2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS 2022)

Guangzhou, China 5-9 December 2022

Pages 1-582

IEEE Catalog Number: ISBN: CFP22C33-POD 978-1-6654-7705-5

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP22C33-POD 978-1-6654-7705-5 978-1-6654-7704-8 2693-9185

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS) **QRS 2022**

Table of Contents

Message from the QRS 2022 Steering Committee Chairs, General Chairs, and Program	n Chairs xix
QRS 2022 Steering Committee	xxi
QRS 2022 Organizing Committee	
QRS 2022 Program Committee	xxiii
Chairs of Workshops Co-Located with QRS 2022	xxvi
QRS 2022 Keynote Speech	xxviii

Software Vulnerability

A Taxonomy of Software Flaws Leading to Buffer Overflows
 A Comprehensive Analysis of NVD Concurrency Vulnerabilities
 IntJect: Vulnerability Intent Bug Seeding
 Separating the Wheat from the Chaff: Using Indexing and Sub-sequence Mining Techniques to Identify Related Crashes During Bug Triage
 Exploring Transformers for Multi-label Classification of Java Vulnerabilities

System and Software Reliability

A BiLSTM-Attention Model for Detecting Smart Contract Defects More Accurately Chen Qian (Southeast University, China), Tianyuan Hu (Southeast University, China), and Bixin Li (Southeast University, China)	53
Security Countermeasure Selection for Component-based Software-intensive Systems	53
A Detection Method for Scarcity Defect of Blockchain Digital Asset Based on Invariant Analysis	73
Salus: A Novel Data-Driven Monitor that Enables Real-Time Safety in Autonomous Driving Systems	35
 Automatic Collaborative Testing of Applications Integrating Text Features and Priority Experience Replay	95

Security

Cast Away: On the Security of DLNA Deployments in the SmartTV Ecosystem	05
 GAN-Based Privacy-Preserving Unsupervised Domain Adaptation	17
Conceptualizing the Secure Machine Learning Operations (SecMLOps) Paradigm 12 Xinrui Zhang (Carleton University, Canada) and Jason Jaskolka (Carleton University, Canada)	27
Identity Authentication strategy of Mobile Crowd Sensing Based on CFL	39

Software Defect Prediction

 Semantic Feature Learning Based on Double Sequences Structure for Software Defect Number Prediction
An Empirical Study on Software Defect Prediction using Function Point Analysis
An Empirical Study of the Bug Link Rate
 Visualization-Based Software Defect Prediction via Convolutional Neural Network with Global Self-Attention
Telemetry-based Software Failure Prediction by Concept-space Model Creation
Program Debugging

Towards Extending the Range of Bugs That Automated Program Repair Can Handle Omar I. Al-Bataineh (Simula Research Laboratory, Norway) and Leon Moonen (Simula Research Laboratory, Norway)	209
Division by Zero: Threats and Effects in Spectrum-Based Fault Localization Formulas Dániel Vince (University of Szeged), Attila Szatmári (University of Szeged), Ákos Kiss (University of Szeged), and Árpád Beszédes (University of Szeged)	221
CGMBL: Combining GAN and Method Name for Bug Localization Hao AA Chen (Central South University, China), Haiyang Yang (Central South University, China), Zilun Yan (Central South University, China), Li Kuang (Central South University, China), and Lingyan Zhang (Central South University, China)	231

The Use of Pretrained Model for Matching App Reviews and Bug Reports	242
Xiaojuan Wang (Hainan University, China), Wenyu Zhang (Hainan	
University, China), Shanyan Lai (Hainan University, China), Chunyang	
Ye (Hainan University, China), and Hui Zhou (Hainan University, China)	
Context-aware Program Simplification to Improve Information Retrieval-based Bug	
Localization	252
Yilin Yang (State Key Laboratory for Novel Software Technology,	
Nanjing University, China), Ziyuan Wang (Nanjing University of Posts	
and Telecommunications, China), Zhenyu Chen (State Key Laboratory for	
Novel Software Technology, Nanjing University, China), and Baowen Xu	
(State Key Laboratory for Novel Software Technology, Nanjing	

