
PYTHON-BASED PLATE MODEL TO SIMULATE THE EFFECT OF
KNOTTY AREAS ON SAWN TIMBER.

Jorge Uribe Cisternas1, Diego Valdivieso Cascante2

ABSTRACT: This paper introduces a computational python-based model of a timber plate of Pinus Radiata D. Don
specie grown in Chile. The effect of knotty areas is considered for the simulation of stiffness and resistance in a simply
supported plate subjected to out-of-plane bending assessing the failure with the Von Mises normalized and Tsai-Wu
criteria. The computational model is implemented based on the Reissner-Mindlin plate theory, considering a rectangular
orthotropic model to simulate the behavior of wood. When the knotty area ratio (KAR) reaches its maximal value, 1,
stiffness and resistance decrease by 19% and 56%, respectively. Through the Monte-Carlo method, 500 wooden plates
are simulated by randomly distributing the lengths of internodes and whorls, which shows a difference of 14% in vertical
displacement. It is concluded that the open-source numerical model was able to capture the effect of the knotty areas on
the bending behavior of timber elements. The next step involves the calibration of the input parameters of the numerical
model from the test results.
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1 INTRODUCTION 345

Wood has been used repeatedly in Chile for small
constructions. Nowadays, the need to carry out
sustainable constructions based on renewable materials
and with that cause a low impact on the environment
makes wood head the list of most required materials in the
future.
For the same reason, the Chilean construction industry has
evaluated the alternative of building wooden
constructions to eventually replace concrete and steel
constructions. However, compared to concrete and steel,
there is still a lack of knowledge about the behavior of
wood products made from Pinus radiata grown in Chile
and the effect of their natural defects (i.e., knotty area and
its distribution on the tree length) on their mechanical
properties [1].
This article aims to contribute to the development of an
open-source plate model based on Python that allows
quantifying the effects of knotty areas on the bending
behavior of wood elements through the finite element
method.

2 COMPUTATIONAL MODEL
2.1 GENERAL
A plate is defined as a flat solid whose thickness is much
smaller than its other dimensions (length and width). In
this paper, a finite element model for plate bending is
presented based on the Reissner-Mindlin plate theory for
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small elastic strains, which includes the transverse shear
effect [2,15] (see Figure 1).

Figure 1: Reissner-Mindlin plate theory. Sign convention for
the displacements and the rotations of the normal. Taken from
[9].

2.2 FORMULATION
2.2.1 Force Formulation
According to [5], the strong formulation of the boundary
problem of plate theory is:𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝐹,𝐶ఈ ,𝑀ఈ ,𝑄,𝑊 𝑎𝑛𝑑 Θఈ ,𝑓𝑖𝑛𝑑 𝑤 𝑎𝑛𝑑 𝜃ఈ𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:                       𝑚ఈఉ,ఉ − 𝑞ఈ + 𝐶ఈ = 0                                       𝑞ఈ,ఈ + 𝐹 = 0                                               𝑚ఈఉ = −𝑐ఈఉఊఋ𝑘ఊఋ                                                   𝑞ఈ = 𝑐ఈఉ𝛾ఉ               ∀𝑥 ∈ 𝐴𝑘ఈఉ = 𝜃(ఈ,ఉ)𝛾ఈ = −𝜃ఈ + 𝑤,ఈ                                                𝜃ఈ = Θఈ } ∀𝑥 ∈ Γ஘஑                                                        𝑤 = 𝑊 } ∀𝑥 ∈ Γ௪                                𝑚ఈ௡ = 𝑚ఈఉ𝑛ఉ = Mఈ ൟ ∀𝑥 ∈ Γெ
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                                       𝑞௡ = 𝑞ఈ𝑛ఈ = 𝑄 } ∀𝑥 ∈ Γொ
Where, 𝐹= applied transverse force per unit area, C஑=
applied moment couple per unit area, 𝑀ఈ= prescribed
moments at the boundary,𝑄= prescribed shear force at the
boundary, 𝑊= prescribed displacement at the border.
Also 𝑚஑ஒ is the moment tensor, 𝑞஑ is the shear force
vector 𝑘஑ஒ is the curvature tensor and ɀఈ is the shear strain
vector. The Γ’(.)ௌ represents the different parts of the
boundary.

