2022 21st IEEE International **Conference on Machine Learning** and Applications (ICMLA 2022)

Nassau, Bahamas 12-14 December 2022

Pages 1-602

IEEE Catalog Number: CFP22592-POD ISBN:

978-1-6654-6284-6

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22592-POD

 ISBN (Print-On-Demand):
 978-1-6654-6284-6

 ISBN (Online):
 978-1-6654-6283-9

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)

ICMLA 2022

Table of Contents

refacexxx	vii
rganizing Committeexx	xix
ogram Committee	. x l
eynotesx	dvi
einforcement Learning	
ddressing Sample Efficiency and Model-Bias in Model-Based Reinforcement Learning Akhil S Anand (NTNU, Norway), Jens Erik Kveen (NTNU, Norway), Fares Abu-Dakka (Aalto University, Finland), Esten Ingar Grøtli (SINTEF Digital, Norway), and Jan Tommy Gravdahl (NTNU, Norway)	1
einforcement Learning Based Architectures for Dynamic Generation of Smart Home Services Mingming Qiu (Télécom Paris, EDF R&D, France), Elie Najm (Télécom Paris, France), Rémi Sharrock (Télécom Paris, France), and Bruno Traverson (EDF R&D, France)	7
ttention-Based Partial Decoupling of Policy and Value for Generalization in Reinforcement earning	. 15
ime Series Processing	
inte delles i locessing	
n Empirical Evaluation of Multivariate Time Series Classification with Input cansformation Across Different Dimensions	. 2 3
EEvo: Evolutionary Counterfactual Explanations for Time Series Classification	. 29

PerMTL: A Multi-task Learning Framework for Skilled Human Performance Assessment
Computer Vision I
Topological Regularization for Dense Prediction
A Lightweight and Fast Approach for Upper Limb Range of Motion Assessment
Real-Time Cattle Interaction Recognition via Triple-Stream Network
Deeper Bidirectional Neural Networks with Generalized Non-vanishing Hidden Neurons
Image Processing I
Leaf Tar Spot Detection using RGB Images
Recycling Material Classification using Convolutional Neural Networks
Automatic Key Information Extraction from Visually Rich Documents
Multi-stream Deep Residual Network for Cloud Imputation using Multi-resolution Remote Sensing Imagery

ML Applications in Engineering

Structural Health and Intelligent Monitoring of wind Turbine Blades with a Motorized Telescope
Deep Learning Based Re-Identification of Wooden Euro-Pallets
A Scalable Solution to AlphaZero Based Redundancy Analysis for Semiconductor Chips
DeepWafer: A Generative Wafermap Model with Deep Adversarial Networks
Special Session: NLP and Text Mining I
Simulating New and Old Twitter User Activity with XGBoost and Probabilistic Hybrid Models 132 Fred Mubang (University of South Florida, USA) and Lawrence O. Hall (University of South Florida, USA)
Towards Emotion Cause Generation in Natural Language Processing using Deep Learning
Towards Fake News Detection on Social Media
Sentence Similarity Recognition in Portuguese from Multiple Embedding Models
A Robust Approach to Fine-Tune Pre-Trained Transformer-Based Models for Text Summarization Through Latent Space Compression

Bayesian Rule Ontologies For XAI Classification and Regression
Image Processing II
Histogram Layers for Synthetic Aperture Sonar Imagery Joshua Peeples (Texas A&M University, USA), Alina Zare (University of Florida, USA), Jeffrey Dale (University of Missouri, USA; Naval Surface Warfare Center Panama City Division, USA), and James Keller (University of Missouri, USA)
Kernelization of Tensor Discriminant Analysis with Application to Image Recognition
A Vision Transformer Architecture for Open Set Recognition
Attention-Based Generative Neural Image Compression on Solar Dynamics Observatory
Machine Learning Fundamentals I
Fair Algorithms for Hierarchical Agglomerative Clustering
BlinkNet: Software-Defined Deep Learning Analytics with Bounded Resources
Nested Multiple Instance Learning with Attention Mechanisms
Comparing the Quality of Neural Network Uncertainty Estimates for Classification Problems 226 Daniel Ries (Sandia National Laboratories, USA), Joshua Michalenko (Sandia National Laboratories, USA), Tyler Ganter (Sandia National Laboratories, USA), Rashad Baiyasi (Sandia National Laboratories, USA), and Jason Adams (Sandia National Laboratories, USA)