University, China)

Intrusion Detection and Prevention

 Anomaly Detection in Encrypted Identity Resolution Traffic Based on Machine Learning	ł
 Evaluating Performance and Security of a Hybrid Moving Target Defense in SDN environments276 Minjune Kim (The University of Queensland), Jin-Hee Cho (Virginia Tech), Hyuk Lim (Korea Institute of Energy Technology (KENTECH)), Terrence J. Moore (DEVCOM Army Research Lab.), Frederica F. Nelson (DEVCOM Army Research Lab.), Ryan K. L. Ko (The University of Queensland), and Dan Dongseong Kim (The University of Queensland) 	5
An Anomaly-based Approach for Detecting Modularity Violations on Method Placement	7
LogGD: Detecting Anomalies from System Logs with Graph Neural Networks)
An Ontological Analysis of Safety-critical Software and Its Anomalies	L

Information and Software Quality Assurance

A New Code Review Method based on Human Errors Fuqun Huang (University of Coimbra, CISUC), Bo Zhao (The School of Software, Beihang University), and Henrique Madeira (University of Coimbra, CISUC)	321
Contextual Operationalization of Metrics As Scores: Is My Metric Value Good? Sebastian Hönel (Linnaeus University), Morgan Ericsson (Linnaeus University), Welf Löwe (Linnaeus University), and Anna Wingkvist (Linnaeus University)	333
A Collaboration-Aware Approach to Profiling Developer Expertise with Cross-Community Data Xiaotao Song (School of Software, Taiyuan University of Technology), Jiafei Yan (SKLSDE Lab, Beihang University), Yuexin Huang (SKLSDE Lab, Beihang University), Hailong Sun (SKLSDE Lab, Beihang University), and Hongyu Zhang (The University of Newcastle)	. 344
Proposing a Quality Model for Evaluating and Identifying Opportunities in Clinical Practice Guideline Engines Manuel Carrero (University of Seville, Spain), Elena Enamorado-Díaz (University of Seville, Spain), Julián García-García (University of Seville, Spain), and María José Escalona (University of Seville, Spain)	. 356
Emotional Dashboard: A Non-intrusive Approach to Monitor Software Developers' Emotions and Personality Traits Leo Silva (Centre of Informatics and Systems, University of Coimbra, Portugal), Marília Castro (University of Coimbra, Portugal), Miriam Silva (University of Coimbra, Portugal), Milena Santos (University of Coimbra, Portugal), Uirá Kulesza (Federal University of Rio Grande do Norte, Brazil), Margarida Lima (University of Coimbra, Portugal), and Henrique Madeira (Centre of Informatics and Systems, University of Coimbra, Portugal)	
Formal Methods	
A Novel Approach for Bounded Model Checking Through Full Parallelism	376

A Novel Approach for Bounded Model Checking Through Full Parallelism	376
 Safety SysML: An Executable Safety-Critical Avionics Requirement Modeling Language	88

Model Checking the Safety of Raft Leader Election Algorithm Qihao Bao (Southeast University, China), Bixin Li (Southeast University, China), Tianyuan Hu (Southeast University, China), and Dongyu Cao (Southeast University, China)	400
Formal Verification of Hierarchical Ptolemy II Synchronous-Reactive Models with Bounded Model Checking Xiaozhen Zhang (Dalian University of Technology, China), Zhaoming Yang (Dalian University of Technology, China), Hui Kong (Huawei Technologies Co., Ltd., China), and Weiqiang Kong (Dalian University of Technology, China)	410
Coverage Testing of Industrial Simulink Models Using Monte-Carlo and SMT-Based Methods Daisuke Ishii (Japan Advanced Institute of Science and Technology, Japan), Takashi Tomita (Japan Advanced Institute of Science and Technology, Japan), Toshiaki Aoki (Japan Advanced Institute of Science and Technology, Japan), The Quyen Ngo (VNU University of Science, Vietnam), Thi Bich Ngoc Do (Posts and Telecommunications Institute of Technology, Vietnam), and Hideaki Takai (GAIO Tech. Co., Japan)	422

