PROCEEDINGS OF SPIE

Advanced Lasers, High-Power Lasers, and Applications XIII

Jun Liu Shibin Jiang Ingmar Hartl Editors

5-11 December 2022 ONLINE. China

Sponsored by
SPIE
COS—Chinese Optical Society

Cooperating Organizations

Tsinghua University (China) • Peking University (China) • University of Science and Technology of China (China) • Zhejiang University (China) • Tianjin University (China) • Beijing Institute of Technology (China) • Beijing University of Posts and Telecommunications (China) • Nankai University (China) • Changchun University of Science and Technology (China) • Capital Normal University (China) • Huazhong University of Science and Technology (China) • Beijing Jiaotong University (China) • China Jiliang University (China) • Shanghai Institute of Optics and Fine Mechanics, CAS (China) • Changchun Institute of Optics, Fine Mechanics and Physics, CAS (China) • Institute of Semiconductors, CAS (China) • Institute of Optics and Electronics, CAS (China) • Institute of Physics, CAS (China) • Shanghai Institute of Technical Physics, CAS (China) • China Instrument and Control Society (China) • Optical Society of Japan (Japan) • Optical Society of Korea (Republic of Korea) • Australian and New Zealand Optical Society • Optics and Photonics Society of Singapore (Singapore) • European Optical Society

Supporting Organizations

China Association for Science and Technology (CAST) (China)
Department of Information of National Nature Science Foundation, China (NSFC) (China)

Published by SPIE

Volume 12310

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in Advanced Lasers, High-Power Lasers, and Applications XIII, edited by Jun Liu, Shibin Jiang, Ingmar Hartl, Proc. of SPIE 12310, Seven-digit Article CID Number (DD/MM/YYYY); (DOI URL).

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510656864

ISBN: 9781510656871 (electronic)

Published by

SPIF

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) SPIE.ora

Copyright © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE).

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of fees. To obtain permission to use and share articles in this volume, visit Copyright Clearance Center at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: A unique citation identifier (CID) number is assigned to each article in the Proceedings of SPIE at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

vii xi	Symposium Committee Conference Committee
	ULTRA-INTENSE AND HIGH-POWER LASERS
12310 04	Research on the effect of image noise on non-iterative fast mode decomposition technique in high-power fiber lasers [12310-3]
12310 07	High-performance seed pulses for multi-petawatt laser [12310-6]
12310 08	Millijoule femtosecond Tm: YAP regenerative amplifier for driving ultrabroad band collinear mid-infrared optical parametric amplifiers (Invited Paper) [12310-7]
	FIBER AND SOLID LASERS I
12310 OB	Laser performance of LD side-pumped Er: YSGG crystal rods with different diameters [12310-10]
12310 0C	A passively Q-switched dual-wavelength laser with pulsed LD coaxial end-pumped configuration [12310-11]
	FIBER AND SOLID LASERS II
12310 OE	FIBER AND SOLID LASERS II New progress of high-power narrow-linewidth fiber lasers (Invited Paper) [12310-13]
12310 0E 12310 0F	
	New progress of high-power narrow-linewidth fiber lasers (Invited Paper) [12310-13]
12310 OF	New progress of high-power narrow-linewidth fiber lasers (Invited Paper) [12310-13] Study on pulse jitter of passively Q-switched Nd:YAG/Cr:YAG microchip laser [12310-14] Single longitudinal mode and wavelength tunable Er3+-doped sesquioxide ceramic laser at
12310 0F 12310 0G	New progress of high-power narrow-linewidth fiber lasers (Invited Paper) [12310-13] Study on pulse jitter of passively Q-switched Nd:YAG/Cr:YAG microchip laser [12310-14] Single longitudinal mode and wavelength tunable Er³+-doped sesquioxide ceramic laser at ~1.6 µm [12310-15]
12310 OF 12310 OG 12310 OH	New progress of high-power narrow-linewidth fiber lasers (Invited Paper) [12310-13] Study on pulse jitter of passively Q-switched Nd:YAG/Cr:YAG microchip laser [12310-14] Single longitudinal mode and wavelength tunable Er³+-doped sesquioxide ceramic laser at ~1.6 µm [12310-15] A general theoretical model of spatiotemporal mode-locked multimode fiber lasers [12310-16]

12310 OL	A 209 MHz compact all-fiber Er-doped mode-locked laser [12310-19]
	FIBER AND SOLID LASERS IV
-	FIBER AND SOLID LASERS IV
12310 00	A stable and tunable PT-symmetric single-longitudinal-mode fiber laser [12310-22]
12310 OP	Gain- and Q-switched operation of Er:Y ₂ O ₃ ceramic laser at 1640 nm [12310-24]
12310 0Q	1 kW low-SWaP fiber laser based on the technology of phase-change cool storage [12310-25]
	ADVANCED LASER APPLICATIONS
12310 OU	Frequency stepwise fiber laser for practical gas spectroscopy (Invited Paper) [12310-29]
12310 OX	Gain-self-balanced coaxial-end-pumped orthogonally polarized laser with high coherence and good beam quality [12310-32]
	POSTER SESSION
12310 OY	High-efficient diode-end-pumped actively Q-switched Nd:YAG/Nd:YVO4 laser [12310-23]
12310 10	Mid-infrared properties of optical parametric oscillations based on layered PtS $_2$ modulated laser pumping [12310-34]
12310 11	Nonlinear optical properties and laser modulation of gold non-covalently doped all-inorganic perovskite [12310-35]
12310 13	Passively Q-switched fiber laser based on Sb ₂ S ₃ saturable absorber [12310-40]
12310 14	Sinlge-frequency fiber laser with tunable linewidth by optical self-injection [12310-44]
12310 15	Study on the simulation of YDFA and reabsorption effect [12310-45]
12310 16	Experimental study of a new kind of gas-flowing diode pumped cesium laser [12310-46]
12310 17	The ratio of quadratic and cubic nonlinearity of crystals in the THz range [12310-37]
12310 18	Random lasing in multimode diode-pumped graded-index fiber based on artificial Rayleigh scattering in fs-inscribed random structure [12310-38]

12310 19 **Incoherent laser** [12310-41]

7-core Yb-doped fiber laser with femtosecond pulse inscribed fiber Bragg gratings [12310-42]