2.2.2 Finite Element Formulation
We start the weak formulation by defining the spaces:࣭ = {𝑤,𝜃ଵ,𝜃ଶ ∈ ଵ(ȳ,Թ)|𝑤ܪ = 𝑊  ∀ ∈ Γ௪,𝜃ఈ = Θఈ   ∀𝑥 ∈ Γఏఈ}

ఏࣰఈ = 𝜃ఈߜ} ∈ 𝜃ఈߜ|ଵ(ȳ,Թ)ܪ = 0, ∀𝑥 ∈ Γఏఈ}
௪ࣰ = 𝑤ߜ} ∈ 𝑤ߜ|ଵ(ȳ,Թ)ܪ = 0, ∀𝑥 ∈ Γ௪}

Where ࣭ is the solution space, ஘ࣰ஑ and ௪ࣰ are the test
spaces, ,ଵ is the Sobolev spaceܪ 𝑊 and ȳఈ are the
prescribed displacements and rotations (essential or
Dirichlet conditions), and Γ஘஑ and Γ௪ are the Dirichlet
boundaries.
The variational formulation is obtained by multiplying the
equations of the strong formulation by the functions test
and integrated by parts in the domain 𝑤 = 𝐴. Definingߜ𝛾ఈ = 𝜃ఈߜ + ௪,ఈ we have:         𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝐹,𝐶ఈߜ ,𝑀ఈ ,𝑄,𝑊 𝑎𝑛𝑑 Θఈ , 𝑓𝑖𝑛𝑑 𝑤 𝑎𝑛𝑑         𝜃ఈ ∈ ࣰ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡,∀ߜ௪ ∈ ࣰ 𝑎𝑛𝑑 ߜ𝜃ఈ ∈ ఏࣰఈ
(W) න ቀ−ߜ𝜃൫ߚ,ߙ൯𝑚ߚ,ߙ +𝑞ߜߙ𝛾ߙቁ𝐴 = ׬ ൫ߜ𝑤𝐹− ൯𝐴ߙ𝐶ߙ𝜃ߜ  ׬− ߙ𝑀ߙ𝜃ߜ + ׬ 𝑤𝑄Γ𝑄Γ𝑀ߜ ∀𝑥 ∈ 𝐴
Where 𝑀ఈ and Q are the prescribed moments and shear
forces (natural or Neumann boundary conditions) Γெ andΓொ are the Neumann frontiers.
From the variational formulation and discretizing the ષ
domain, the finite element formulation is determined:        𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 ۹ ∈ Թே௫ே𝑎𝑛𝑑 ۴ ∈ Թெ ,(Lிாெ)     𝑓𝑖𝑛𝑑 ܌ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:۹ ۴ = ܌
Where d is the nodal displacement value d =൥𝑤𝜃ଵ𝜃ଶ൩
Where: K୧୨ = ඵܤ௜் ௝ܤ෡ܦ 𝑑𝐴  ;஺F = ඵ்ܰ݌௝஺ − න்ܰMഥ୻ಾ + න்ܰQഥ୻ೂ݌௝ = [𝑓௭ 𝑚௫ 𝑚௬]்ܦ෡ is the generalized constitutive matrix.