Optimization

 Availability and Cost Aware Multi-domain Service Deployment Optimization	4
Cache Optimizations for Test Case Reduction	2
 Nimbus: Toward Speed Up Function Signature Recovery via Input Resizing and Multi-task Learning	4
Reuse of Test Case Based on Attributes Weight Optimization	4
GOV: A Verification Method for Smart Contract Gas-Optimization	3
Stateful Depletion and Scheduling of Containers on Cloud Nodes for Efficient Resource Usage	0

Malware Detection and Analysis

 Understanding and Mitigating Label Bias in Malware Classification: An Empirical Study	2
Can PoW Consensus Protocol Resist the Whale Attack?	4
Towards Improving Multiple Authorship Attribution of Source Code	6
CBSDI: Cross-Architecture Binary Code Similarity Detection Based on Index Table	7
PDG2VEC: Identify the Binary Function Similarity with Program Dependence Graph	7

Internet of Things and Cloud Computing

Uncertainty-Aware Behavior Modeling and Quantitative Safety Evaluation for Automatic Flight Control Systems Huiyu Liu (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China), Jing AA Liu (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China), Haiying Sun (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China), Tengfei Li (CASCO Signal Ltd., China), and John Zhang (Xidian University, China)	549
ucXception: A Framework for Evaluating Dependability of Software Systems Pedro David Almeida (Universidade de Coimbra), Frederico Cerveira (Universidade de Coimbra), Raul Barbosa (Universidade de Coimbra), and Henrique Madeira (Universidade de Coimbra)	561
SAS-GKE: A Secure Authenticated Scalable Group Key Exchange Abu Faisal (Queen's University, Canada) and Mohammad Zulkernine (Queen's University, Canada)	571

Assessing the Quality of Low-Code and Model-Driven Engineering Platforms for Engineering	
IoT Systems	. 583
Felicien Ihirwe (Intecs Solutions S.p.A, Italy), Davide Di Ruscio	
(University of L'Aquila, Italy), Simone Gianfranceschi (Intecs	
Solutions S.p.A, Italy), and Alfonso Pierantonio (University of	
L'Aquila, Italy)	

Software Testing and Verification (I)

A Pattern-Based Test Platform for Families of Smart Health Products	595
cPV - Simulation and Verification for Membrane Computing	506
Multi-transaction Sequence Vulnerability Detection for Smart Contracts based on Inter-Path Data Dependency	516
Valkyrie: Improving Fuzzing Performance Through Deterministic Techniques	528
Automated Grey-Box Testing of Microservice Architectures	640
TokenAuditor: Detecting Manipulation Risk in Token Smart Contract by Fuzzing Mingpei Cao (Peking University, China), Yueze Zhang (Technical University of Munich, Germany), Zhenxuan Feng (Peking University, China), Jiahao Hu (Peking University, China), and Yuesheng Zhu (Peking University, China)	651

Software Testing and Verification (II)

Crowdsourced Testing Task Assignment based on Knowledge Graphs	663
Peng Yang (South China Normal University, China), Chao Chang (South	
China Normal University, China), and Yong Tang (South China Normal	
University, China)	

A Functional FMECA approach for the assessment of critical infrastructure resilience	572
Predictive Mutation Analysis of Test Case Prioritization for Deep Neural Networks	582
Automated Synthesis of Quantum Circuits Using Neural Network	594
 Test Reuse Based on Adaptive Semantic Matching across Android Mobile Applications	703

