2023 IEEE International Conference on Smart Mobility (SM 2023)

Thuwal, Saudi Arabia 19 – 21 March 2023

IEEE Catalog Number: CFP23CD9-POD **ISBN:**

979-8-3503-1276-8

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP23CD9-POD
ISBN (Print-On-Demand):	979-8-3503-1276-8
ISBN (Online):	979-8-3503-1275-1

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Table of Contents 2023 IEEE International Conference on Smart Mobility (SM)

Track 1: Smart Mobility Technologies

The Last Mile Problem: Determining the Commuters' Willingness and Demand Preferences Towards Micromobility Solutions in Sri Lanka	
Shujan Suntharalingam (University of Sri Jayewardenepura & PickMe, Sri Lanka), Lasith Gunawardena (University of Sri	
Jayewardenapura, Sri Lanka)	1
A Slow Shifting Concerned Machine Learning Method for Short-Term Traffic Flow Forecasting	
Zann Koh (Singapore University of Technology and Design, Singapore), Yan Qin (Nanyang Technological University, Singapore), Yong Liang Guan (Nanyang Technological University, Singapore), Chau Yuen (Singapore University of Technology and Design, Singapore)	
Optimal Placement of Bus Stops Using Particle Swarm Optimization	
Changyu Li (University of Toronto, Canada), Xiangcheng Wu (University of Toronto, Canada), Ran Ge (University of Toronto, Canada), Alaa Khamis (General Motors Canada, Canada)	15
Deep Reinforcement Learning-Based Traffic Signal Control	
Alaa Khamis (General Motors Canada, Canada), Tianyu Shi (University of Toronto, Canada), Jinzhuo Tang (University of Toronto, Canada), Ge Gao (University of Toronto, Canada), Junyun Ruan (University of Toronto, Canada)	21
Cooperative Variable Speed Limit Control Using Multi-Agent Reinforcement Learning and Evolution Strategy for Improved Throughput in Mixed Traffic	
Kaize Lin (University of Toronto, Canada), Zihe Jia (University of Toronto, Canada), Peiqi Li (University of Toronto, Canada), Tianyu Shi (University of Toronto, Canada), Alaa Khamis (General Motors Canada, Canada)	27
School Bus Routing Using Metaheuristics Algorithms	
Bingxu Chen (University of Toronto, Canada), Zihao Xue (University of Toronto, Canada), Xiangwen Deng (University of Toronto, Canada), Alaa Khamis (General Motors Canada, Canada)	
Optimal Placement of Drone Delivery Stations and Demand Allocation Using Bio-Inspired Algorithms	
Feras Elsaid (University of Toronto, Canada), Enrique Torres Sanchez (University of Toronto, Canada), Yilun Li (University of Toronto, Canada), Alaa Khamis (General Motors Canada, Canada)	
Benchmark of Deep Learning Visual and Far-Infrared Videos Toward Weather-Tolerant Pedestrian Traffic Monitoring	
Takumi Fukuda (Nara Institute of Science and Technology, Japan), Ismail Arai (Nara Institute of Science and Technology, Japan), Arata Endo (Information Initiative Center, Nara Institute of Science and Technology, Japan), Masatoshi Kakiuchi (Nara Institute	45
of Science and Technology, Japan), Kazutoshi Fujikawa (Nara Institute of Science and Technology, Japan)	
A Constant Time Secure and Private Evaluation of Decision Trees in Smart Cities Enabled by Mobile IoT Artrim Kjamilji (Istanbul Commerce University, Turkey)	-1
Scalable Planning of Garbage Collection in a Smart City George Daoud (Ontario Tech University, Canada), Mohamed El-Darieby (Ontario Tech University, Canada)	50
SMAC-Tuned Deep Q-Learning for Ramp Metering	
Omar ElSamadisy (University of Toronto, Canada), Yazeed Abdulhai (University of Toronto, Canada), Haoyuan Xue (University of Toronto, Canada), Ilia Smirnov (University of Toronto, Canada), Elias Khalil (University of Toronto, Canada), Baher Abdulhai (Unversity of Toronto, Canada)	
Analysis and Design of Hyperloop Communication Network Based on QoS Requirements	
Wafa Hedhly (King Abdullah University of Science and Technology (KAUST), Saudi Arabia), Osama Amin (King Abdullah University of Science and Technology (KAUST), Saudi Arabia), Mohamed-Slim Alouini (King Abdullah University of Science and	
Technology (KAUST), Saudi Arabia), Basem Shihada (KAUST, Saudi Arabia)	73

