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ABSTRACT: Fracture mechanics simulations play a crucial role in predicting the failure of materials in various 
engineering applications. However, modeling fracture in inhomogeneous materials with complex microstructures is 
challenging. This work applies a non-brittle hybrid multi-phase field model to simulate wood failure. The approach is 
based on a stress-based split for orthotropic materials and includes multiple phase field variables, incorporating preferable 
fracture planes. The proposed model is initially applied to two examples, single-edge notched plates with varying fiber 
inclines and a wooden board with a single knot and spatially varying fiber directions. Both examples show that the model 
covers the effect of the wood microstructure on macroscopic crack propagation. Subsequently, the model is validated on 
experimental studies from the literature. We show that by choosing the input parameters, the tensile strength and the 
fracture energy release rate, in a reasonable range for wood, the model agrees well with the results of the experimental 
studies. Those findings open the application of the model to more complex situations like wooden boards with multiple 
knots and show that the used input parameters are not model-specific numerically tuned parameters but rather material-
specific quantities. 
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1 INTRODUCTION 456 
Wood is consequently gaining importance in fields of 
civil engineering, where mainly steel and concrete 
constructions have dominated until now. This uprise is 
primarily due to new developments of high-performance 
wood-based products, the rediscovery of the excellent 
performance of wood as a building material and 
ecological benefits. 
Understanding the complex mechanical nature of wood is 
critical to opening its application in new fields and 
optimizing its usage. 
The microstructure of wood strongly influences its 
mechanical properties. Crack growth starts on the 
microscopic scale from defects in the cell wall material. 
After the localization of a macroscopic crack, a fracture 
process zone forms [31]. Subsequently, toughening 
effects like fiber bridging [11,35] set in. Microcracks and 
toughening effects result in a cohesive material behavior. 
The microstructure also strongly influences the 
macroscopic crack orientation. Wood fibers, which were 
produced at the same time, lie on so-called growth 
surfaces. Such growth surfaces give structure to the 
material. With a weak interface between the fibers, cracks 
tend to follow the direction of least resistance along the 
fiber [31]. Together with a spatially strongly varying fiber 
orientation, macroscopic crack topologies become very 
complex. In summary, for simulating wood fracture, a 
numerical method is required capable of accounting for an 
orthotropic constitutive behavior, cohesive fracture, 

 
11 Sebastian Pech, Vienna University of Technology (TU 
Wien), Austria, sebastian.pech@tuwien.ac.at 
2 Markus Lukacevic, Vienna University of Technology (TU 
Wien), Austria, markus.lukacevic@tuwien.ac.at 

preferable fracture planes, and complex three-
dimensional cracks. 
At the Institute for Mechanics of Materials and Structures 
(IMWS), we followed two quite promising methods in 
recent years: Finite element-based limit analysis [19] and 
the extended finite element method (XFEM) [21,24]. 
Both approaches show a good but not yet satisfying 
performance. Particularly the latter approach suffers 
geometrical limitations which do not allow for modeling 
the complex crack paths found in wood fracture. 
A method well suited for crack paths of arbitrary 
complexity is the phase field method for fracture 
[4,5,12,23]. It is based on Griffith’s theory of brittle 
fracture [13], formulated by a variational approach, 
minimizing the total energy of the system. An auxiliary 
field 0,1  models cracks, including a smooth 
transition between the intact ( 0) and the cracked (
1) solid.  
The original phase field method cannot account for wood 
fracture phenomena. In particular, the formulation does 
not include orthotropic materials, cohesive behavior, and 
favorable fracture planes. In recent years, several 
publications addressed these issues. In [3], an additional 
phase field was added to the original formulation. This 
allows for distinguishing different failure modes like 
matrix or fiber failure in composite materials. In 
[8,15,34], the so-called structural tensor was introduced, 
which accounts for favorable fracture planes by scaling 
the spatial gradient of the phase field. Failure in composite 
materials was considered by multiple researchers; actively 
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pursued approaches are comprehensively summarized in 
[6,40]. Research regarding the use of the phase field 
method for wood was performed in [7] on the microscopic 
scale, in [33] on the macroscopic scale by incorporation 
of a representative crack element theory and in [27,28] by 
a hybrid macroscopic multi-phase field model based on 
the unified phase field theory. This work focuses on a 
discussion of the model developed in the latter works. 
 