Reinforcement Learning II

Bootstrap Advantage Estimation for Policy Optimization in Reinforcement Learning	234
Mixed Time-Frame Training for Reinforcement Learning	240
Interpretable Reinforcement Learning with Multilevel Subgoal Discovery Alexander Demin (Ershov Institute of Informatics Systems, Russia) and Denis Ponomaryov (Ershov Institute of Informatics Systems, Russia)	251
Benchmarking Offline Reinforcement Learning	259
Safe Reinforcement Learning for LiDAR-Based Navigation via Control Barrier Function	264
ML Applications for Society Challenges	
Balancing Similarity-Contrast in Unsupervised Representation Learning: Evaluation with Reinforcement Learning Menore Tekeba Mengistu (Addis Ababa University, Ethiopia; Lab-STICC, UMR CNRS 6285, ENIB, France), Getachew Alemu (Addis Ababa University, Ethiopia), Pierre Chevaillier (Lab-STICC, UMR CNRS 6285, ENIB, France), and Pierre De Loor (Lab-STICC, UMR CNRS 6285, ENIB, France)	270
Hawkes Process Multi-armed Bandits for Search and Rescue	278
ACGANs Improve Chemical Sensors for Challenging Distributions Alexander M. Moore (Worcester Polytechnic Institute, USA), Randy C. Paffenroth (Worcester Polytechnic Institute, USA), Ken T. Ngo (U.S. Army DEVCOM Soldier Center, USA), and Joshua R. Uzarski (U.S. Army DEVCOM Soldier Center, USA)	286
CANBERT: A Language-Based Intrusion Detection Model for In-vehicle Networks	294
AI Privacy Preserving Robots Working in a Smart Sensor Environment Imen Chakroun (Exascience Life Lab , IMEC, Belgium), Geert Vanneerbeeck (Exascience Life Lab , IMEC, Belgium), Roel Wuyts (Exascience Life Lab , IMEC, Belgium), and Wilfried Verarcht (Exascience Life Lab , IMEC, Belgium)	300
Bad Citrus: Reducing Adversarial Costs with Model Distances	307

Signal/Audio/Speech processing I

DDSupport: Language Learning Support System that Displays Differences and Distances from Model Speech
ECG Fiducial Points Localization using a Deep Learning Model
Transformer-Based Speech Synthesizer Attribution in an Open Set Scenario
Quantifying Cognitive Load from Voice using Transformer-Based Models and a Cross-Dataset Evaluation
Image Processing III
Score-Based Image-to-Image Regression with Synchronized Diffusion
Label-Free Mammalian Cell Tracking Enhanced by Precomputed Velocity Fields
Super-Resolution GAN Improving YOLO's Performance Benchmark

SVTON: Simplified Virtual Try-On	369
Automatic Counting of Mounds on UAV Images: Combining Instance Segmentation and Patch-Level Correction	375
DeepReject and DeepRoad: Road Condition Recognition and Classification Under Adversarial Conditions Hidetomo Sakaino (Weathernews, Inc., Japan)	382
Poster Session	
Posters from main track	
Cluster Management of Scientific Literature in HSTOOL	390
Transfer Learning Model for Social Emotion Prediction using Writers Emotions in Comments Abdullah Alsaedi (University of Liverpool, U.K.), Stuart Thomason (University of Liverpool, U.K.), Floriana Grasso (University of Liverpool, U.K.), and Phillip Brooker (University of Liverpool, U.K.)	396
A Neural Model for Regular Grammar Induction	401
An Ontology-Based Transfer Learning Method Improving Classification of Medical Documents Daniel Bruneß (KITE, Technische Hochschule Mittelhessen, Germany), Matthias Bay (MINDS-Medical GmbH, Germany), Christian Schulze (Technische Hochschule Mittelhessen, Germany), Michael Guckert (Technische Hochschule Mittelhessen, Germany), and Mirjam Minor (Goethe University, Germany)	407
Classifying the Ideological Orientation of User-Submitted Texts in Social Media	413
Math Chunking and Function Recognition using Deep Learning	419
Extending Rapid Class Augmentation to a YOLOv3 Object Detection Architecture	425

Uncertainty Prediction for Facial Action Units Recognition Under Degraded Conditions	1
On-Board Pedestrian Trajectory Prediction using Behavioral Features	7
Real-Time Facial Emotion Detection Through the Use of Machine Learning and On-edge Computing	4
TrADe Re-ID – Live Person Re-Identification using Tracking and Anomaly Detection	<u>:</u> 9
Deep Object Detection for Waterbird Monitoring using Aerial Imagery	55
Self-Supervised Learning in the Twilight of Noisy Real-World Datasets	1
An Edge-Based Real-Time Object Detection	5
Continuous Human Activity Recognition using Radar Imagery and Dynamic Time Warping 47 Ruchita Mehta (Coventry University, UK), Vasile Palade (Coventry University, UK), Sara Sharifzadeh (Swansea University, UK), Bo Tan (Tamepere University, Finland), and Yordanka Karayaneva (Teeside University, UK)	'1
DoPose-6D Dataset for Object Segmentation and 6D Pose Estimation	7

Recurrent Neural Imaging: An Evolutionary Approach for Mixed Possion-Gaussian Image Denoising	
Aditya Ranganath (University of California, Merced, USA), Omar Deguchy (University of California, Merced, USA), Fabian Santiago (University of California, Merced, USA), Mukesh Singhal (University of California, Merced, USA), and Roummel Marcia (University of California, Merced,	
USA)	
Machine Learning for Classifying Images with Motion Blur	
ast-Image2Point: Towards Real-Time Point Cloud Reconstruction of a Single Image using 3D	
supervision	
spars Kernelized Features for Prediction of Rock's Carbon Capture using 3D X-Ray Images 501 Sara Sharifzadeh (Swansea University, UK)	
Learning Non-Linear White-box Predictors: A Use Case in Energy Systems 507 Sandra Wilfling (Graz University of Technology, Austria), Masoud Ebrahimi (Graz University of Technology, Austria), Qamar Alfalouji (Graz University of Technology, Austria), Gerald Schweiger (Graz University of Technology, Austria), and Mina Basirat (Graz University of Technology, Austria)	
Application of Machine Learning Techniques in Temperature Forecast	
OTCEncoder: A Swiss Army Knife Architecture for DTC Exploration, Prediction, Search and Model Interpretation	
California Wildfire Prediction using Machine Learning	
The Performance-Actionability Trade-Off in Retention Prediction at Middle School	