Test Case Generation

Test Case Generation for Ethereum Smart Contract Based on Data Dependency Analysis of State Variable	710
Jinhu Du (Army Engineering University of PLA, China), Song Huang (Army Engineering University of PLA, China), Xingya Wang (Nanjing Tech University, China), Changyou Zheng (Army Engineering University of PLA, China), and Jinlei Sun (Army Engineering University of PLA, China)	
Extracting Temporal Models from Data Episodes Nour Chetouane (Institute for Software Technology, Graz University of Technology, Austria) and Franz Wotawa (Institute for Software Technology, Graz University of Technology, Austria)	721
MC/DC Test Case Automatic Generation for Safety-Critical Systems Cong Wang (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China), Haiying Sun (Software Engineering Institute, East China Normal University, China), Hui Dou (Huawei Technology, China), Hongtao Chen (Huawei Technology, China), and Jing AA Liu (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China)	732
Generating Abstract Test Cases from User Requirements using MDSE and NLP Sai Chaithra Allala (Florida International University, USA), Juan P. Sotomayor (Florida International University, USA), Dionny Santiago (Florida International University, USA), Tariq M. King (EPAM, USA), and Peter J. Clarke (Florida International University, USA)	744
DeepRTest: A Vulnerability-guided Robustness Testing and Enhancement Framework for Deep Neural Networks <i>Minghao Yang (Beihang University), Shunkun Yang (Beihang), and Wenda</i> <i>Wu (Beihang University)</i>	754

Machine Learning/Deep Learning Systems (I)

 An Effective Low-dimensional Software Code Representation using BERT and ELMo	763
Building Safe and Stable DNN Controllers using Deep Reinforcement Learning and Deep Imitation Learning Xudong He (Florida International University)	775
 Evaluating the Robustness of Deep Reinforcement Learning for Autonomous Policies in a Multi-agent Urban Driving Environment	785
ParGCN: Abnormal Transaction Detection based on Graph Neural Networks	797
A Survey on Backdoor Attack and Defense in Natural Language Processing	309

Machine Learning/Deep Learning Systems (II)

Mutation Testing based Safety Testing and Improving on DNNs	321
Yuhao Wei (Army Enginnering University of PLA, China), Song Huang	
(Army Enginnering University of PLA, China), Yu Wang (Army Enginnering	
University of PLA, China), Ruilin Liu (Agricultural Bank of China Chengdu R & D Center, China), and Chunyan Xia (Army Enginnering	
University of PLA, China)	
Focus on New Test Cases in Continuous Integration Testing Based on Reinforcement Learning	330
Fanliang Chen (College of Information Science and Technology, Beijing	
University of Chemical Technology, China), Zheng Li (College of	
Information Science and Technology, Beijing University of Chemical	
Technology, China), Ying Shang (College of Information Science and	
Technology, Beijing University of Chemical Technology, China), and	
Yang Yang (School of Information Science and Engineering, Zhejiang	
Sci-Tech University, China)	
A Distance-Based Dynamic Random Testing Strategy for Natural Language Processing DNN	
	342
Yuechen Li (Beihang University, China), Hanyu Pei (Beihang University,	
China), Linzhi Huang (Beihang University, China), and Beibei Yin	

(Beihang University, China)

EDDNet: An Efficient and Accurate Defect Detection Network for the Industrial Edge	
Environment	854
Runbing Qin (School of Computer and Electronic Information, Guangxi	
University, China), Ningjiang Chen (School of Computer and Electronic	
Information, Guangxi University, China), and Yihui Huang (School of	
Computer and Electronic Information, Guangxi University, China)	
Evaluation of the Architecture Alternatives for Real-Time Intrusion Detection Systems for	
Vehicles	864
Mubark Jedh (Iowa State University, USA), Jian Kai Lee (Iowa State	
University, USA), and Lot i ben Othmane (University of North Texas,	
USA)	
Strategies for Improving the Error Robustness of Convolutional Neural Networks	874
Antonio Morais (University of Coimbra, CISUC, DEI), Raul Barbosa	
(University of Coimbra, CISUC, DEI), Nuno Lourenco (University of	
Coimbra, CISUC, DEI), Frederico Cerveira (University of Coimbra,	
CISUC, DEI), Michele Lombardi (University of Bologna, DISI), and	
Henrique Madeira (University of Coimbra, CISUC, DEI)	

