2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in **HPC (P3HPC 2022)**

Dallas, Texas, USA 13 – 18 November 2022

IEEE Catalog Number: CFP22S71-POD ISBN:

978-1-6654-6022-4

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22S71-POD

 ISBN (Print-On-Demand):
 978-1-6654-6022-4

 ISBN (Online):
 978-1-6654-6021-7

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC) **P3HPC 2022**

Table of Contents

Message from the Workshop Chairs vi Vorkshop Organization vii
Session 1
leterogeneous Programming for the Homogeneous Majority
everaging Compiler-Based Translation to Evaluate a Diversity of Exascale Platforms
Session 2
Inderstanding Strong Scaling on GPUs Using Empirical Performance Saturation Size
Portable and Efficient Dense Linear Algebra in the Beginning of the Exascale Era
exploiting Dynamic Sparse Matrices for Performance Portable Linear Algebra Operations

Performance Portability of Sparse Block Diagonal Matrix Multiple Vector Multiplications on	
GPUs	58
Session 3	
Performance Portable Vlasov Code with C++ Parallel Algorithm Yuuichi Asahi (Japan Atomic Energy Agency, Japan), Thomas Padioleau (Maison de la Simulation, France), Guillaume Latu (DES/IRESNE/DEC, CEA, France), Julien Bigot (Maison de la Simulation, France), Virginie Grandgirard (IRFM, CEA, France), and Kevin Obrejan (IRFM, CEA, France)	68
Towards Cross-Platform Portability of Coupled-Cluster Methods with Perturbative Triples using SYCL Abhishek Bagusetty (Argonne National Laboratory, USA), Ajay Panyala (Pacific Northwest National Laboratory, USA), Gordon Brown (Codeplay Software Ltd, UK), and Jack Kirk (Codeplay Software Ltd, UK)	81
From Task-Based GPU Work Aggregation to Stellar Mergers: Turning Fine-Grained CPU Tasks into Portable GPU Kernels	89
Piper: Pipelining OpenMP Offloading Execution through Compiler Optimization for Performance	00
Session 4	
Towards Performance Portability of AI Graphs Using SYCL	11

ECP SOLLVE: Validation and Verification Testsuite Status Update and Compiler Insight for	
OpenMP	123
Thomas Huber (University of Delaware), Swaroop Pophale (Oak Ridge	
National Laboratory), Nolan Baker (University of Delaware), Michael	
Carr (University of Delaware), Nikhil Rao (University of Delaware),	
Jaydon Reap (University of Delaware), Kristina Holsapple (University	
of Delaware), Joshua Hoke Davis (University of Maryland), Tobias	
Burnus (Siemens), Seyong Lee (Oak Ridge National Laboratory), David E.	
Bernholdt (Oak Ridge National Laboratory), and Sunita Chandrasekaran	
(University of Delaware)	
Author Index	137
Indio index	157