Context-Aware Attention U-Net for the Segmentation of Pores in Lamina Cribrosa using Partial Points Annotation	537
Lung Nodules Identification in CT Scans using Multiple Instance Learning	43
On the Generalizability of ECG-Based Stress Detection Models Pooja Prajod (University of Augsburg, Germany) and Elisabeth André (University of Augsburg, Germany)	549
Predicting ME/CFS After Infectious Mononucleosis using Cytokine Network Correlations	55
IGN : Implicit Generative Networks	60
CandyRL: A Hybrid Reinforcement Learning Model for Gameplay	67
Score vs. Winrate in Score-Based Games: Which Reward for Reinforcement Learning?	73
Flexible Exploration Strategies in Multi-agent Reinforcement Learning for Instability by Mutual Learning	i79
Hyperparameter Tuning in Offline Reinforcement Learning	85
Empirical Analysis of the Convergence of Double DQN in Relation to Reward Sparsity5 Samuel Blad (Örebro University, Sweden), Martin Längkvist (Örebro University, Sweden), Franziska Klugl (Örebro University, Sweden), and Amy Loutfi (Örebro University, Sweden)	91

Contingency-Constrained Economic Dispatch with Safe Reinforcement Learning	597
The Impact of Low-Cost Molecular Geometry Optimization in Property Prediction via Graph Neural Network Gabriel A. Pinheiro (Federal University of Sao Paulo, Sao Jose dos Campos, Brazil), Felipe V. Calderan (Federal University of Sao Paulo, Sao Jose dos Campos, Brazil), Juarez L. F. Da Silva (University of Sao Paulo, Sao Carlos, Brazil), and Marcos G. Quiles (Federal University of Sao Paulo, Sao Jose dos Campos, Brazil)	603
Separating Flows in Encrypted Tunnel Traffic	609
Novel Adversarial Defense Techniques for White-box Attacks Jason Van Tuinen (University of California, Merced, USA), Aditya Ranganath (University of California, Merced, USA), Goran Konjevod (Lawrence Livermore National Laboratory, USA), Mukesh Singhal (University of California, Merced, USA), and Roummel Marcia (University of California, Merced, USA)	617
IDPS Signature Classification with a Reject Option and the Incorporation of Expert Knowledge	623
Probabilistic Approach for Recommendation Systems	629
Predicting Customer Churn in Retailing	635
Bayesian Sequential Optimal Experimental Design for Linear Regression with Reinforcement Learning Fadil Santosa (Johns Hopkins University, USA) and Loren Anderson (University of Minnesota Twin Cities, USA)	641
One-Shot Federated Group Collaborative Filtering Maksim Eren (Analytics Division, LANL, USA), Manish Bhattarai (Theoretical Division, LANL, USA), Nicholas Solovyev (Theoretical Division, LANL, USA), Luke Richards (UMBC, USA), Roberto Yus (UMBC, USA), Charles Nicholas (UMBC, USA), and Boian Alexandrov (Theoretical Division, LANL, USA)	647
Behavior Sequence Transformer Applied on SERP Evaluation and Model Interpretation	653

Few-Shot Link Prediction with Domain-Agnostic Graph Embedding Hao Zhu (Tufts University, USA), Mahashweta Das (Visa Research, USA), Mangesh Bendre (Visa Research, USA), Fei Wang (Visa Research, USA), Hao Yang (Visa Research, USA), and Soha Hassoun (Tufts University, USA)	659
PARTIME: Scalable and Parallel Processing Over Time with Deep Neural Networks	665
W-Transformers: A Wavelet-Based Transformer Framework for Univariate Time Series Forecasting	671
Lena Sasal (Sorbonne Center for Artificial Intelligence, Sorbonne University Abu Dhabi, UAE), Tanujit Chakraborty (Sorbonne Center for Artificial Intelligence, Sorbonne University Abu Dhabi, UAE), and Abdenour Hadid (Sorbonne Center for Artificial Intelligence, Sorbonne University Abu Dhabi, UAE)	0/1
Anomaly Detection from Multilinear Observations via Time-Series Analysis and 3DTPCA	677
Unsupervised Anomaly Detection and Root Cause Analysis for an Industrial Press Machine Based on Skip-Connected Autoencoder	681
Individualized Conditioning and Negative Distances for Speaker Separation	687
Audio Classification of Low Feature Spectrograms Utilizing Convolutional Neural Networks <i>Noel Elias (University of Texas at Austin, USA)</i>	693
CNN-n-GRU: End-to-End Speech Emotion Recognition from Raw Waveform Signal using CNNs ar Gated Recurrent Unit Networks	