2 FUNDAMENTALS AND METHODS 
Figure 1 shows the approximation of a sharp crack  with 
multiple diffuse representations  on a body  with 
the boundary . The model from [27], a hybrid multi-
phase field model for orthotropic materials with favorable 
fracture planes, is based on the unified phase field theory 
[39]. This adds a cohesive zones model to the formulation 
to account for effects like micro-cracking and fiber-
bridging [31]. As the fracture behavior of wood is highly 
direction-depended, multiple phase fields [3] are used for 
cracks perpendicular to the longitudinal, radial and 
tangential direction. 

 
Figure 1: Sharp and diffuse crack representation 

Excluding body forces and surface tractions, the 
regularized form of the total energy  of the system, 
defined on the domain , reads: 

,  ,  

,  
, ,

, 
(1) 

where  denotes the -th phase field,  the displacement 
field,  the phase field of dimension 3 and ,  the critical 
energy release rate. The strain energy terms  ,  and 

 denote the degraded energy and undegraded 
energy, respectively. The crack geometry is approximated 
by the volume integral over the crack surface density 
function . In the unified phase field theory, ,  
extended to include the structural tensor, is defined as  

,
, (2) 

with , 4 , 2  as the 
local part of the dissipated fracture energy, and 

  as the structural tensor, where  is the 
material direction and  is the scaling factor of the 
structural tensor for phase field . 

Crack propagation is driven by an energetic force , 
which also dictates the constitutive behavior through the 
degraded strain energy  , . The phase field model 
described in [27] uses a stress-based split [32] to 
decompose the strain energy density into two parts: one 
that drives cracks and one that is inactive. The crack 
driving strain energy density is defined based on fracture 
mechanics failure modes I, II, and III for a crack 
perpendicular to . This includes the assumption that 
cracks mainly propagate following the principal material 
directions, which is motivated by the commonly observed 
“zig-zag” failure pattern of wood shown in Figure 2.  

 
Figure 2: Typical crack pattern of wood [31] 

The crack driving stress  can be determined by 
projecting the undamaged stress tensor  onto a fictitious 
crack surface with the crack normal vector  [16,27,32]. 
Subsequently, the mode I, II and III stresses are identified, 
allowing computation of . The crack orientation  
that results in the largest energy release, indicated by the 
largest , defines the driving failure mechanism. As 
a result, Equation (1) is modified by replacing the original 
strain energy terms by 

 ,    and 
 ,   . (3) 

Cohesive behavior is introduced by tuning the coefficients 
in the degradation function  and the crack surface 
density function  on a one-dimensional bar problem 
with a single crack and a linear softening law [39]. 
The resulting energy minimization problem is solved with 
a staggered algorithm [4,22]. In addition, a hybrid 
approach [1] is used for degradation. This improves the 
solver's performance by making the deformation problem 
linear and, as shown in [27] and further outlined in 
Section 3.1, is required for adequately modeling the “zig-
zag” crack pattern of wood. To prevent the 
interpenetration of crack faces, the hybrid approach is 
coupled with a smooth traction-free crack boundary 
condition [16]. Irreversibility of the phase field is 
enforced globally by an active-set reduced-space method 
[41]. An adaptive load increment scheme is adopted for 
further performance improvement which uses a trial point 
checker and a step size controller [14], restricting the 
increment size close to sudden changes in the dissipated 
energy and maintaining large increments during the linear 
elastic loading phase. The trial point checker performs an 
additional, however, very small load step, after a 
converged solution for the problem was found, and rejects 
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the converged state if the small additional step resulted in 
a change in the sign of the strain energy’s slope. The step 
size controller works independently of the trial pointer 
checker an assures that after a failed load increment, the 
increment’s size is reduced only as much as necessary to 
meet the convergence criterion. 
The entire code is implemented in Julia [2]. For 
automatically deriving the element stiffness matrices and 
residual vectors from the energy formulation, the 
ForwardDiff-Package [30] is used. Pardiso 6.0 [10,18,36] 
is employed as the sparse linear solver. 
 
