyn,log. 
Finally, the curves for each predictor were compared to 
those obtained on the test dataset, which encompassed 
40% of the logs in the study (20 logs, 149 boards). Similar 
curves between training and test are an indication that the 
pre-sorting approach could also work on future unknown 
data. 
 
2.11 CALCULATIONS AND VISUALISATION 
All calculations were done with R 4.2.1 [9]. The diagrams 
were created in R using the ggplot2 package version 3.4.0 
[17]. 
 
3 RESULTS AND DISCUSSION 
3.1 FINITE ELEMENT SIMULATIONS 
In Figure 4, the Young's modulus calculated by the FE 
models was compared to the modulus of elasticity 
determined during the destructive tensile tests. We 
observed a moderate correlation with a coefficient of 
determination of ݎଶ = 0.46. 
 

 

Figure 4: The Young's modulus obtained from the FE models 
against the modulus of elasticity ࢚ࡱ from the destructive tensile 
tests for the 208 boards from the training dataset; coefficient of 
determination ࢘૛ = ૙. ૝૟. 

For comparison: Olsson et al [18] achieved up to ݎଶ =0.70 of their models with local modulus of elasticity in 
bending, ݎଶ = 0.80 if they included density, and ݎଶ =0.84 if they included the longitudinal dynamic modulus 
of elasticity of the board (ܧௗ௬௡ ,௕௢௔௥ௗ ). 
When we used a two-dimensional density array measured 
on the dry boards during industrial strength grading 
(section 2.3), the coefficient of determination increased 

from 0.46 to 0.52, but this information is never available 
at the log stage. In other words, the knowledge of the 
boards' dry density improved the FE model – therefore, it 
would be desirable to develop an improved prediction of 
the dry density based on the green density. 
Also, ܧௗ௬௡ ,௕௢௔௥ௗ  is never available at the log stage. 
However, a linear regression model for ܧ௧ , based on the 
Young's modulus from the FE model and on ܧௗ௬௡ ,௟௢௚ led 
to an ݎଶ = 0.67. Therefore, we also looked at yield 
prediction models including ܧௗ௬௡ ,௟௢௚ , even though this 
quantity is not used in practice in Europe – for logs in 
intermediate states between frozen and thawed, ܧௗ௬௡ ,௟௢௚ 
cannot be determined reliably [19]. 
A further possibility for improving the prediction of the 
Young's modulus would be to base the FE model on a 
three-dimensional grid of fibre orientations instead of on 
a two-dimensional grid. This is planned as a next step in 
our research. 
 
3.2 YIELD PREDICTION 
Each of the three predictors predicted the correct grade for 
about 85% of the boards in the training data, with a clear 
tendency to overestimate the number of T14 boards – 
between 60% and 70% of the wrongly predicted boards 
were rejected boards which were assigned to T14 by the 
predictors. 
 
3.3 LOG PRESORTING 
In Figure 5, the relative yield was plotted against the total 
yield of T14 boards from the training data. This resulted 
in three curves for the three yield predictors VB, VB+FE 
and VB+Edyn,log. In the background of Figure 5, also the 
curve resulting from perfect yield prediction is displayed 
as a thin grey line. 
 
An increase in the relative yield could only be achieved at 
the cost of a decrease in the total yield. 
 
 
 

 

