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ABSTRACT: A total of 104 spruce and Larix gmelinii wood samples were employed to generate a reliable ANN-based 
model for estimating the Moment of Rupture (MOR) of heat-treated woods. Seventy percent of the samples were used 
for training, while the remaining thirty percent were used for testing phases of the data set. The Feed Forward network 
with five topologies was used, including heat treatment at various temperatures, durations, and relative humidity as input 
parameters. The weights of the artificial neural network are optimized by employing a genetic algorithm. The model’s 
accuracy is assessed by comparing results with the particle swarm optimization-based neural network model. The study 
concluded that the genetic algorithm-based ANN model performed better by yielding results with reduced error.
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1 INTRODUCTION 
While timber is a distinctive, renewable, and sustainable 
construction material, it is biodegradable, mainly in open-
air applications. Modifying timber's physical and 
mechanical properties improves its durability, preventing 
degrading agents. Wood modification methods are an
evolving fashion and an eco-friendly substitute of
chemicals for wood preservation procedures. During heat 
treatment processes, the wood is heated and modified in 
various atmospheres [1]. The material's structural 
performance and durability depend on numerous 
properties of heat-treated wood. Heat treatment 
dramatically lowers the wood's water absorption, 
equilibrium moisture content, and wettability, increasing 
its dimensional stability and biological endurance. 
Additionally, changes in the various characteristics of 
heat-treated wood affect the wood's performance in its 
application area.
Fernandez et al. (2012) determined the MOR and MOE of 
structural plywood using an artificial neural network and 
verified the results through the Multiple Linear 
Regression (MLR) model. The study considered
thickness, moisture content, and density as the input
variables for determining MOR and MOE. The results 
showed that the ANN model with three hidden layers has 
higher accuracy than the MLR model [2].
Yapıcı et al. (2012) employed Fuzzy Logic Classifier to 
determine the MOR and MOE of the heat-treated chestnut 
woods. The authors found that the developed model can 
calculate the MOR and MOE parameters of the test 
specimens with an accuracy of  92.64% and 90.35%, 
respectively, emphasizing its implementation in the wood 
industry manufacturing stages [3].
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Yang et al. (2015) modified wood at high temperatures 
and under steam pressure. They created an ANN model to 
determine the mechanical properties of wood, considering 
temperature, time, and relative humidity as input 
parameters. The proposed ANN-based model yielded
MOR and MOE values with reasonable accuracy [4].
Jiang et al. (2021) performed non-destructive testing of 
bamboo-based wood. The authors considered a duo 
Artificial Neural Network (ANN) and support vector 
machine (SVM) models to determine the MOR and MOE 
parameters. The outcomes of the study demonstrated that 
the SVM model with correlation coefficients of 0.90, 
0.93, and 0.95 in the training, validation, and testing 
stages possesses higher accuracy than the ANN model [5].
The current study investigates the MOR of heat-treated 
woods employing Feed-Forward networks on the selected 
dataset. A genetic algorithm is used to optimize the 
weights of ANNs, followed by selecting the best-
performed model among all samples of the same type. The 
proposed model is compared with the Particle Swarm 
Optimization (PSO) algorithm to evaluate its accuracy.

2 BACKGROUND
2.1 ARTIFICIAL NEURAL NETWORKS (ANN)
An artificial neural network (ANN) is a data model that 
can be taught from past experiences while implementing 
the outcomes to new data  [6,7]. ANN is fabricated with 
neurons that work simultaneously to resolve a problem 
locally. Neural networks learn through typical 
computations describing the intrinsic mechanisms of the 
dataset in a reduced human brain-like manner. This study 
uses the Feed-Forward model comprising more than three 
layers, including input, hidden and output.
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Each layer carries a set of nodes known as neurons 
connected to the layer above it. Weights, biases, and an 
activation function that can be continuous, linear, or 
nonlinear frame the neurons in the hidden and output 
layers. Once the structure is framed for Feed-Forward 
training, several procedures will be implemented to 
optimize the weight and bias levels. The study employs, 
The Levenberg Marquardt technique for distributing the 
error to yield the best fit with the least error [8,9]. 
 
2.2 GENETIC ALGORITHM (GA) 
GA is thoroughly described considering biological 
concepts, including genetics and evolution. An individual 
is a candidate solution (typically a parameter vector), and 
a gene is a component of an individual, while a population 
is a collection of candidate solutions. An algorithm 
iteration is generally referred to as a generation, as such, 
a candidate solution or parent is modified in some way to 
generate a new candidate solution or child, followed by 
the algorithm's execution [10]. The standard GA 
algorithm comprises three genetic operators, including 
selection, crossover, and mutation. The selection operator 
is used to pick parents during each generation. The 
individuals with higher fitness levels have a greater 
chance of selecting the operator, followed by producing 
additional individuals or children [10]. 
 
3 METHODS AND MATERIALS 
3.1 DATASET 

In this study, the required data set is extracted from past 
studies [4,11]. In all, 104 samples of heat-treated woods 
were studied. The Feed-Forward network, considering 
temperature, time, and relative humidity as input 
parameters, was implemented on the dataset to determine 
the MOR of heat-treated wood. The statistical properties 
of the input and output parameters are shown in Table 1. 
While Figures 1 and 2 illustrate the box normal plot and 
histogram of the MOR parameter, indicating the cluster of 
MOR values between 60 to 70 MPa.  