The stiffness matrix of each element can be divided into
bending (kb) and transverse shear (ks). The global
equilibrium equation is written as(K௕ + K௦)d = F (1)

K௜௝(௘) = ඵቂܤ௕௜் ௦௜்ቃ்ܤ ෡ܦ ൤ܤ௕௝ܤ௦௝ ൨ 𝑑𝐴 = K௕೔ೕ(௘) + K௦೔ೕ(௘)
஺(೐) (2)

Where:

௕௜ܤ = ቎0 ௜ܰ,௫ 00 0 ௜ܰ,௬0 ௜ܰ,௬ ௜ܰ,௫቏ ௦௜ܤ   ; = ൤ ௜ܰ,௫ − ௜ܰ 0௜ܰ,௬ 0 − ௜ܰ൨
The vector of forces remains:F(௘) = ඵܰ(௘)்݌௝஺(೐) − න ܰ(௘)்Mഥ୻ಾ(೐) + න ܰ(௘)்Qഥ(௘)୻ೂ(೐) (3)

Where:

௜ܰ = ൥ ௜ܰ 0 00 ௜ܰ 00 0 ௜ܰ൩
2.3 TYPE OF ELEMENTS CONSIDERED
In order to verify the accuracy of the model, four
different elements were implemented: Q4, QS8, QL9, and
QH9 based on [9]. The shape functions referring to these
elements are presented below:

 Four-node element – Q4

Figure 2: Bilinear element (Q4).[9]

N୧ = 14 (1 + ɌɌ୧)(1 + ɄɄ୧), i = 1,2,3,4
 Eight-nodes element – QS8

Figure 3: Serendipity Quadratic element (QS8).[9]

(4)
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N୧ = 14 (1 + ɌɌ୧)(1 + ɄɄ୧)(ɌɌ୧ + ɄɄ୧ − 1), i = 1,2,3,4
௜ܰ = 12 (1 + ɄɄ௜)(1 − Ɍଶ), 𝑖 = 5,7
௜ܰ = 12 (1 + ɌɌ௜)(1 − Ʉଶ), 𝑖 = 6,8

 Nine-nodes element – QL9

Figure 4: Lagrangian Biquadratic element (QL9).[9]

௜ܰ = 14 (Ɍଶ + ɌɌ௜)(Ʉଶ + ɄɄ௜), 𝑖 = 1,3,5,7
௜ܰ = 12Ʉ௜ଶ(Ʉଶ + ɄɄ௜)(1− Ɍଶ) + 12 Ɍ௜ଶ(Ɍଶ + ɌɌ௜)(1− Ʉଶ), 𝑖 = 2,4,6,8

௜ܰ = (1− Ɍଶ)(1− Ʉଶ), 𝑖 = 9
 Nine-nodes hierarchical – QH9

Figure 5: Hierarchical element (QH9).[9]

Ʌ୶ԛ = ԛ෍ ௜ܰԛ𝜃௫೔଼
୧ୀଵ ԛԛ; ԛԛɅ୷ԛ = ෍ ௜ܰԛ𝜃௬೔଼

୧ୀଵ ԛ
w = ൭෍N୧w୧଼

୧ୀଵ ൱+ Nଽതതതത𝑤ଽ
where Ni are the standard shape functions for the QS8
element and ଽܰതതത = (1 − Ɍଶ)(1− Ʉଶ). The hierarchical
variable𝑤ଽ is the difference between the nodal deflections
obtained with QS8 and QL9 elements. [9]

2.4 DETERMINATION OF THE BEST ELEMENT
TO BE USED

The performance and meshing of the implemented plates
with different elements were compared against the

analytical solutions from the author S. Timoshenko [12],
through the results of the vertical displacement in the
center of the plate.

In Figure 6, it shows that the four elements give a result
like to Timoshenko formulation due to the low percentage
error (i.e., less than 5%) in vertical displacement,
however, the QH9 element shows the best accuracy (i.e.,
0.002%) due to the addition of a "spring" that eliminates
spurious mechanisms [9]. The next steps of this
investigation were carried out with the QH9 element.

Figure 6: (up) Evaluation in the center of the discretized plate,
(down) Graph of the percentage error of each element.

