2022 IEEE 21st International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC 2022)

Toronto, Ontario, Canada 8 – 10 December 2022

IEEE Catalog Number: CFP22312-POD **ISBN:**

978-1-6654-9085-6

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP22312-POD
ISBN (Print-On-Demand):	978-1-6654-9085-6
ISBN (Online):	978-1-6654-9084-9

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Table of Contents

Preface	iii
Conference Organization	iv
Keynotes	1
Cybernetics 2.0 Prof. Bernard Widrow	1
A Society-Oriented Environment of Machine Learning Prof. Witold Pedrycz	2
Are you Surprised? The Role of Contextual Surprise in Designing Autonomous Systems Prof. N. Plataniotis	3
AI-enabled Decision Aid and Decision Support for Symbiotic Autonomous Systems Dr. Janusz Kacprzyk	4
On Intelligent Mathematics underpinning Contemporary Abstract Sciences and Autonomous AI <i>Prof. Yingxu Wang</i>	6
Session 1. Advances in Cognitive Informatics and Cognitive Computing	9
Stochastic Sensitivity Regularized Autoencoder for Robust Feature Learning Jianjun Zhang, Ting Wang, Wing W. Y. Ng, Witold Pedrycz and Sam Kwong	9
A Modified Reinforcement Q-Learning Method for Multi-function Phased Array Radar Beam Scheduling Rahul Kosuru, Zhen Qu, Zhen Ding, and Peter Moo	16
Adaptive Chaotic Injection to Reduce Overfitting in Artificial Neural Networks Siobhan Reid, Ken Ferens and Witold Kinsner	22
Drone's trajectory optimization for searching a disaster collapsed area using data mining techniques. <i>Akm Zahidul Islam, Dalia Hanna and Alexander Ferworn</i>	32
Random Forest Based Adaptive DBSCAN for Reducing Noise in mmWave Radar Point Clouds Houpu Zhou, Guochen Zhang, Lin Kong and Runhe Huang	39
Session 2. Brain-Inspired Autonomous AI	45
On Abstract Sciences: From Data, Information, Knowledge to Intelligence Sciences <i>Yingxu Wang</i>	45
Can Visual Linguistic Models become Knowledge Bases: A Prompt Learning Framework for Size Perception <i>Yi Zhang and Julia Taylor Rayz</i>	56
Target Detection in Changing Noisy Environment Using Coherent Radar Model Integrated with Soar Cognitive Architecture <i>Arkadiusz Czuba</i>	64
Sentiment of EmojiSets: How Emoji Sequences Improve Sentiment Cognition Salem Othman, Sami Alshalwi and Endi Caushi	72
Autonomous AI-based System for Parkinson's Disease Diagnostic Mohammed M. A. Salih	80
Textionnaire: An NLP-Based Questionnaire Analysis Method for Complex and Ambiguous Task Decision Support	86
Sajjad Rashidiani, Thomas Doyle, Reza Samavi, Laura Duncan, Paulo Pires and Roberto Sassi	