Adversarial Attacks on Speech Separation Systems
CCVAE: A Variational Autoencoder for Handling Censored Covariates
Autoencoder Ensemble Method for Botnets Detection on IOT Devices
Federated Learning Aggregation: New Robust Algorithms with Guarantees
Stragglers Are Not Disasters: A Hybrid Federated Learning Framework with Delayed Gradients 727 Xingyu Li (Mississippi State University, USA), Zhe Qu (University of South Florida, USA), Bo Tang (Mississippi State University, USA), and Zhuo Lu (University of South Florida, USA)
A Deep Learning Based Hand Gesture Recognition on a Low-Power Microcontroller using IMU Sensors
Safe Robot Navigation using Constrained Hierarchical Reinforcement Learning
SECOE: Alleviating Sensors Failure in Machine Learning-Coupled IoT Systems
Deep Learning and Pattern-Based Methodology for Multivariable Sensor Data Regression
Source Domain Selection for Cross-House Human Activity Recognition with Ambient Sensors 754 Hao Niu (KDDI Research, Inc., Japan), Huy Quang Ung (KDDI Research, Inc., Japan), and Shinya Wada (KDDI Research, Inc., Japan)
Intent Based Multimodal Speech and Gesture Fusion for Human-Robot Communication in Assembly Situation

EVDD - A Novel Dataset for Embedded System Vulnerability Detection Mechanism	. 764
A Real-Time Digit Gesture Recognition System Based on mmWave Radar	. 77 0
Real-Time Change Detection at the Edge	.776
Cost-Sensitive Hierarchical Clustering for Dynamic Classifier Selection	. 782
TranSQL: A Transformer-Based Model for Classifying SQL Queries	. 788
Trade-off Between Reconstruction Loss and Feature Alignment for Domain Generalization	794
From Causal Pairs to Causal Graphs	. 802
Edge Utilization in Graph Convolutional Networks for Graph Classification Xiao Yue (Oakland University, USA), Guangzhi Qu (Oakland University, USA), Bo Liu (Massey University, New Zealand; Beijing University of Technology, China), and Feng Zhang (China University of Geosciences, China)	. 808
Dynamic Binary Cross Entropy: An Effective and Quick Method for Model Convergence	. 814
Variational Inference via Rényi Upper-Lower Bound Optimization	.819
Stochastic Induction of Decision Trees with Application to Learning Haar Trees Azar Alizadeh (University of California, Merced, USA), Mukesh Singhal (University of California, Merced, USA), Vahid Behzadan (University of New Haven, USA), Pooya Tavallali (University of California, Merced, USA), and Aditya Ranganath (University of California, Merced, USA)	. 825

A Novel Approach for Synthetic Reduced Nearest-Neighbor Leveraging Neural Networks	31
semiMul: Floating-Point Free Implementations for Efficient and Accurate Neural Network Training	37
Code2Snapshot: using Code Snapshots for Learning Representations of Source Code	13
HeteroGenius: An Improvised 'Intelligence' in Heterogeneous Graph Transformers	19
A Layer Decomposition Approach to Inference Time Prediction of Deep Learning Architectures 85 Ola Alqahtani (The University of Georgia, USA) and Lakshmish Ramaswamy (The University of Georgia, USA)	55
Multi-learning Generalised Low-Rank Models	50
Classification of Functional Data: A Comparative Study	56
An Exploratory Analysis of a Dynamic Ensemble Structure using an Automatic Decision Process	7 <u>2</u>
A New Framework to Assess the Individual Fairness of Probabilistic Classifiers	⁷ 6
Towards Fairness and Interpretability: Clinical Decision Support for Acute Coronary Syndrome	32
Ontology-Based Post-Hoc Explanations via Simultaneous Concept Extraction	37

Posters from special sessions

Clustering Image Data with a Fixed Embedding Yan-Bin Chen (Institute of Statistical Science, Academia Sinica, Taiwan), Khong-Loon Tiong (Institute of Statistical Science, Academia Sinica, Taiwan), and Chen-Hsiang Yeang (Institute of Statistical Science, Academia Sinica, Taiwan)	891
Fine-Grained Analysis of the Transformer Model for Efficient Pruning	897
Solving Subset Sum Problems using Quantum Inspired Optimization Algorithms with Applications in Auditing and Financial Data Analysis	903
Distribution Based Upper Lower Bound Estimation In Deep Neural Nets	909
Smooth Trajectory Collision Avoidance Through Deep Reinforcement Learning	914
Feature Extraction for Out of Distribution Detection via Self-Supervised Learning	920
Recurrent Neural Network-Based Video Compression	925
Contactless Low Power Air-Writing Based on FMCW Radar Networks using Spiking Neural Networks	931
Impact of Labeling Noise on Machine Learning: A Cost-Aware Empirical Study	936
Deformable Registration of Low-Overlapping Medical Images Bertram Sabrowsky-Hirsch (RISC Software GmbH, Austria), Bernhard Schenkenfelder (RISC Software GmbH, Austria), Christoph Klug (RISC Software GmbH, Austria), Gernot Reishofer (Medical University of Graz, Austria), and Josef Scharinger (Johannes Kepler University, Austria)	940

