2023 36th International Conference on VLSI Design and 2023 22nd International Conference on Embedded Systems (VLSID 2023)

Hyderabad, India 8-12 January 2023

IEEE Catalog Number: CFP23041-POD **ISBN:**

979-8-3503-4679-4

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP23041-POD 979-8-3503-4679-4 979-8-3503-4678-7 1063-9667

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 36th International Conference on VLSI Design and 2023 22nd International Conference on Embedded Systems (VLSID) VLSID 2023

Table of Contents

Message from the General Chairs	xiv
Message from the Technical Program Chairs	xv
Message from the Organizing Chairs	xvi
Message from the Steering Committee Chair and VSI President	xvii
Message from the Publication Chairs	xviii
Message from the Tutorial Chair	xix
Message from the IEEE Liaison	xx
VLSI Design Conference Steering Committee	xxi
VLSI Design and Embedded Systems Organizing Committee	xxii
Technical Program Committee Members	xxviii
Tutorial Abstracts	xxxv

VLSID 2023 Papers

Hardware Architecture and FPGA Implementation of Low Latency Turbo Encoder for Deep-Space Communication Systems Meghvern Pathak (Indian Institute of Technology Mandi) and Rahul Shrestha (Indian Institute of Technology Mandi)	:e . 1
Lightweight Approximate Multiplier with Improved Accuracy in FPGA for Error Resilient Application	. 7
Delay-Aware Control for Autonomous Systems Sumana Ghosh (Indian Statistical Institute, India)	13
Hardware Implementation of Ring-LWE Lattice Cryptography with BCH and Gray Coding Based Error Correction Somnath Mondal (IIT Bombay), Sachin Patkar (IIT Bombay), and T K Pal (RCI, DRDO)	19

 DRRA-Based Reconfigurable Architecture for Mixed-Radix FFT
Live & Seamless Firmware Upgrade in Real Time Control Systems
 WIB-SAR: Write Intensity Based Selective Address Remapping
Design of a Multi-core Compatible Linux Bootable 64-bit Out-of-Order RISC-V Processor Core 42 Sajin S (Indian Institute of Science, India), Shubham Sunil Garag (Indian Institute of Science, India), Anuj Phegade (Indian Institute of Science, India), Deepshikha Gusain (Indian Institute of Science, India), and Kuruvilla Varghese (Indian Institute of Science, India)
Voltage Boosted Schmitt Trigger Sense Amplifier (VBSTSA) with Improved Offset and Reaction Time for High Speed SRAMs
A Low Noise Bandgap Reference with 0.89 V V_ref, 0.88 μV_rms Noise and 80 dB of PSRR 53 Sowmyashree S (Indian Institute of Technology Mandi, India) and Hitesh Shrimali (Indian Institute of Technology Mandi, India)
Radiation Hardened CMOS Programmable Bias Generator for Space Applications at 180nm 59 Ashutosh Yadav (Indian Institute of Technology Roorkee; Semi-Conductor Laboratory Chandigarh), Anand Bulusu (Indian Institute of Technology Roorkee), Surinder Singh (Semi-Conductor Laboratory Chandigarh), and Sudeb Dasgupta (Indian Institute of Technology Roorkee)
A Low-Power Resistive Tail Dynamic Comparator with Self-Shut Mechanism
A Sense Amplifier Based Bulk Built-In Current Sensor for Detecting Laser-Induced Currents 69 Debjit Batabyal (Indraprastha Institute of Information Technology, India), Sandeep Kumar Singh (Indraprastha Institute of Information Technology, India), Rajnish Kumar Mishra (Indraprastha Institute of Information Technology, India), and Anuj Grover (Indraprastha Institute of Information Technology, India)