Design of an Adaptive Traffic Light Network System Through an AloT-Based Analytic Model	
Mark Cronielle V Ditan (Adamson University, Philippines), Maria Abigail B Dionglay (Adamson University, Philippines), Joshua	
Daniel C Ayson (Adamson University, Philippines), Lee Kelvin D. Bautista (Adamson University & Microchip Inc., Philippines),	
Aaron Jethro L Jubac (Adamson University, Philippines), Dylan Josh D Lopez (Chung Yuan Christian University, Taiwan & Borq	
Technologies, Inc., Philippines), Jasper Meynard P Arana (Adamson University, Philippines)	
Mobile Aerial Base Stations for Ultra-Reliable and Energy-Efficient Downlink Communications	
Yasser Nabil (Cairo University, Egypt), Hesham ElSawy (School of Computing, Queen's University, Canada), Suhail Al-Dharrab	
(King Fahd University of Petroleum and Minerals, Saudi Arabia), Hussein Attia (King Fahd University of Petroleum and Minerals	
(KFUPM), Saudi Arabia), Hassan Mostafa (University of Toronto, Canada), Ahmed Khalil (Cairo University, Egypt), Ibrahim Qamar	
(Cairo University, Egypt)	
HD Maps for Connected and Automated Vehicles: Enabling Technologies and Future Directions	
Ghadeer Abdelkader (Ontario Tech University, Canada), Taghreed Alghamdi (Ontario Tech University, Canada), Khalid Elgazzar	
(Ontario Tech University, Canada), Alaa Khamis (General Motors Canada, Canada)	
Secure and Intelligent Video Surveillance Using Unmanned Aerial Vehicles	
Ahmad Salman (James Madison University, USA), Ethan Simmers (James Madison University, USA), Evan Day (James Madison	
University, USA), Alma Oracevic (University of Bristol, United Kingdom (Great Britain))	
Reinforcement Learning Based Intrusion Detection Systems for Drones: A Brief Survey	
Raby Hamadi (King Abdullah University of Science and Technology, Saudi Arabia), Hakim Ghazzai (King Abdullah University of	
Science and Technology, Saudi Arabia), Yehia Massoud (King Abdullah University of Science and Technology, Saudi Arabia)	104
Graph Neural Networks for Traffic Pattern Recognition: An Overview	
Elham Awad Binshaflout (King Abdullah University of Science and Technology & Imam Abdulrahman Bin Faisal University, Saudi	
Arabia), Hakim Ghazzai (King Abdullah University of Science and Technology, Saudi Arabia), Yehia Massoud (King Abdullah	
University of Science and Technology, Saudi Arabia)	110
Real-Time Video Frame De-Raining Using Disentangled Generative Models	
Aymen Hamrouni (King Abdullah University of Science and Technology, Saudi Arabia), Raby Hamadi (King Abdullah University	
of Science and Technology, Saudi Arabia), Hakim Ghazzai (King Abdullah University of Science and Technology, Saudi Arabia),	
Yehia Massoud (King Abdullah University of Science and Technology, Saudi Arabia)	116
Medium DC Voltage Power Converter for Electrified Railway with Fault Tolerant Control Strategy	
Boubakeur Rouabah (Kasdi Merbah University Ouargla, Algeria), mohammed Abdelbasset Mahboub (Kasdi Merbah University	
Ouargla, Algeria), Mohamed Redouane Kafi (Université Kasdi Merbah Ouargla, Algeria), Houari Toubakh (Kasdi Merbah	
University Ouargla, Algeria), Mohamed Djemai (Polytechnic University Hauts-de-France, France), Lazhar Ben-Brahim (Qatar	
University, Qatar)	121
Improving Bus Arrival Time Prediction Accuracy with Daily Periodic Based Transportation Data Imputation	
Takumi Niwa (Nara Institute of Science and Technology, Japan), Ismail Arai (Nara Institute of Science and Technology, Japan),	
Arata Endo (Information Initiative Center, Nara Institute of Science and Technology, Japan), Masatoshi Kakiuchi (Nara Institute	
of Science and Technology, Japan), Kazutoshi Fujikawa (Nara Institute of Science and Technology, Japan)	126
Transportation Mode Recognition Based on Cellular Network Data	
Kalamkas Zhagyparova (King Abdullah University of Science and Technology, Saudi Arabia), Ahmed Bader (King Abdullah	
University of Science & Technology (KAUST), Saudi Arabia), Nour Kouzayha (King Abdullah University of Science and	
Technology (KAUST), Saudi Arabia), Hesham ElSawy (School of Computing, Queen's University, Canada), Tareq Y. Al-Naffouri	
(King Abdullah University of Science and Technology, USA)	132