Improving Chest X-Ray Classification by RNN-Based Patient Monitoring David Biesner (Fraunhofer IAIS and University of Bonn, Germany), Helen Schneider (Fraunhofer IAIS, Germany), Benjamin Wulff (Fraunhofer IAIS, Germany), Ulrike Attenberger (University Hospital Bonn, Germany), and Rafet Sifa (Fraunhofer IAIS, Germany)) 46
Prediction of Heart Attacks using Data Mining Techniques	951
Predicting Anxiety Treatment Outcomes with Machine Learning	957
A Comparative Study on 1.5T - 3T MRI Conversion Through Deep Neural Network Models	963
Using Artificial Intelligence to Predict Patient Electronic Health Record Access Points	969
Time-to-Event Modeling of Subreddits Transitions to r/SuicideWatch	974
Machine Learning in Personalized Skin Care: A Simulation Scheme for Pattern Recognition in Skin Condition Genome-Wide Association Studies	980
Novel Machine Learning Experiments with Artificially Generated Big Data from Small Immunotherapy Datasets	986
NLP and Text Mining II	
Symbolic Semantic Memory in Transformer Language Models	992

Online Handwriting Recognition using LSTM on Microcontroller and IMU Sensors
Using Natural Language Processing to Predict Costume Core Vocabulary of Historical Artifacts
Computer Vision II
C2FMOS: Coarse-to-Fine of Multi-organ Segmentation Model Based on Point Cloud
Rethinking of Domain Users Control in Computer Vision Pipelines by Customized Attention 1018 Majid Shirazi (BMW Group, Germany), Georgij Safronov (BMW Group, Germany), and Amr Rizk (University of Duisburg-Essen, Germany)
Scrape, Cut, Paste and Learn: Automated Dataset Generation Applied to Parcel Logistics
ML Applications in Cybersecurity
Deep Neural Network Piration Without Accuracy Loss
VDGraph2Vec: Vulnerability Detection in Assembly Code using Message Passing Neural Networks
Can We Predict Consequences of Cyber Attacks?

Machine Learning Fundamentals III

ICDARTS: Improving the Stability of Cyclic DARTS
Regression Expression Variation Analysis (REVA): A Rank-Based Multi-dimensional Measure of Correlation
An Algorithm Adaptation Method for Multi-label Stream Classification using Self-Organizing Maps
Ricardo Cerri (Federal University of São Carlos, Brazil), Elaine R. Faria (Federal University of Uberlândia, Brazil), and João Gama (University of Porto, Portugal)
Transfer Learning for Bayesian Optimization with Principal Component Analysis
Decision Boundaries of Deep Neural Networks
Machine Learning Fundamentals II
Machine Learning Fundamentals II Class-Wise and Reduced Calibration Methods
Class-Wise and Reduced Calibration Methods
Class-Wise and Reduced Calibration Methods
Class-Wise and Reduced Calibration Methods
Class-Wise and Reduced Calibration Methods Michael Panchenko (appliedAI Institute gGmbH), Anes Benmerzoug (appliedAI Initiative GmbH), and Miguel de Benito Delgado (appliedAI Institute gGmbH) Not All Network Weights Need to Be Free David Marwood (Google, Inc), Michele Covell (Google, Inc), and Shumeet Baluja (Google, Inc) Universal Thompson Sampling Marco Faella (University of Naples Federico II, Italy) and Luigi Sauro (University of Naples Federico II, Italy) Secured Federated Training: Detecting Compromised Nodes and Identifying the Type of
Class-Wise and Reduced Calibration Methods

Active Learning with Combinatorial Coverage
Tech National Security Institute, Virginia Tech), Peter Beling
(Virginia Tech National Security Institute, Virginia Tech), and Laura
Freeman (Virginia Tech National Security Institute, Virginia Tech)
Deep Learning Applications
Deep Baseline Network for Time Series Modeling and Anomaly Detection
SimCURL: Simple Contrastive User Representation Learning from Command Sequences
Yaoli Mao (Autodesk Research), Linh Tran (Autodesk AI Lab), Justin Matejka (Autodesk Research), and Jo Vermeulen (Autodesk Research)
Point Cloud-Based Variational Autoencoder Inverse Mappers (PC-VAIM) - An Application on Quantum Chromodynamics Global Analysis
Manal Almaeen (Old Dominion University, USA; Jouf University, Saudi Arabia), Yasir Alanazi (Old Dominion University, USA), Nobuo Sato (Jefferson Lab, USA), Wally Melnitchouk (Jefferson Lab, USA), and
Yaohang Li (Old Dominion University, USA)
Approximate Orthogonal Spectral Autoencoders for Community Analysis in Social Networks 115 Scott Wahl (Montana State University, USA) and John Sheppard (Montana State University, USA)
Deep Contrastive Anomaly Detection for Airline Ancillaries Prediction
Responsible/Explainable/ Interpretable AI
Mixture of Decision Trees for Interpretable Machine Learning
Are Post-Hoc Explanation Methods for Prostate Lesion Detection Effective for Radiology End Use?
Mehmet Akif Gulum (University of Louisville, USA), Christopher M. Trombley (University of Louisville, USA), Merve Ozen (University of Kentucky, USA), and Mehmed Kantardzic (University of Louisville, USA)
Interpretability of ReLU for Inversion
Boaz Ilan (University of California, Merced, USA), Aditya Ranganath (University of California, Merced, USA), Jacqueline Alvarez
(University of California, Merced, USA), Shilpa Khatri (University of
California, Merced, USA), and Roummel Marcia (University of California, Merced, USA)

