2022 5th International Conference on Artificial Intelligence for Industries (AI4I 2022)

Laguna Hills, California, USA 19-21 September 2022

IEEE Catalog Number: CFP22O61-POD ISBN: 978-1-6654-5962-4

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22O61-POD

 ISBN (Print-On-Demand):
 978-1-6654-5962-4

 ISBN (Online):
 978-1-6654-5961-7

ISSN: 2770-470X

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2022 5th International Conference on Artificial Intelligence for Industries (AI4I)

AI4I 2022

Table of Contents

Message from the AI4I 2022 General Co-Chairs viii Message from the AI4I 2022 Program Co-Chairs x
Machine Learning and Recommender Systems
Detection of Almond Leaf Scorch with Artificial Intelligence for the Agriculture Industry
A Scalable Recommendation System Approach for a Companies - Seniors Matching
New Perspectives on Recommender Systems for Industries
Learning Causal Graphs in Manufacturing Domains Using Structural Equation Models
Graph Neural Network Models for Chemical Compound Activeness Prediction For COVID-19 Drugs Discovery Using Lipinski's Descriptors
Towards AI Platforms for Stationary Retail

Deep Learning and Computer Vision

License Plate Recognition System Abu Anas Ibn Samad (Sigmind.ai Bangladesh, Bangladesh) and Towneda Albert (Rangladesh University of Dynesosionals, Bangladesh)	23
Akhter (Bangladesh University of Professionals, Bangladesh)	
Real Time Analysis on Bus Passenger for Unmanned Door Operation Using Overhead Fishey	
Cameras	27
Channel Pruning in Quantization-Aware Training: An Adaptive Projection-Gradient Descent-Shrinkage-Splitting Method	31
Post-Fault Power Grid Voltage Prediction via 1D-CNN with Spatial Coupling	35
Deep Learning and Applications Key Elements to Contextualize AI-Driven Condition Monitoring Systems Towards Their	
Deep Learning and Applications Key Elements to Contextualize AI-Driven Condition Monitoring Systems Towards Their Risk-Based Evaluation Mehdi Dadfarnia (National Institute of Standards & Technology, USA) and Michael Sharp (National Institute of Standards & Technology, USA)	38
Key Elements to Contextualize AI-Driven Condition Monitoring Systems Towards Their Risk-Based Evaluation	
Key Elements to Contextualize AI-Driven Condition Monitoring Systems Towards Their Risk-Based Evaluation	42 essed

Applications

Efficient DER Voltage Control Using Ensemble Deep Reinforcement Learning	5
Enhancing Zero-Shot Many to Many Voice Conversion via Self-Attention VAE with Structurally Regularized Layers	9
of California, USA), Meng Yu (Tencent AI Lab, Tencent at Bellevue, USA), and Jack Xin (University of California, USA)	
Virtual Commissioning Simulation as OpenAI Gym - A Reinforcement Learning Environment for Control Systems	4
Explainable Artificial Intelligence for a High Dimensional Condition Monitoring Application Using the SHAP Method	8
Utilization of Data Augmentation Techniques to Enhance Learning with Sparse Datasets	3
AIK12 Track - Plenary	
AI and K–12 Forum	4
Author Index	7