Weighted Lexicon-based Sentiment Analysis for Women Career Traits in Information Technology Kaitlin de Chastelain Finnigan, Fahim Anzum, Jon Rokne and Marina L Gavrilova	91
Emotional Learning Automaton Amirhossein Jamalian and Shamim Mehrabi	99
Reproduction of mental states in driving using a visual filter Hironori Hiraishi	106
Bidirectional Cross-scale Feature Fusion for Long Video Micro-Expression 3D Spotting Network Xiaosong He, Xiao Wu, Jun Peng, Qingxia Li, Xinkai Ma and Yuanmin He	110
Visual-Lexical Alignment Constraint for Continuous Sign Language Recognition Liangjun Guo, Rize Jin, Joon-Young Paik, Yenewondim Biadgie and Weiwei Yang	116
Session 4. Cognitive Computing Monoscale and Polyscale Analyses of Physical Signals for Compressive Detection of Relevant Complexity Features	122 122
Soleiman Hosseinpour, Witold Kinsner and Nariman Sepehri A Cognitive Computing Methodology for Software Requirement Elicitation and Formal Specification Yingxu Wang and James Y. Xu	129
De novo sequencing of multiple SILAC-based tandem mass spectra Fang Han, Baozhen Shan and Kaizhong Zhang	137
Research and Development of Prefabricated Detailed Design Software based on Intelligent Construction <i>Lixiao Feng, Jun Peng, Shougang Yang and Jing Xu</i>	143
Analytically Calculate the Renormalized Electron and Electron Neutrino Chain Propagators in SM <i>Xuewen Chen, Jiawei Zhang and Zhenya Chen</i>	148
Semantic Segmentation of Large-Scale Point Clouds by Encoder-Decoder Shared MLPs with Weighted Focal Loss Jieyun Pan, Kun Cao, Bingxin Zhao, Weihong Li and Tianyang Zhang	153
	1(0
Session 5. Cognitive Machine Learning Learning Smooth Target-Aware Spatially Regularized Correlation Filters for UAV Tracking Feng Li, Guopu Zhu, Bozhong Liu and Sam Kwong	160 160
 Learning Smooth Target-Aware Spatially Regularized Correlation Filters for UAV Tracking <i>Feng Li, Guopu Zhu, Bozhong Liu and Sam Kwong</i> Particle swarm optimization algorithm with dual population adaptive mutation <i>Shuhui Ding, Wei Li and Ying Huang</i> Adaptive Regularization in ANN for Condition Monitoring and Fault Detection in Heavy-duty Hydraulic Machines 	160 168
Learning Smooth Target-Aware Spatially Regularized Correlation Filters for UAV Tracking <i>Feng Li, Guopu Zhu, Bozhong Liu and Sam Kwong</i> Particle swarm optimization algorithm with dual population adaptive mutation	160 168
 Learning Smooth Target-Aware Spatially Regularized Correlation Filters for UAV Tracking <i>Feng Li, Guopu Zhu, Bozhong Liu and Sam Kwong</i> Particle swarm optimization algorithm with dual population adaptive mutation <i>Shuhui Ding, Wei Li and Ying Huang</i> Adaptive Regularization in ANN for Condition Monitoring and Fault Detection in Heavy-duty Hydraulic Machines <i>Maryam Ghanbari, Witold Kinsner and Nariman Sepehri</i> SkillDB - An Evaluation on the stability of XAI algorithms for a HR decision support system and the legal context 	160 168 175
Learning Smooth Target-Aware Spatially Regularized Correlation Filters for UAV Tracking Feng Li, Guopu Zhu, Bozhong Liu and Sam Kwong Particle swarm optimization algorithm with dual population adaptive mutation Shuhui Ding, Wei Li and Ying Huang Adaptive Regularization in ANN for Condition Monitoring and Fault Detection in Heavy-duty Hydraulic Machines Maryam Ghanbari, Witold Kinsner and Nariman Sepehri SkillDB - An Evaluation on the stability of XAI algorithms for a HR decision support system and the legal context Falko Gawantka, Andreas Schulz, Jörg Lässig and Franz Just Flow of Information in Hopfield Neural Networks Pejman Khadivi	160 168 175 183
 Learning Smooth Target-Aware Spatially Regularized Correlation Filters for UAV Tracking <i>Feng Li, Guopu Zhu, Bozhong Liu and Sam Kwong</i> Particle swarm optimization algorithm with dual population adaptive mutation <i>Shuhui Ding, Wei Li and Ying Huang</i> Adaptive Regularization in ANN for Condition Monitoring and Fault Detection in Heavy-duty Hydraulic Machines <i>Maryam Ghanbari, Witold Kinsner and Nariman Sepehri</i> SkillDB - An Evaluation on the stability of XAI algorithms for a HR decision support system and the legal context <i>Falko Gawantka, Andreas Schulz, Jörg Lässig and Franz Just</i> Flow of Information in Hopfield Neural Networks 	160 168 175 183 191
Learning Smooth Target-Aware Spatially Regularized Correlation Filters for UAV Tracking Feng Li, Guopu Zhu, Bozhong Liu and Sam Kwong Particle swarm optimization algorithm with dual population adaptive mutation Shuhui Ding, Wei Li and Ying Huang Adaptive Regularization in ANN for Condition Monitoring and Fault Detection in Heavy-duty Hydraulic Machines Maryam Ghanbari, Witold Kinsner and Nariman Sepehri SkillDB - An Evaluation on the stability of XAI algorithms for a HR decision support system and the legal context Falko Gawantka, Andreas Schulz, Jörg Lässig and Franz Just Flow of Information in Hopfield Neural Networks Pejman Khadivi Session 6. Brain-inspired System Enabling Cognitive Manufacturing in Heterogeneous Industrial Automation Systems	 160 168 175 183 191 197
Learning Smooth Target-Aware Spatially Regularized Correlation Filters for UAV Tracking Feng Li, Guopu Zhu, Bozhong Liu and Sam Kwong Particle swarm optimization algorithm with dual population adaptive mutation Shuhui Ding, Wei Li and Ying Huang Adaptive Regularization in ANN for Condition Monitoring and Fault Detection in Heavy-duty Hydraulic Machines Maryam Ghanbari, Witold Kinsner and Nariman Sepehri SkillDB - An Evaluation on the stability of XAI algorithms for a HR decision support system and the legal context Falko Gawantka, Andreas Schulz, Jörg Lässig and Franz Just Flow of Information in Hopfield Neural Networks Pejman Khadivi Session 6. Brain-inspired System Enabling Cognitive Manufacturing in Heterogeneous Industrial Automation Systems Hoai My Van, Marc Dreiser, Alexandre Sawczuk da Silva and Gereon Weiss Modeling Prototypical Preference Behavior and Diversity using Rank Score Characteristic Functions	 160 168 175 183 191 197 197
Learning Smooth Target-Aware Spatially Regularized Correlation Filters for UAV Tracking Feng Li, Guopu Zhu, Bozhong Liu and Sam Kwong Particle swarm optimization algorithm with dual population adaptive mutation Shuhui Ding, Wei Li and Ying Huang Adaptive Regularization in ANN for Condition Monitoring and Fault Detection in Heavy-duty Hydraulic Machines Maryam Ghanbari, Witold Kinsner and Nariman Sepehri SkillDB - An Evaluation on the stability of XAI algorithms for a HR decision support system and the legal context Falko Gawantka, Andreas Schulz, Jörg Lässig and Franz Just Flow of Information in Hopfield Neural Networks Pejman Khadivi Session 6. Brain-inspired System Enabling Cognitive Manufacturing in Heterogeneous Industrial Automation Systems Hoai My Van, Marc Dreiser, Alexandre Sawczuk da Silva and Gereon Weiss Modeling Prototypical Preference Behavior and Diversity using Rank Score Characteristic Functions Christina Schweikert, Shinsuke Shimojo, Hannah Glasser, Rebecca Hendsey, Rami Alsaber and D. Frank Hsu Arabic hate speech detection system based on AraBERT	160 168 175 183 191 197 197 203