Decision Support Systems Tue Herlau (Technical University of Denmark, Denmark) Zakaria Elabid (Sorbonne Center for Artificial Intelligence, UAE), Tanujit Chakraborty (Sorbonne University Abu Dhabi, UAE), and Abdenour Hadid (Sorbonne Center for Artificial Intelligence, UAE) Improving Fashion Attribute Classification Accuracy with Limited Labeled Data using Transfer Learning 1210 Tong Chen (Kennesaw State University, USA), Jiho Noh (Kennesaw State University, USA), Luke Cranfill (Homedepot, USA), John Morris (Oracle, USA), and Junggab Son (University of Nevada, Las Vegas, USA) Session: Automation, Robotics and IoT I Tiago Rodrigues de Almeida (University of Örebro, Sweden), Eduardo Gutierrez Maestro (University of Örebro, Sweden), and Oscar Martinez Mozos (University of Örebro, Sweden) Using Contextual Bandits for Maintaining Driver's Alertness via Personalized Interventions....... 1224 Andrew Ponomarev (ITMO University, Russia; St. Petersburg Federal Research Center of the Russian Academy of Sciences, Russia) Daniel Klosa (University of Bremen, Germany) and Christof Büskens (*University of Bremen, Germany*) Peiyu Li (Utah State University, USA), Omar Bahri (Utah State University, USA), Soukaina Filali Boubrahimi (Utah State University, USA), and Shah Muhammad Hamdi (Utah State University, USA) Omar Bahri (Utah State Univeristy, USA), Peiyu Li (Utah State University, USA), Soukaina Filali Boubrahimi (Utah State University, USA), and Shah Muhammad Hamdi (Utah State University, USA) Automation, Robotics and IoT II Learning Task-Independent Joint Control for Robotic Manipulators with Reinforcement (Mercedes-Benz, Germany), Ulrich Berger (Brandenburg University of Technology, Germany), and Simon Bøgh (Aalborg University, Denmark) Imitation from Observation using RL and Graph-Based Representation of Demonstrations 1258

Yassine El Manyari (CEA Tech, France), Patrick Le Callet (Nantes University, France), and Laurent Dolle (CEA Tech, France)

Exploring Edge Machine Learning-Based Stress Prediction using Wearable Devices
ML Applications in Health II
Using Transparent Neural Networks and Wearable Inertial Sensors to Generate Physiologically-Relevant Insights for Gait Lin Zhou (Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Germany), Eric Fischer (Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Germany), Clemens Markus Brahms (Division of Training and Movement Sciences, University of Potsdam, Germany), Urs Granacher (Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Germany), and Bert Arnrich (Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Germany)
XAI-BayesHAR: A Novel Framework for Human Activity Recognition with Integrated Uncertainty and Shapely Values
Causal Inference for Personalized Treatment Effect Estimation for Given Machine Learning Models
ML Applications in Health I
Predicting Clinical Events via Graph Neural Networks
Unsupervised Multivariate Time-Series Transformers for Seizure Identification on EEG
Pose Estimation for Future Prediction of Falling

Special session: Cybersecurity and Big Data

Zero Day Threat Detection using Metric Learning Autoencoders
Feature Reduction Method Comparison Towards Explainability and Efficiency in Cybersecurity Intrusion Detection Systems
Autoencoder Feature Residuals for Network Intrusion Detection: Unsupervised Pre-Training for Improved Performance
Knowledge Guided Two-Player Reinforcement Learning for Cyber Attacks and Defenses
Exposing Surveillance Detection Routes via Reinforcement Learning, Attack Graphs, and Cyber Terrain
Special Session: ML for Predictive Models in Engineering Applications I
Performance of Supervised Learning Algorithms for Radioisotope Identification Using CLYC Detectors
Physics-Informed Neural Networks for Modeling Cellulose Degradation in Power Transformers . 1365 Federica Bragone (KTH Royal Institute of Technology, Sweden), Khaoula Oueslati (Hitachi Energy, Sweden), Tor Laneryd (Hitachi Energy, Sweden), Michele Luvisotto (Hitachi Energy, Sweden), and Kateryna Morozovska (KTH Royal Institute of Technology, Sweden)

Self-Supervised Transformer Networks for Error Classification of Tightening Traces
Multi-omics Data Integration Model based on Isomap and Convolutional Neural Network
Transferring Indoor Corrosion Image Assessment Models to Outdoor Images via Domain
Adaptation
Soil Moisture Estimation using Hyperspectral Imagery Based on Metric Learning
ML Fundamentals IV
Data-Parallel Momentum Diagonal Empirical Fisher (DP-MDEF): Adaptive Gradient Method is Affected by Hessian Approximation and Multi-class Data
Self Meta Pseudo Labels: Meta Pseudo Labels Without the Teacher
Multi-view Contrastive Multiple Knowledge Graph Embedding for Knowledge Completion 1412 Mori Kurokawa (KDDI Research, Inc., Japan), Kei Yonekawa (KDDI Research, Inc., Japan), Shuichiro Haruta (KDDI Research, Inc., Japan), Tatsuya Konishi (KDDI Research, Inc., Japan), Hideki Asoh (KDDI Research, Inc., Japan), Chihiro Ono (KDDI Research, Inc., Japan), and Masafumi Hagiwara (Keio University, Japan)