3 RESULTS 
3.1 VERIFICATION OF THE PHASE FIELD 

MODEL FOR WOOD 
Initially, the described phase field model was verified on 
single-edge notched plates with varying fiber inclines and 
a more advanced example of a single knot in a wooden 
board with spatially varying principal material directions 
[27]. 
Figure 3 shows the edge notched plate under tensile 
loading by prescribing the vertical displacement at the 
upper edge. The fiber incline rises from 0 to 90 degrees. 
Initially, the crack path follows the weak interface 
between the growth rings. In a transition zone, the 
commonly found “zig-zag” pattern is recovered, and 
ultimately, the specimen fails with a crack perpendicular 
to the fiber direction. 

 
Figure 3: Transition of failure modes from parallel to 
perpendicular to the fiber. 

Accurate reproduction of the “zig-zag” pattern in Figure 
3 (b) requires applying the hybrid approach. This is 
related to the stress-based decomposition of the strain 
energy density described in Section 2. For forming the  
crack in Figure 3 (b), an energy state is required with 
substantial mode I, II and III stresses for the fictitious 
crack face defined by the normal vector in the longitudinal 
direction. Figure 4 shows a comparison of the longitudinal 
stress (i.e., the mode I stress for the  crack) right before 
the failure of the specimen. Equation (3) is directly used 
to derive the constitutive relation in the variationally 
consistent approach. Therefore, the longitudinal stress is 
not degraded and, thus, peaks at the initial notch, reducing 
the crack driving energy at the diffuse crack tip for crack 

. In comparison, in the case of the hybrid approach, 
everything except compressive mode I stresses is 
degraded. Therefore, the stress peaks at the diffuse crack 
tip, thus, allowing propagation of a crack. 

 
Figure 4: Comparison of the hybrid and the consistent approach 
before the specimen’s complete failure. 

Subsequently, the phase field model was tested on a more 
elaborate example. Figure 5 shows a wooden board with 
a single knot. The board is loaded at the bottom left edge, 
such that the initial crack is under tensile loading. The 
spatial fiber course is computed in each integration point 
using the model from [20]. As expected, the crack follows 
the fiber direction along the weak interface and shifts 
downwards in the vicinity of the knot until the whole 
specimen is cracked.   

 
Figure 5: Phase field crack in a wooden board with a single 
knot and spatially varying fiber courses. 

The results show that the hybrid multi-phase field model 
for wood can reproduce commonly found crack patterns 
of wood. Thus, it can account for the macroscopic 
structural effects influenced by the wood microstructure. 
Next, the model was validated on experimental setups in 
[28]. 
 
3.2 VALIDATION OF THE PHASE FIELD 

MODEL FOR WOOD 
Three different types of tests were considered: A single 
edge-notched beam (SENB) [9,11], a double cantilever 
beam (DCB) [25] and an end-notched beam (ENB) [29]. 
Both the SENB and the DCB setups test for mode I 
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fracture properties; the ENB setup tests for mode II 
fracture properties. 
In Equation (2), the structural tensor  is introduced in 
the formulation of the crack surface density function. The 
related scale factor  is an unknown quantity for wood 
and defines the intensity of the penalty constraint for 
invalid crack propagation directions. Due to the 
configuration of the SENB and the DCB test,  does not 
affect the crack orientation. However, the ENB test is 
strongly influenced by this quantity. Figure 6 shows the 
effect of increasing the scale factor for the primary driving 
failure mode in this test from 0 (isotropic formulation) to 
90. This simulation allowed finding a lower bound of the 
structural tensors scale factor for wood. A value of 70 
adequately reproduces the horizontal crack observed in 
the experiments in [29] and reduces the influence on the 
maximum load.  

 

 
Figure 6: Influence of the structural tensor’s scale factor on the 
crack orientation and the ultimate load in the ENB test. 