Table 1:Input and output parameters in heat-treated wood 
[4,11]  

Num Parameter Unit Type MIN MAX 
1 Temperature °C Input 120 210 
2 Time hrs Input 0.5 9 

3 Relative 
Humidity % Input 0 100 

4 Modulus of 
Rupture MPa Output 45.1 78.2 

 

Figure 1: Box normal plot of experimental data for MOR 

 
Figure 2: MOR plot for experimental data histogram 
3.2 ANN MODEL COMBINED WITH GENETIC 

ALGORITHM  
Of 104, 73 samples (70%) were used for training, and the 
remaining 31 (30%) contributed to testing the data. Two-
layer neural networks with different transfer functions 
suggested the various topologies, as presented in Table 2. 
The weights and biases of the models were reduced by 
employing a genetic algorithm. Table 3 displays various 
properties of the genetic algorithm. 

Table 2: Different topologies used in ANNs 

No Topology Hidden and Output Activations 
1 3-4-3-1 PURELIN-PURELIN-PURELIN 
2 3-4-2-1 POSLIN-POSLIN-PURELIN 
3 3-3-4-1 LOGSIG-LOGSIG-PURELIN 
4 3-3-3-1 POSLIN-POSLIN-PURELIN 
5 3-3-2-1 TANSIG-TANSIG-PURELIN 

Table 3: Genetic algorithm (GA) parameters  [12] 

Parameter Value Parameter Value 
Crossover 

(%) 50 Max generations 150 

Crossover 
method 

single 
point 

Recombination 
(%) 15 

Lower bound -1 Selection Mode 1 
Upper bound +1 Population Size 150 

 
Table 4 presents the output of five GA based models, GA-
ANN, created to determine the MOR of the heat-treated 
wood samples. Five different topologies, as illustrated in 
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Figure 3, were evaluated on the measures of Variance 
Account Factor (VAF) and Root Mean Squared Error 
(RMSE) values. The results indicated that the network 
with the GA-ANN 2L topology (3-4) design achieved the 
lowest RMSE error rates and the highest VAF percent 
when estimating the output parameters.

a.

b.

Figure 3: Statistical values for the proposed topologies in all 
data: a) RMSE, b) VAF%

Further, as presented in Table 4, the Feed-Forward 
network with a GA-ANN 2L topology (3-4) has the 
lowest value of the RMSE index in the training (1.28) and 
testing (1.75) phases. Additionally, the model with the 
same topology maintained the highest VAF value in the
training (96%) and the testing (94%) phases indicating the 
least error among other topologies of the same algorithm. 
The GA-ANN 2L network topology (3-4) is shown in 
Figure 4.

Table 4: Statistics of ANNs combined with the genetic algorithm 
(GA) for the MOR parameter
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GA-ANN 
2L(4-3) 4 3 4.59 51 5.15 46 4.76 51

GA-ANN 
2L(4-2) 4 2 2.95 80 3.04 81 2.98 81

GA-ANN 
2L(3-4) 3 4 1.28 96 1.75 94 1.43 96

GA-ANN 
2L(3-3) 3 3 4.37 56 5.18 47 4.63 54

GA-ANN 
2L(3-2) 3 2 2.78 82 1.95 92 2.56 86

Figure 4: The architecture of the ANN with the 3-3-4-1 topology

Figure 5 illustrates the best performance of GA-ANN 2L 
(3-4), as depicted in the calculated values versus their 
experimental counterparts in the testing and training 
phases. The model's projected values fall in the vicinity of
the line (y=x), indicating the model's accuracy. Further, 
the R2 value for the training and testing phases are found 
as 0.96 and 0.94, respectively, demonstrating the accuracy 
of the proposed model.

a.

y = 0.9706x + 1.9909
R² = 0.96
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b.

Figure 5: Experimental vs. predicted values of MOR for the GA-
ANN 2L(3-4) model: a) training, b) testing

3.3 ANN MODEL COMBINED WITH PARTICLE 
SWARM OPTIMIZATION 

The study employs a PSO-optimized ANN to calculate the 
MOR variable. Similar to GA based models, five 
topologies presented in Table 2 were used, creating 
various models for estimating the output parameters.
The models with PSO-ANN 2L(4-2) topology best 
calculated the required parameter (MOR), as indicated in 
Table 5 and Figure 6. The testing and training outputs for 
VAF and RMSE indicators confirm the lowest error rate 
of the model compared to the experimental data. Also, as 
indicated in the figure, the R2 values of the training and 
testing phases are found to be 0.73 and 0.86, respectively, 
indicating the model's appropriate accuracy.

Table 5: Statistics of ANNs combined with the Particle Swarm 
Optimization algorithm for the MOR parameter
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4 2 3.43 73 2.79 85 3.25 77

a.
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Figure 6: Experimental vs. predicted values of MOR for the 
PSO-ANN 2L(4-2) model: a) training, b) testing

3.4 SELECTION OF THE BEST MODEL

Finally, the best-performed GA-ANN and PSO-ANN 
models are compared on equal measures for all the 
datasets. Figure 7 illustrates the comparative normal 
distribution of the best-performed models with their 
experimental counterparts. As displayed in the figure, the
normal distribution of GA-ANN is closer to the 
experimental data than the PSO-ANN model indicating
the higher accuracy of the GA-ANN model. The 
comparison of the two models, illustrated in Figure 8, 
confirms the relatively higher accuracy of the GA-ANN 
model over the PSO-ANN model.
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Figure 7: Normal distribution of experimental data and GA-
ANN and PSO-ANN models

Figure 8: Experimental vs. predicted values of MOR for 
different models

4 CONCLUSION
A total of 104 experimental results obtained from spruce 
and Larix gmelinii woods were used to determine the 
MOR of the heat-treated woods. Artificial neural 
networks were optimized by employing genetic 
algorithms and particle swarm optimization to analyze the 
considered dataset. The analyses of the results suggested 
the better performance of GA-ANN over PSO-ANN for 
determining the modulus of rupture of the heat-treated 
woods. 
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