Informative Evaluation Metrics for Highly Imbalanced Big Data Classification	119
Cost-Sensitive Ensemble Learning for Highly Imbalanced Classification 14 Justin M. Johnson (Florida Atlantic University) and Taghi M. Khoshgoftaar (Florida Atlantic University)	127
FedGLS: Mitigating Forgetting in Federated Learning via Guided Label Smoothing from the Global Teacher	/A
Data-Efficient Automatic Model Selection in Unsupervised Anomaly Detection	143
Exploiting Prototypical Explanations for Undersampling Imbalanced Datasets	149
Improving Robustness: When and How to Minimize or Maximize the Loss Variance	1 55
Anomaly Detection	
Joint Sub-Component Level Segmentation and Classification for Anomaly Detection Within Dual-Energy X-Ray Security Imagery	163
Explainable Unsupervised Multi-sensor Industrial Anomaly Detection and Categorization	168
Special session: Deep Learning	
Uncertainty-Based Meta-Reinforcement Learning for Robust Radar Tracking	176

Sat2rain: Multiple Satellite Images to Rainfall Amounts Conversion By Improved GAN
Explainable Decision Support Tool for IoT Predictive Maintenance Within the Context of
Industry 4.0
Special session: Machine Learning for NLP I
Aspect-Based Sentiment Analysis of English and Hindi Opinionated Social Media Texts
Connecting the Semantic Dots: Zero-Shot Learning with Self-Aligning Autoencoders and a New Contrastive-Loss for Negative Sampling
Understanding Linguistic Variations in Neutral and Strongly Opinionated Reviews
Performance Benchmark of Machine Learning-Based Methodology for Swahili News Article
Categorization
Autoencoders and Deep Learning
A Variational Autoencoder for Heterogeneous Temporal and Longitudinal Data
Unified Autoencoder with Task Embeddings for Multi-task Learning in Renewable Power
Forecasting
Increasing Accuracy in Predicting Student Test Scores with Neural Networks using Domain Reduction Technique of Principal Component Analysis

Towards Graph Representation based Re-Identification of Chipwood Pallet Blocks
Special session: Machine Learning in Energy
Identifying Metering Hierarchies with Distance Correlation and Dominance Constraints
Post-Training Quantization for Energy Efficient Realization of Deep Neural Networks
Transfer Learning on Phasor Measurement Data from a Power System to Detect Events in Another System
Predicting MXene Properties via Machine Learning
Physics-Informed Neural Networks for Prediction of Transformer's Temperature Distribution 1579 Oliver Welin Odeback (KTH Royal Institute of Technology, Sweden), Federica Bragone (KTH Royal Institute of Technology, Sweden), Tor Laneryd (Hitachi Energy, Sweden), Michele Luvisotto (Hitachi Energy, Sweden), and Kateryna Morozovska (KTH Royal Institute of Technology, Sweden)
Signal/Audio/Speech Processing II
On the Robustness of Deep Learning-Based Speech Enhancement
Dealing with Distribution Shift in Acoustic Mosquito Datasets
A CNN-Based Automated Stuttering Identification System
AAEBERT: Debiasing BERT-Based Hate Speech Detection Models via Adversarial Learning 1606 Ebuka Okpala (Clemson University, USA), Long Cheng (Clemson University, USA), Nicodemus Mbwambo (Clemson University, USA), and Feng Luo (Clemson University, USA)

Special Session: ML for Predictive Models in Engineering Applications II

Managing Imprecise map and Image Data in a Possibility Theory Framework Khensa Daoudi (ESI, Ecole nationale Supérieure d'Informatique, Algiers), Maroua Yamami (ESI, Ecole nationale Superieure d'Informatique, Algiers; Université d'Artois, France), Salem Benferhat (CRIL, Université d'Artois, France), and Lila Meziani (ESI, Ecole nationale Superieure d'Informatique, Algiers)	. 1613
Machine Learning Protocol from Ultrasound Data for Monitoring, Predicting, and Supporting the Analysis of Dam Slopes	1619
Nuclide Identification using CsI(Tl) Gamma Ray Spectra and Neural Networks Timo Maiwald (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany), Erich Leder (Thermo Fisher Scientific Messtechnik GmbH, Germany), Ralf Pijahn (Thermo Fisher Scientific Messtechnik GmbH, Germany), Reinhard Buchhold (Thermo Fisher Scientific Messtechnik GmbH, Germany), and Georg Fischer (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany)	. 1624
Improving Aquaculture Systems using AI: Employing Predictive Models for Biomass Estimation on Sonar Images Mohan Kashyap Pargi (Agency of Science Technology and Research, A*STAR, Singapore), Elham Baagheri (Agency of Science Technology and Research, A*STAR, Singapore), Ricardo Shirota Filho (Agency of Science Technology and Research, A*STAR, Singapore), Eng Huat Khoo (Agency of Science Technology and Research, A*STAR, Singapore), Farshad Shishehchian (Blue Aqua International, Singapore), and Nathalie Yu Zhi Lim (Blue Aqua International, Singapore)	