Track 2: City Planning for Smart Mobility

ADAM: An Auction-Based Datacenter Management in Vehicular Cloud	
Syed R Rizvi (Old Dominion University, USA), Susan Zehra (Old Dominion University, USA), Stephan Olariu (Old Dominion	
University, USA), Samy S. El-Tawab (James Madison University, USA)	138
Solar-Powered Vehicle-To-Load (V2L) Plug-In Electric Vehicles: Alleviation of the Photovoltaic Power Decay	
Imran Pervez (King Abdullah University of Science and Technology, Saudi Arabia), Charalampos Antoniadis (King Abdullah	
University of Science and Technology, Saudi Arabia), Hakim Ghazzai (King Abdullah University of Science and Technology,	
Saudi Arabia), Yehia Massoud (King Abdullah University of Science and Technology, Saudi Arabia)	144

Image-Based Automated Framework for Detecting and Classifying Unmanned Aerial Vehicles	
Raby Hamadi (King Abdullah University of Science and Technology, Saudi Arabia), Hakim Ghazzai (King Abdullah University of	
Science and Technology, Saudi Arabia), Yehia Massoud (King Abdullah University of Science and Technology, Saudi Arabia)	149
V3Trans-Crowd: A Video-Based Visual Transformer for Crowd Management Monitoring	
Yuqi Zuo (University of Electronic Science and Technology of China, China), Aymen Hamrouni (King Abdullah University of	
Science and Technology, Saudi Arabia), Hakim Ghazzai (King Abdullah University of Science and Technology, Saudi Arabia),	
Yehia Massoud (King Abdullah University of Science and Technology, Saudi Arabia)	154
Practical Implementation of Electric Vehicle Integration into a Microgrid Using V2G and G2V	
Zia Ullah (Thuwal & King Abdullah University of Science and Technology, Saudi Arabia), Muhammad Zeeshan (King Abdullah	
University of Science and Technology, Saudi Arabia), Shehab Ahmed (KAUST, Saudi Arabia)	160

Track#3: Smart Mobility Governance

Theory of Change for the Transformation Towards Open Smart and Sustainable Mobility	
Zineb Mahrez (National High School for Electricity and Mechanics, Morocco), Essaid Sabir (University of Quebec at Montreal,	
Canada), Walid Saad (Virginia Tech, USA), Tarik Nesh-Nash (Impact for Development, Morocco), Mohammed Sadik (ENSEM,	
Morocco)	166
Smart Mobility for Sustainable Development Goals: Enablers and Barriers	
Alaa Khamis (General Motors Canada, Canada), Suzette Malek (General Motors, USA)	173
Automated Mobility: A Comparison Between Aviation and Automotive	
Alaa Khamis (General Motors Canada, Canada), Partha P Goswami (General Motors, USA)	181
Cybersecurity Regulation of Smart Mobility Hardware Systems: Case Assessment for Spin-Based MTJ Devices	
Divyanshu Divyanshu (King Abdullah University of Science and Technology, Saudi Arabia), Rajat Kumar (King Abdullah	
University of Science and Technology, Saudi Arabia), Danial Khan (King Abdullah University of Science and Tech (KAUST), Saudi	
Arabia), Selma Amara (King Abdullah University of Science and Technology, Saudi Arabia), Yehia Massoud (King Abdullah	
University of Science and Technology, Saudi Arabia, Saudi Arabia)	186
System Leadership: Self-Driving Vehicles Regulation and the Role of Government	
Sevinj Iskandarova (Bridgewater College, USA), Samy S. El-Tawab (James Madison University, USA)	191