Program Comprehension (I)

Parameter Description Generation with the Code Parameter Flow	84
GitHub Considered Harmful? Analyzing Open-Source Projects for the Automatic Generation of Cryptographic API Call Sequences	96
 Improved Methods of Pointer Mixture Network for Code Completion	07
Automated Identification of Performance Changes at Code Level	916
Cross Platform API Mappings based on API Documentation Graphs	26

Program Comprehension (II)

CodeBERT-nt: Code Naturalness via CodeBERT	<i>€</i>
RetCom: Information Retrieval-Enhanced Automatic Source-Code Summarization	948
API Misuse Detection Method Based on Transformer	958
CRUST: Towards a Unified Cross-Language Program Analysis Framework for Rust	<i>₹</i> 70
Comprehensiveness, Automation and Lifecycle: A New Perspective for Rust Security	<i>€</i>

Simulation and Evaluation

A Proactive Self-Adaptation Approach for Software Systems Based on Environment-Aware Model Predictive Control	992
MetaA: Multi-dimensional Evaluation of Testing Ability via Adversarial Examples in Deep Learning)04
Siqi Gu (Nanjing University), Jiawei Liu (Nanjing University), Zhanwei	
Hui (Military Academy of Science), Wenhong Liu (Beijing Institute of	
Tracking and Telecommunication Technology), and Zhenyu Chen (Nanjing University)	
MiSim: A Simulator for Resilience Assessment of Microservice-Based Architectures	roservice-Based Architectures 1014
Sebastian Frank (University of Hamburg, Germany), Lion Wagner	
(University of Stuttgart, Germany), Alireza Hakamian (University of	
Stuttgart, Germany), Martin Straesser (University of Würzburg,	
Germany), and André van Hoorn (University of Hamburg, Germany)	

Quantity-Simulation-Analysis Method Based Novel RSA Timing Attack Algorithm forSingle-Chip Microcomputer Platform1026Cong Li (School of Computer Science and Engineering, North Minzu1026University, China), Qiang Han (School of Computer Science and1026Engineering, North Minzu University, China), Tao Zhang (School of1026Computer Science and Engineering, Macau University of Science and1026Technology, China), Bingbing Lei (School of Computer Science and1026Engineering, North Minzu University, China), and Yu He (School of1026Computer Science and Engineering, North Minzu University, China), and Yu He (School of1026Computer Science and Engineering, North Minzu University, China)1026
Continuous Usability Requirements Evaluation Based on Runtime User Behavior Mining 1036 Tong Li (Beijing University of Technology) and Tianai Zhang (Beijing University of Technology)
Empirical Studies
Adopting Misclassification Detection and Outlier Modification to Fault Correction in Deep Learning-Based Systems
Quantitative Analysis of Sparsely Synchronized Fail-Safe Processors
An Empirical Study on Source Code Feature Extraction in Preprocessing of IR-Based Requirements Traceability
Pain Pickle: Bypassing Python Restricted Unpickler for Automatic Exploit Generation
An Empirical Study on Software Aging of Long-Running Object Detection Algorithms

Mobile and Smartphone Applications

 Scriptless GUI Testing on Android and iOS Applications
 An Exploratory Study for GUI posts on Stack Overflow
Fine-Tuning Pre-trained Model to Extract Undesired Behaviors from App Reviews
 A Framework for Scanning Privacy Information based on Static Analysis
EWDLL: Software Aging State Identification Based on LightGBM-LR Hybrid Model 1146 Xueyong Tan (Inner Mongolia University, China) and Jing Liu (Inner Mongolia University, China)

Author Index