2022 IEEE 29th International **Conference on High Performance** Computing, Data, and Analytics (HiPC 2022)

Bengaluru, India 18 – 21 December 2022

IEEE Catalog Number: CFP22176-POD ISBN:

978-1-6654-9424-3

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22176-POD

 ISBN (Print-On-Demand):
 978-1-6654-9424-3

 ISBN (Online):
 978-1-6654-9423-6

ISSN: 1094-7256

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC) HiPC 2022

Table of Contents

Message from the HiPC 2022 General Co-Chairsx
Message from the HiPC 2022 Program Chairs xiii
HiPC 2022 Organization xv
HiPC 2022 Steering Committee xvii
HiPC 2022 Technical Program Committeexviii
Keynote 1: Paolo Lennexxii
Keynote 2: P Sadayappanxxiii
Keynote 3: Jack Dongarraxxiv
Keynote 4: Per Stenstrom xxv
Technical Session 1: Neural Networks
Split-Knit Convolution: Enabling Dense Evaluation of Transpose and Dilated Convolutions on GPUs
Arjun Menon Vadakkeveedu (Indian Institute of Technology Madras, India), Debabrata Mandal (AI & Advanced Computing Lab (ACL), KLA-Tencor Software India Pvt. Ltd., India), Pradeep Ramachandran (AI & Advanced Computing Lab (ACL), KLA-Tencor Software India Pvt. Ltd., India), and Nitin Chandrachoodan (Indian Institute of Technology Madras, India)
Low-Latency Mini-Batch GNN Inference on CPU-FPGA Heterogeneous Platform 11 Bingyi Zhang (University of Southern California, USA), Hanqing Zeng (Meta AI, USA), and Viktor Prasanna (University of Southern California, USA)
Accelerating Broadcast Communication with GPU Compression for Deep Learning Workloads 22 Qinghua Zhou (The Ohio State University, USA), Quentin Anthony (The Ohio State University, USA), Aamir Shafi (The Ohio State University, USA), Hari Subramoni (The Ohio State University, USA), and Dhabaleswar K. Panda (The Ohio State University, USA)
AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern GPU-Based HPC Clusters
Nawras Alnaasan (The Ohio State University, USA), Arpan Jain (The Ohio State University, USA), Aamir Shafi (The Ohio State University, USA), Hari Subramoni (The Ohio State University, USA), and Dhabaleswar K. Panda (The Ohio State University, USA)

Joint Partitioning and Sampling Algorithm for Scaling Graph Neural Network
Building a Performance Model for Deep Learning Recommendation Model Training on GPUs 4 Zhongyi Lin (University of California, Davis, USA), Louis Feng (Meta Platforms, Inc, USA), Ehsan K. Ardestani (Meta Platforms, Inc, USA), Jaewon Lee (Meta Platforms, Inc, USA), John Lundell (Meta Platforms, Inc, USA), Changkyu Kim (Meta Platforms, Inc, USA), Arun Kejariwal (Meta Platforms, Inc, USA), and John D. Owens (University of California, Davis, USA)
Technical Session 2: HPC Architecture and Communication
Accelerating Prefix Scan with In-network Computing on Intel PIUMA 5 Kartik Lakhotia (Intel Labs), Fabrizio Petrini (Intel Labs), Rajgopal Kannan (U.S. Army Research Lab), and Viktor Prasanna (University of Southern California)
memwalkd : Accelerating Key-Value Stores using Page Table Walkers
Energy Consumption Evaluation of Optane DC Persistent Memory for Indexing Data Structures 7. Manolis Katsaragakis (National Technical University of Athens(NTUA), Greece; KU Leuven(KUL), Belgium), Lazaros Papadopoulos (National Technical University of Athens(NTUA), Greece), Christos Baloukas (National Technical University of Athens(NTUA), Greece), Verena Kantere (National Technical University of Athens(NTUA), Greece), Francky Catthoor (KU Leuven (Belgium); IMEC, Leuven (Belgium)), and Dimitrios Soudris (National Technical University of Athens(NTUA), Greece)
LDT: Lightweight Dirty Tracking of Memory Pages for x86 Systems
Designing Efficient Pipelined Communication Schemes using Compression in MPI Libraries9 Bharath Ramesh (The Ohio State University, USA), Qinghua Zhou (The Ohio State University, USA), Aamir Shafi (The Ohio State University, USA), Mustafa Abduljabbar (The Ohio State University, USA), Hari Subramoni (The Ohio State University, USA), and Dhabaleswar K. Panda (The Ohio State University, USA)