3 EVALUATION OF NATURAL
DEFECTS ON WOOD PLATES

In each computational model, the displacement and
deformation fields were calculated. Subsequently, to
evaluate the behavior of the plate, the knotty areas were
used, taking as a reference the properties of the Blass
study [3], in addition, the properties and distribution of the
knotty areas in Radiata Pine specie were replicated. The
Knotty Area Ratio (KAR) is varied increasing from 0.1 to
1 to evaluate the impact on the displacement and stress in
three control points along the simulated plate (P1, P2, and
P3 illustrated in Figure 8). The coordinates of each point
are located at (Lx/4, Ly/2), (Lx/2, Ly/2), (3Lx/4, Ly/2)
respectively. To evaluate the stress interaction in the plate,
the Von Misses Normalized [14] and Tsai-Wu [13] failure
criteria were used.
In order to evaluate the effect of knotty area distribution,
five hundred wood plates with a fixed KAR but with a
different distribution of knotty areas, varying the whorl of
internodes and whorls were assessed. The center point of
the plate is chosen as the control point and the vertical
displacement of the 500 wooden plates is plotted.

3.1 EFFECT OF THE KNOTTY AREA
In order to quantify the accuracy of the model, a virtual
test of a representative 120 cm x 20 cm x 6.5cm wood
plate made of Radiata Pine grown in Chile was
simulated (see Figure 7). A rectangular orthotropic law
was considered for the wood constitutive, considering the

(5)

(6)

(7)
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mechanical properties from [4]. The model was
considered as simply supported and uniformly loaded
with 4 [N/cm2] over the entire surface. The geometry of
the element was discretized into 1 cm x 1 cm elements. To
include the effect of the knotty area in the model, discrete
length stripes were considered whose properties were
calculated by means of a linear regression equation
determined experimentally in reference [3] based on the
knotty area ratio (KAR) (see eq. 8 and 9). The dimensions
of the knotty areas (whorl and internode length, see Figure
8) were determined from a study on Radiata Pine grown
in Chile (see Table 1) [8].

Figure 7: (a) Representative timber element, (b) Discretization
of the wooden plate with the knotty area.

Figure 8: Base height and top of a whorl. Taken from [8]

Table 1: Branch range of the Radiata Pine tree in regions VII
and IX of Chile. Take from [8].

Variable Range
Internode length [cm] 30 - 110

Whorl length [cm] 20 - 40

ln(E୐) = 7.90 + 3.81 כ 10ିଷ כ ଴ߩ − 0.369 כ 𝐴𝑅ܭ
With r = 0.773 and SR = 0.165

ln(𝑓୐) = −9.09 + כ 1.36  ݈𝑛(E୐)  − 0.978 כ 𝐴𝑅ܭ
With r = 0.839 and SR = 0.274

Where the modulus of elasticity (ܧ௅), resistant tension in
flexion (𝑓௅) are in N/mm2, anhydrous density in (଴ߩ)
kg/m3 and the KAR is dimensionless.

3.2 EFFECT OF THE WHORL AND INTERNODE
LENGTH

In order to understand the behavior of the timber elements
with knotty areas of different lengths of internodes and
whorls, a fixed KAR of 66% (KAR = 0.66) was
considered to simulate 500 cases with different knotty
area dimensions (i.e., whorl and internode length
variation) through the Monte-Carlo method.

3.3 FAILURE CRITERIA
3.3.1 VON MISES NORMALIZED
In the reference [14] the authors develop a simplified
method for the evaluation of the failure by the resistant
tension in flexion (𝑓௅).ߪ௩௠𝑓௅ = ඥߪ௫௫ଶ − ௬௬ߪ௫௫ߪ + ௬௬ଶߪ + 3߬௫௬ଶ𝑓௅ ൑ 1

(10)

Where: ,௫௫ߪ ,௬௬ߪ ߬௫௬, are the uniaxial and shearing stress
components in the respective directions and sections of an
isotropic model and 𝑓୐ is given by equation 8.