Figure 5: Relative yield vs. total yield for the three yield 
predictors VB, VB+FE and VB+Edyn,log, based on the 208 
boards from the training data. The thin grey curve to the right 
is the best possible pre-sorting, resulting from perfect 
foreknowledge of the final grading result. 
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In Figure 5, this is apparent because the curves all 
decrease from left to right, even the thin grey line based 
on perfect yield prediction. 
This trend is directly related to the pre-sorting strategy 
(section 2.10). We excluded logs with a predicted yield of 
T14 which was below a certain threshold ܶ. A low 
predicted yield of T14 means a high predicted number of 
reject boards. Excluding these logs meant that the logs 
chosen to produce T14 boards had a lower share of reject 
and a higher share of T14, i.e. a higher relative yield. 
However, even from logs with a low yield of T14, we 
would be able to produce some T14 boards. When those 
logs were excluded based on the yield threshold ܶ, those 
T14 boards could not be produced, and the total number 
of produced T14 boards decreased. This implied a lower 
total yield of T14. 
When comparing the curves for the three yield predictors, 
curves further to the right (i.e., with a higher total yield 
for any given relative yield) indicate a higher pre-sorting 
efficiency, because this means that a given relative yield 
can be achieved while maintaining a higher total yield. 
Therefore, the thin grey line based on a perfect yield 
prediction is always furthest to the right. In Figure 5, the 
curve of the predictor VB+Edyn,log was closest to the 
perfect prediction curve and thus had the highest pre-
sorting efficiency. We had expected that the predictor 
VB+FE would have a higher pre-sorting efficiency than 
VB, but, in fact, those two predictors were at the same 
level. It seems that a more accurate FE simulation of the 
Young's Modulus is needed to improve the pre-sorting 
efficiency, for example by basing the FE model on a three-
dimensional grid. 
In Figure 6, the yield curves were compared between the 
training data and the test data separately for each 
predictor. For all three predictors, the training data and the 
test data led to similar curves, given the rather small 
number of logs involved. Therefore, the pre-sorting 
strategies defined in this study should also work on new 
unknown data, although a repetition of the present study 
on a larger data set is recommended. 
 
In Table 1, some selected value combinations of total 
yield and relative yield were extracted from Figure 6. 
Further, the values for the perfect prediction (as if one 
knew the result from board strength grading already when 
pre-sorting the logs) were added. To get a total yield value 
for a certain given relative yield value for all predictors, 
the total yield values were linearly interpolated between 
data points. 
A relative yield of 80% was the baseline, where no logs 
were excluded. Therefore, all predictors had a total yield 
of 80% for this row. In the test data, this corresponded to 
119 T14 boards and 30 reject boards. 
A relative yield of 85% (test data), was achieved by the 
predictors VB and VB+FE at a total yield level of 66%. 
This corresponded to 99 T14 boards and 22 boards 
rejected during grading, but by excluding some logs, the 
opportunity to produce 20 more T14 boards was traded 
against having 13 less reject boards. 
 

 

Figure 6: The yield curves from Figure 5 (training data, 208 
boards), compared to the curves resulting from the test data 
(149 boards). 

 
Table 1: Interpolated values for the total yield at a certain 
level of relative yield for the different predictors and for the 
perfect prediction, for the training data and the test data. 
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Again for a relative yield of 85%, the predictor 
VB+Edyn,log was able to produce 109 T14 boards; here, 
the trade-off was 10 fewer T14 boards and 11 fewer reject 
boards, which is considerably more efficient. 
At the same level of relative yield, the perfect prediction 
traded 7 fewer T14 boards against 10 fewer reject boards. 
At the highest relative yield level in Table 1 (92%), VB 
and VB+FE only led to a production of 83 T14 boards, 
VB+Edyn,log to a production of 89 T14 boards, and the 
perfect prediction to a production of 96 T14 boards. 
 
4 CONCLUSIONS 
In this study, data from log scanning were successfully 
used to predict the yield of the final strength grading of 
dried sawn timber. The input data were based on images 
from log computed tomography (CT) and dynamic 
modulus of elasticity of the log. As an additional input to 
the yield prediction models, a Finite Element analysis 
based on the CT images and using simulated fibre 
orientations was performed. 
Based on these yield predictions, a pre-sorting strategy 
was tested where only logs with high predicted yield in 
the strength grade T14 were directed towards producing 
machine strength graded timber. 
Using this approach, the T14 grade yield at the sawn 
timber strength grading process step could be increased 
from 80% to up to 92%, at the cost of losing up to 30% of 
the T14 boards which could have been produced if all of 
the logs in the study had been sent to the strength grading 
process. 
Although the results on Young’s modulus from Finite 
Element analysis had a coefficient of determination of 
0.46 with the tensile modulus of elasticity, using this 
result for predicting the strength grading yield did not 
improve the pre-sorting efficiency. 
Further research should be directed towards increasing the 
accuracy of the Finite Element analysis, e.g. by basing it 
on a three-dimensional board grid instead of a two-
dimensional board grid. It is also expected that a better 
prediction of the density of the dry board from the CT 
images could improve the accuracy of the Finite Element 
analysis. 
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