Unifying Intrinsically-Operated Physically Unclonable Function and Random Number Generation in Analog Circuits: A Case Study on Successive Approximation ADC
Programmable Delay Line With Inherent Duty Cycle Correction
A 2.25 GHz PLL with 0.05-2 MHz Inloop Phase Modulation and -70 dBc Reference Spur for Telemetry Applications
Ultra-Low Power Non-Uniform SAR ADC Based ECG Detector for Early Detection of Cardiovascular Diseases
Design Challenges and Techniques for 5nm FinFET CMOS Analog/Mixed-Signal Circuits
Design of Radiation Hardened 12T SRAM with Enhanced Reliability and Read/Write Latency for Space Application
Design and Analysis of Multibit Multiply and Accumulate (MAC) Unit: An Analog In-Memory Computing Approach
A 2.5 GHz, 1-Kb SRAM with Auxiliary Circuit Assisted Sense Amplifier in 65-nm CMOS Process. 115 Rupesh D. Kadhao (National Institute of Technology Goa), Siddharth R. K. (National Institute of Technology Goa), Nithin Kumar Y. B. (National Institute of Technology Goa), Vasantha M. H. (National Institute of Technology Goa), and Devesh Dwivedi (GlobalFoundries Engineering Private Limited)

A Common Mode Insensitive Process Tolerant Sense Amplifier Design for In Memory Compute Applications in 65nm LSTP Technology
Supply Noise and Peak Current Reduction in High-Speed Output Drivers
An Energy-Efficient and Robust 10T SRAM Based In-Memory Computing Architecture
Memristor-Based High Speed and Area Efficient Comparators in IMPLY Logic
Design of Hardware Efficient Approximate DCT Architecture
 Design of Energy Efficient and Low Delay Posit Multiplier
Surmounting Challenges in the Design of Low Power Real Time Clock IP For Advanced FinFET Technology Nodes
Dynamic Keeper for 1R1W 8T-SRAM to enable Read Operation at 150c till 0.5v in 5nm FinFET . 163 Vinay Kumar (Synopsys India Pvt. Ltd), Vijay Sahu (Synopsys India Pvt. Ltd), Ambar Khanda (Synopsys India Pvt. Ltd), and Sudhir Kumar (Synopsys India Pvt. Ltd)
Translation of Array Expressions for In-Memory Computation on Memristive Crossbar
ASPIRE: An Intermediate Representation for Abstract Security Policies

MLTDRC: Machine Learning Driven Faster Timing Design Rule Check Convergence
Machine Learning-Based Model for Single Event Upset Current Prediction in 14nm FinFETs 187 Vibhu V (Indian Institute of Technology Roorkee (IITR), India), Sparsh Mittal (Indian Institute of Technology Roorkee (IITR), India), and Vivek Kumar (Indian Institute of Technology Roorkee (IITR), India; National Institute of Technology Uttarakhand)
Transport-Free Placement of Mixers for Realizing Bioprotocol on Programmable Microfluidic Devices
(Ritsumeikan University, Japan), Sudip Roy (Indian Institute of Technology Roorkee, India), and Hiroyuki Tomiyama (Ritsumeikan University, Japan)
Efficient 3D Modeling Methodology for High-Speed Channels
ISP: An Improved Slicing Pair Code for Skewed Slicing Floorplan
 Maximum Power Point Tracking Using Buck-Boost Converter for EH-PMIC
 GRILAPE: Graph Representation Inductive Learning-Based Average Power Estimation for Frontend ASIC RTL Designs
Efficient MBIST Area and Test Time Estimator Using Machine Learning Technique
A Novel AI Based Approach for Performance Validation
Signal Agnostic Scalable Scan Wrapper Design
Mutation Analysis and Model Checking Guided Test Generation for SoC Run-Time Monitors 240 Suriya Srinivasan (University of Cincinnati, USA) and Ranga Vemuri (University of Cincinnati, USA)