Next, the SENB tests were simulated using the structural 
tensor scale factor value found for the ENB tests. Figure 
7 shows the results for the tests in [9]. Using a multi-phase 
field model, it was possible to reproduce the experimental 
data very well with just a single model configuration 
(tensile strength and fracture energy release rate for L, R 
and T). Remarkably, the substantial difference in the 
ultimate load for a crack in the RL-plane and a crack in 
the TL-plane, also shown in [21], could be captured very 
well. Figure 8 shows the ultimate crack phase field for the 
SENB test in the RL-plane.  
 

 
Figure 7: Simulation and experimental graph of two SENB tests 
[9] with differently oriented failure planes (crack in RL-plane or 
TL-plane) 

 
Figure 8: Fully cracked SENB specimen for the setup from [9] 
in the RL-plane 

Subsequently, the model was tested on the DCB tests from 
[25]. Figure 9 shows a large scatter of the experimental 
data already in the linear elastic range. This was 
accounted for in the model by performing simulations for 
different scale factors of the elastic stiffness from 0.6 to 
1.0. Keeping the tensile strength and the fracture energy 
release constant allowed the reproduction of the 
experimental data very well. To reduce the computational 
effort, only the region right after the initial notch was 
finely discretized. The crack in Figure 10 was sufficient 
to reproduce a substantial part of the experimental data in 
Figure 9. 

  
Figure 9: Simulation and experimental results of a DCB test 
[25]. 

 
Figure 10: Cracked DCB specimen 
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Finally, the model was validated on the ENB test, which 
was already used to tune the scale factor of the structural 
tensor. In addition to a model with a tuned parameter 
configuration for this specific test, the material parameter 
found for the SENB tests of [9] were also used in the ENB 
model. The simulation and experimental results are shown 
in Figure 11. For both parameter sets, the response was 
within the experimental results. 
 

 
Figure 11: Simulation and experimental results of the ENB test 
[29] for tuned model parameters and parameters from the 
SENB test from [9] 

The validation results in [28] show that the model is very 
well capable of reproducing experimental results, with the 
defining material properties, the tensile strength and the 
fracture energy release rate, well in a range known for 
wood. Furthermore, a lower bound for the structural 
tensor’s scale factor was found, allowing the reproduction 
of the horizontal crack in the ENB test. 
The phase field model presents a significant advantage 
over other models commonly used for simulating such 
experimental studies. Unlike in those models, the crack 
paths are not predefined. Instead, the model considers the 
local crack-driving energies and non-local effects induced 
by the microstructure of wood to form cracks. This 
approach makes the phase field model more adaptable and 
suitable for complex situations where the crack path is 
unknown in advance. 
 
4 CONCLUSION AND SUMMARY 
The present work describes implementing, validating, and 
verifying a phase field model for orthotropic non-brittle 
fracture of materials with favorable fracture planes and 
multiple, different failure mechanisms. The model is 
solved using a generally applicable staggered algorithm 
with globally enforced irreversibility constraints and an 
efficient load-stepping scheme. Using this model, it is 
possible to reproduce commonly found crack patterns of 
wood and the results of experimental tests. The model’s 
input parameters, the tensile strength, and the fracture 
energy release rate are for all investigated tests within the 
range known for wood. Furthermore, values tuned to one 
experimental setup could be transferred to another setup 
with a different geometry. This suggests that the input 

parameters are material-specific rather than model-
specific numerical parameters. 
Compared to other three-dimensional finite element 
fracture mechanics simulation frameworks, the main 
advantage of the phase field method is that cracks of 
arbitrary complexity can be modeled. This is a 
fundamental requirement when simulating more complex 
wooden specimens like knot groups with spatially 
strongly varying fiber orientations. This work constitutes 
an important step towards the simulation of such complex 
models, which allow improved prediction of the load-
bearing capacity of wooden boards. Based on an exact 
simulation using geometrical reconstructions of wooden 
boards with knots [17], homogenization procedures allow 
deriving metamodels similar to those in [21]. Such a 
simplified model allows the application to larger-scale 
structures or tasks, e.g., for the failure prediction of GTL 
beams [37], size-effect studies in GLT beams [38] or 
optimization of GLT beams [26]. 
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