3.3.2 TSAI-WU
For a planar orthotropic model, the failure criteria is given
by:𝐹ଵɐ௅ + 𝐹ଶ(ɐோ + ɐ்) + 𝐹ଵଵɐ௅ଶ + 𝐹ଶଶ(ɐோଶ + ɐଶ் + 2ɒோ்ଶ )+𝐹଺଺(ɒ௅ோଶ + ɒ௅்ଶ ) + 2𝐹ଵଶ(ɐ௅ɐோ + ɐ௅ɐ்)+2𝐹ଶଷ(߬ோ்ଶ − (்ߪோߪ ൑ 1 (11)

Where: ,௅ߪ ,ோߪ ,்ߪ ߬௅ோ, ߬ோ் , ߬௅் are the uniaxial and
shearing stress components in the respective directions
and sections of an orthotropic model. 𝐹ଵ, 𝐹ଶ, 𝐹ଵଵ, 𝐹ଶଶ, 𝐹଺଺
and 𝐹ଶଷ are coefficients obtained from uniaxial stresses
(i.e., in tension 𝑓௧ and compression 𝑓௖) and shear stress 𝑓௩
parallel or perpendicular to the grain (i.e., denoted as 0 or
90 for parallel or perpendicular, respectively), through the
reference [7]. F12 is a coefficient that represents, the
biaxial resistance (parallel and perpendicular).

𝐹ଵ = 1𝑓௧଴ − 1𝑓௖଴ ; 𝐹ଶ = 1𝑓௧ଽ଴ − 1𝑓௖ଽ଴𝐹ଵଵ = 1𝑓௧଴𝑓௖଴ ;   𝐹ଶଶ = 1𝑓௧ଽ଴𝑓௖ଽ଴
𝐹଺଺ = 1(0.72𝑓௩଴)ଶ ;   𝐹ଶଷ = 12ቆ 1𝑓௩ଽ଴ଶ − 1𝑓௧ଽ଴𝑓௖ଽ଴ቇ

For the factor 𝐹ଵଶ the reference [6] proposes the
following: 𝐹ଵଶ = 12ቆ 1𝑓௧଴𝑓௖ଽ଴ + 1𝑓௖଴𝑓௧ଽ଴ − 1𝑓௩଴ଶ ቇ
Experimental data from reference [10] in Radiata Pine is
taken into consideration for defining the uniaxial and

(8)

(9)
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shear stress input necessary for calculating the
coefficients, Fi. The characteristics will be considered in
a dry condition (humidity < 19%).

4 RESULTS
The results of the computational plate model based on
QH9 elements are illustrated in Figures 9 to 11, where the
displacements and stresses variation as a function of the
knotty area ratio (KAR), whorl length, and internode
length are evaluated.

4.1 DISPLACEMENT AND DEFORMATION
FIELD

The displacements and stresses of the plate are shown in
Figure 9 considering a plate without a knotty zone and
another with a KAR of 66%. Figure 9.a shows that the
vertical displacement at the edge of the plate increases by
12% because of the knotty area effect. Figure 10 shows
visually how the KAR influences the stress distribution.

Figure 9: (left) KAR=0.0, (right) KAR=0.66. (a) Vertical
displacement, (b) rotation about X-direction and (c) rotation
about Y-direction

Figure 10: (left) KAR=0.0, (right) KAR=0.66. Stress field in (a)
X and (b) Y direction, respectively

Figure 11: (left) KAR=0.0, (right) KAR=0.66. Shear stress field
(a) XY, (b) XZ and (c) YZ.

4.2 FAILURE CRITERIA
Two failure criteria were selected to analyze the stress
state in the evaluated wood plate. By using the Tsai-Wu
criterion, the area where the failure is expected to occur
can be identified due to the integration of all the stresses
that interact in the plate and the consideration of real
Radiata Pine wood coefficients Fi. On the other hand, the
Von Mises Normalized criterion does not consider
stresses interaction since it is designed for isotropic
materials.

Figure 12: Failure criterion Von Mises Normalized with (left)
KAR=0.0 and (right) KAR=0.66.