Extending Action Recognition in the Compressed Domain
Design and Analysis of Posit Quire Processing Engine for Neural Network Applications
 Fast and Robust Sense Amplifier for Digital In Memory Computing
MOSCON: Modified Outer Product Based Sparse Matrix-Matrix Multiplication Accelerator with Configurable Tiles
Noble G (Indian Institute of Information Technology Kottayam, India), Nalesh S (Cochin University of Science And Technology, India), and Kala S (Indian Institute of Information Technology Kottayam, India)
A Portable Ultra-Low-Cost Multi-gas Sensing System-on-Module for Wireless Air Quality Monitoring Network
Anamika Sharma (Indian Institute of Technology, India), Sachin Divekar (Indian Institute of Technology, India), and Rajesh Zele (Indian Institute of Technology, India)
FPGA Based Smart and Sustainable Agriculture
SV Based Fast & Accurate Verification Methodology for CTLE Adaptation Algorithm
A 16Gbps 3rd Order CTLE Design for Serial Links with High Channel Loss in 16nm FinFET 284 Pranay Kumar Thota (Mixed Signal Development Group, Microchip Technology India Pvt. Ltd, India), Siva Kumar Rapina (Mixed Signal Development Group, Microchip Technology India Pvt. Ltd, India), and Bheema Rao Nistala (Department of ECE, National Institute of Technology, India)
Enhanced Performance Parameters of Magnetic Tunnel Junction with Composite Dielectric Barrier

FEM Modeling of Gate Resistance for 5 nm SGC/DGC Stacked Nanosheet Transistor	295
Vivek Kumar (Indian Institute of Technology Roorkee (IITR), India;	
National Institute of Technology Uttarakhand), Jyoti Patel (Indian	
Institute of Technology Roorkee (IITR), India), Arnab Datta (Indian	
Institute of Technology Roorkee (IITR), India), and Sudeb Dasgupta	
(Indian Institute of Technology Roorkee (IITR), India)	

Automatic Implementation and Evaluation of Error-Correcting Codes for Quantum Computing 301

Thomas Grurl (University of Applied Sciences Upper Austria, Austria; Johannes Kepler University Linz, Austria), Christoph Pichler (Johannes Kepler University Linz, Austria), Jürgen Fuß (University of Applied Sciences Upper Austria, Austria), and Robert Wille (Technical University of Munich, Germany; Software Competence Center Hagenberg GmbH (SCCH), Austria)
 Implementation of Probabilistic Bits (Pbits) Using Low Barrier Magnets: Investigation and Analysis
Post Silicon Validation for I2C (SMBUS) Peripheral
Efficient FPGA Implementations of Lifting Based DWT Using Partial Reconfiguration
Accelerating Defect Simulation in Analog and Mixed-Signal Circuits by Parallel Defect Injection
Mutual Information Based Efficient Spike Encoding on FPGA
SANNA: Secure Acceleration of Neural Network Applications
The Acceleration of OPUS Codec Using Processor – FPGA Co-Processing

A 105-525MHz Integer-N Phase-Locked Loop in Indigenous SCL 180nm CMOS	
Evaluating the Impact of Transition Delay Faults in GPUs	
An Energy-Efficient Multi-bit Current-Based Analog Compute-in-Memory Architecture and Design Methodology	
Reliability Enhancement of Hardware Trojan Detection Using Histogram Augmentation Technique	
DARK-Adders: Digital Hardware Trojan Attack on Block-Based Approximate Adders	
True Random Number Generator Based on Voltage-Gated Spintronic Structure	
A Novel Approach for Assisting Blind People Using a Smart Wearable Device	
Word-Level Structure Identification In FPGA Designs Using Cell Proximity Information	

Analysis and Design of Low Phase Noise 20 GHz VCO for Frequency Modulated Continuous Wave Chirp Synthesizers in mmWave Radars
InsectEye: An Intelligent Trap for Insect Biodiversity Monitoring
An mmWave Frequency Range Multi-modulus Programmable Divider for FMCW Radar Applications 407
Sresthavadhani Mantha (Center for VLSI and Embedded Systems Technology (CVEST), IIIT Hyderabad, India), Adithya Sunil Edakkadan (Center for VLSI and Embedded Systems Technology (CVEST), IIIT Hyderabad, India), Arpit Sahni (Center for VLSI and Embedded Systems Technology (CVEST), IIIT Hyderabad, India), and Abhishek Srivastava (Center for VLSI and Embedded Systems Technology (CVEST), IIIT Hyderabad, India)

Author Index		
--------------	--	--