Session 7. Cognitive Image Processing	221
Hashing-based Undersampling for Large Scale Histopathology Image Classification Xing Tian, Lin Qiu, Qihua Li, Wing W. Y. Ng, Jianjun Zhang, Sam Kwong, Hui Wang, Xinran Dong, Baoyi Liu, Yijun Hu and Honghua Yu	221
U-SHAPED TRANSFORMER-BASED 360-DEGREE NO REFERENCE IMAGE QUALITY ASSESSMENT <i>Xuekai Wei, Mingliang Zhou and Sam Kwong</i>	229
Size Measurement of Stone Images Based on Improved UNet Ning Chen, Xinkai Ma, Jun Peng, Shangzhu Jin, Xiao Wu, Yan Wu and Haixia Luo	234
Adaptive Attention with a Neuromorphic Hybrid Frame and Event-based Camera Avinoam Bitton, Hadar Cohen Duwek and Elishai Ezra Tsur	242
Cognitive-inspired Post-processing of optical character recognition for Swedish addresses <i>Moa Andersson, Summrina Kanwal and Faiza Khan.</i>	248
Plenary Panel	258
Recent Breakthroughs in Cognitive Informatics and Cognitive Computing towards Autonomous AI (Plenary Panel Report-I) Panel Report-I) Yingxu Wang, Bernard Widrow, Witold Pedrycz, Janusz Kacprzyk, Sam Kwong, Konstantin.N. Plataniotis, Ling Guan, Petros Spachos	258
Recent Advances in Cognitive Informatics and Cognitive Computing towards Autonomous Systems (Plenary Panel Report-II) Witold Kinsner, Haibin Okyay Kaynak, Haibin Zhu, Ming Hou, Julia Rayz, Marina Gavrilova, Guoyin Wang, George Baciu, Jun Peng, Runhe Huang, Bowen Du	268
Anthon Index	201

Author Index