Figure 13: Failure criterion Tsai Wu with (left) KAR=0.0 and
(right) KAR=0.66.

4.3 EFFECT OF THE KNOTTY AREA
Considering out-of-plane displacement results (see Figure
14), it is observed that as the KAR increases, the vertical
displacement increases proportionally, generating an
increase of up to 19% in the out-of-plane displacement,
being the point P2 with the highest displacement
increments, the rotation θx increases by 14% at points P1
and P3.

(b)

(a)

(c)

(b)

(a)

(b)

(c)

(a)
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Figure 14: Effect of the KAR in (top) vertical displacement and
(bottom) rotation about X.

Figure 15: Effect of the KAR in (top) stress xx and (bottom)
stress yy.

Figure 16: Effect of the KAR in (top) Taú xy, (middle) Taú xz
and (bottom) Taú yz.

Figure 15 shows that as the KAR increases, the stresses
yy (ıyy) increase proportionally, causing a high stress
concentration at the points with knotty areas.
Figure 17 shows that for KAR values less than 0.5, the
Tsai-Wu criterion is the most conservative in predicting
failure whereas for KAR values greater than 0.5 the Von
Mises Normalized criterion is the most conservative for
failure prediction. The Tsai-Wu criterion utilization factor
shows an increment of up to 56% as the KAR increases,
while the Von Mises Normalized criterion produces an
increment of up to 78%.

Figure 17: Effect of the KAR in failure criteria utilization factor.

4.4 EFFECT OF THE WHORL AND INTERNODE
LENGTH

Figure 18 illustrates the evolution of the vertical
displacement (D) for the 500 simulated cases measured in
point P2, considering a KAR=0.66 and varying the
lengths of internodes and whorls. Moreover, there is a
minimum of one knotty area along the length. From the
simulation results, equation 12 is proposed by using the
least squares method.
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Figure 18: Vertical displacement at node P2 of the 500
simulated wooden plates with KAR=0.66.

ܦ = 1.879 ή 10ିସ ή 𝑊 + 1.178 ή 10ିଷ ή ܫ − 1.034ή 10ିହ ή 𝑊ଶ − 5.256 ή 10ି଺ ή 𝑊 ή ܫ − 5.803 ή 10ି଺ ή ଶܫ (12)

Where ,vertical displacement [cm] =ܦ 𝑊= whorl length
[cm] and .internode length [cm] =ܫ

Figures 19 and 20 show an increment of up to 14% in the
vertical displacement depending on internode length or
whorl length.

Figure 19: Vertical displacement v/s internodes length.

Figure 20: Vertical displacement v/s whorl length.

The contour plot shows that the longer the internode
length and the shorter the whorl length, the smaller the
vertical displacement. On the other hand, between shorter
internodes length and greater whorl lengths, the vertical
displacement is greater. In the first case, since the length
of the internode is so large, it only reaches to one knotty
zone along the plate length while the shorter the internode
is, there are more knotty zones along the plate. Due to the
dimensions of the plates, it only reaches a maximum of
three knotty areas.

Figure 21: Internodes length v/s whorl length effect on the
vertical displacement at node P2.

5 CONCLUSIONS
The Python-based model was able to capture the effect of
the knotty areas in the response of wood plates subjected
to out-of-plane bending. When the KAR reaches its
maximum value, the stiffness and strength of the plate
decrease by 19% and 56%, respectively. The previous
statement can be supported by the failure criteria which
takes its maximum values in the wood adjacent to the
knotty areas in the center of the plate. Talking about the
effect of different lengths of internodes and whorls, the
shorter the length of the internode and the longer the
whorl, the greater the vertical displacement of the plate,
reaching an increment of up to 14%. It is concluded that
the open-source numerical model was able to capture the
effect of the knotty areas on the bending behavior of
timber elements. The next step involves the calibration of
the input parameters of the numerical model from the test
results.
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