Efficient Personalized and Non-Personalized Alltoall Communication for Modern Multi-HCA GPU-Based Clusters)0
Technical Session 3: HPC Algorithms and Solvers	
High-Performance Truss Analytics in Arkouda)5
Parallel Vertex Color Update on Large Dynamic Networks	15
IMpart: A Partitioning-Based Parallel Approach to Accelerate Influence Maximization	<u>2</u> 5
Leveraging GPU Tensor Cores for Double Precision Euclidean Distance Calculations	35
A Portable Sparse Solver Framework for Large Matrices on Heterogeneous Architectures	l5
Performance Analysis of GPU Accelerated Meshfree q-LSKUM Solvers in Fortran, C, Python, and Julia	56

Technical Session 4: High Performance and Data Science Applications

Deep Learning-Based In Situ Analysis Framework for Tropical Cyclogenesis Prediction	56
iBGT: High-Performance Bayesian Group Testing for COVID-19	76
ustomer Churn Prediction in Telecommunications Industry Based on Conditional Wasserstein AN	36
Real-Time Flood Inundation Prediction on SX-Aurora TSUBASA	€
recise Parallel FEM-Based Interactive Cutting Simulation of Deformable Bodies) 8
aling the SOO Global Blackbox Optimizer on a 128-Core Architecture20 David Redon (University of Lille, France), Bilel Derbel (University of Lille, Inria, France), and Pierre Fortin (University of Lille, France))4
echnical Session 5: HPC System Software and Libraries	
GPU-Accelerated Data Transformation Framework Rooted in Pushdown Transducers	15
n Algorithmic and Software Pipeline for Very Large Scale Scientific Data Compression with ror Guarantees	26
OMPROF and COMPLACE: Shared-Memory Communication Profiling and Automated Thread acement a Dynamic Binary Instrumentation	36

Keith Bateman (Illinois Institute of Technology), Neeraj Rajesh (Illinois Institute of Technology), Jaime Cernuda Garcia (Illinois Institute of Technology), Luke Logan (Illinois Institute of Technology), Jie Ye (Illinois Institute of Technology), Stephen Herbein (Lawrence Livermore National Laboratory), Anthony Kougkas (Illinois Institute of Technology), and Xian-He Sun (Illinois Institute of Technology)	. 246
IRIS-BLAS: Towards a Performance Portable and Heterogeneous BLAS Library Narasinga Rao Miniskar (Oak Ridge National Laboratory, USA), Mohammad Alaul Haque Monil (Oak Ridge National Laboratory, USA), Pedro Valero-Lara (Oak Ridge National Laboratory, USA), Frank Liu (Oak Ridge National Laboratory, USA), and Jeffery S. Vetter (Oak Ridge National Laboratory, USA)	. 256
Avinash Maurya (Rochester Institute of Technology, USA), Bogdan Nicolae (Argonne National Laboratory, USA), M. Mustafa Rafique (Rochester Institute of Technology, USA), Amr M. Elsayed (Brightskies Technologies, Egypt), Thierry Tonellot (Saudi Aramco, Saudi Arabia), and Franck Cappello (Argonne National Laboratory, USA)	. 262
Technical Session 6: Data Science Methods	
1-bit LAMB: Communication Efficient Large-Scale Large-Batch Training with LAMB's Convergence Speed	272
(University of Rochester), Samyam Rajbhandari (Microsoft), and Yuxiong He (Microsoft)	
(University of Rochester), Samyam Rajbhandari (Microsoft), and Yuxiong He (Microsoft) Input Feature Pruning for Accelerating GNN Inference on Heterogeneous Platforms Jason Yik (Harvard University), Sanmukh R. Kuppannagari (Case Western Reserve University), Hanqing Zeng (Meta AI), and Viktor K. Prasanna (University of Southern California)	282
He (Microsoft) Input Feature Pruning for Accelerating GNN Inference on Heterogeneous Platforms Jason Yik (Harvard University), Sanmukh R. Kuppannagari (Case Western Reserve University), Hanqing Zeng (Meta AI), and Viktor K. Prasanna	
He (Microsoft) Input Feature Pruning for Accelerating GNN Inference on Heterogeneous Platforms	292