Special session: Machine Learning for NLP II

Zero-Shot Text Matching for Automated Auditing using Sentence Transformers 1637 David Biesner (Fraunhofer IAIS and University of Bonn, Germany), Maren Pielka (Fraunhofer IAIS, Germany), Rajkumar Ramamurthy (Fraunhofer IAIS and University of Bonn, Germany), Tim Dilmaghani (PWC GmbH WPG, Germany), Bernd Kliem (PWC GmbH WPG, Germany), Rüdiger Loitz (PWC GmbH WPG, Germany), and Rafet Sifa (Fraunhofer IAIS, Germany)
Semi-Supervised Machine Learning for Analyzing COVID-19 Related Twitter Data for Asian Hate Speech
A Linguistic Investigation of Machine Learning Based Contradiction Detection Models: An Empirical Analysis and Future Perspectives
KPI-EDGAR: A Novel Dataset and Accompanying Metric for Relation Extraction from Financial Documents
A Novel Multimodal Situated Spoken Dialog System for Human Robot Communication in Emergency Evacuation
On Label Quality in Class Imbalance Setting - A Case Study
Special session: ML in Health II
On the Trade-off Between Benefit and Contribution for Clients in Federated Learning in Healthcare

Determining Association Between Fatal Heart Failure and Chronic Kidney Disease: A Machine Learning Approach	679
Adiba Haque (Brac University, Bangladesh), Anika Nahian Binte Kabir (Brac University, Bangladesh), Maisha Islam (Brac University, Bangladesh), Mayesha Monjur (Brac University, Bangladesh), Md. Khalilur Rhaman (Brac University, Bangladesh), and Moin Mostakim (Brac University, Bangladesh)	
Cost-Effective Models for Detecting Depression from Speech	687
Predicting COVID-19 Case Counts using Twitter Image Data	695
COVID-19 Detection from Cough Recording by Means of Explainable Deep Learning	702
Special session: ML in Health I	
Automatic Sleep Stage Classification with Optimized Selection of EEG Channel 11. Håkon Stenwig (Norwegian University of Science and Technology, Norway), Andres Soler (Norwegian University of Science and Technology, Norway), Junya Furuki (University of Tsukuba, Japan), Yoko Suzuki (University of Tsukuba, Japan), Takashi Abe (University of Tsukuba, Japan), and Marta Molinas (Norwegian University of Science and Technology, Norway; University of Tsukuba, Japan)	708
An Application of Document Embeddings to Identifying Challenging Behaviors in Autism Spectrum Disorder from Clinical Notes	716
Dejà vu: Recurrent Neural Networks for Health Wearables Data Forecast	724
Using CatBoost and Other Supervised Machine Learning Algorithms to Predict Alzheimer's Disease	732
What If Kidney Tumor Segmentation Challenge (KiTS19) Never Happened	740

Special Session: ML for Predictive Models in Engineering Applications III

GDSCAN: Pedestrian Group Detection using Dynamic Epsilon Mingzuoyang Chen (University of Detroit Mercy, USA), Shadi Banitaan (University of Detroit Mercy, USA), Mina Maleki (University of Detroit Mercy, USA), and Yichun Li (University of Detroit Mercy, USA)	1748
Occupancy Detection Based on WI-FI SysLog Data Bassam Abdelghani (University of Detroit Mercy, USA), Mina Maleki (University of Detroit Mercy, USA), Shadi Banitaan (University of Detroit Mercy, USA), and Amna Mazen (University of Detroit Mercy, USA)	1754
On Selection of Optimal Kernel Function for Software Defect Prediction Mohammad Azzeh (Princess Sumaya University for Technology, Jordan), Ali Bou Nassif (University of Sharjah, UAE), and Shadi Banitaan (University of Detroit Mercy, USA)	1761
Special session: Deep Learning and Applications	
Graph-Based Recommendation using Graph Neural Networks	1769
Utilizing Explainable AI for Improving the Performance of Neural Networks Huawei Sun (Infineon Technologies AG, Germany; Technical University of Munich, Germany), Lorenzo Servadei (Infineon Technologies AG, Germany; Technical University of Munich, Germany), Hao Feng (Infineon Technologies AG, Germany; Technical University of Munich, Germany), Michael Stephan (Infineon Technologies AG, Germany; Friedrich-Alexander-University Erlangen-Nuremberg, Germany), Robert Wille (Technical University of Munich, Germany), and Avik Santra (Infineon Technologies AG, Germany)	1775
Recent Trends in Neural Architecture Search Systems	1783
Continuous and Silent User Authentication Through Mouse Dynamics and Explainable Deep Learning	1791

Exploring the Explicit Modelling of Bias in Machine Learning Classifiers: A Deep	
Multi-label ConvNet Approach	1799
Mashael Al-Luhaybi (Jamoum University College, Umm Al-Qura University,	
Saudi Arabia), Stephen Swift (Brunel University London, United	
Kingdom), Steve Counsell (Brunel University London, United Kingdom),	
and Allan Tucker (Brunel University London, United Kingdom)	
Bi-fidelity weighted transfer learning for efficient heat transfer model simulation	N/A
Katarzyna Borowiec (Oak Ridge National Laboratory, USA), Dan Lu (Oak	
Ridge National Laboratory, USA), Vikas Chandan (Pacific Northwest	
National Laboratory, USA), Samrat Chatterjee (Pacific Northwest	
National Laboratory, USA), Pradeep Ramuhalli (Oak Ridge National	
Laboratory, USA), Ramakrishna Tipireddy (Pacific Northwest National	
Laboratory, USA), Mahantesh Halappanavar (Pacific Northwest National	
Laboratory, USA), and Frank Liu (Oak Ridge National Laboratory, USA)	

Author Index