2022 Sixth IEEE International Conference on Robotic Computing (IRC 2022)

Naples, Italy + Virtual 5 – 7 December 2022

IEEE Catalog Number: CFP22H16-POD **ISBN:**

978-1-6654-7261-6

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP22H16-POD
ISBN (Print-On-Demand):	978-1-6654-7261-6
ISBN (Online):	978-1-6654-7260-9

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2022 Sixth IEEE International Conference on Robotic Computing (IRC) IRC 2022

Table of Contents

Message from the General Co-Chairs	xvi
Message from the Program Co-Chairs	xvii

Session 2: IRC-1: Mobile Robots

Multimodal Data Collection System for UAV-Based Precision Agriculture Applications
Towards Gesture-Based Cooperation with Cargo Handling Unmanned Aerial Vehicles: A Conceptual Approach 8 Marvin Brenner (University of the Bundeswehr Munich, Germany) and 8 Peter Stütz (University of the Bundeswehr Munich, Germany) 8
 UAV Payload Detection using Deep Learning and Data Augmentation
Real-Time Learning of Wing Motion Correction in an Unconstrained Flapping-Wing Air Vehicle26 John C. Gallagher (University of Cincinnati, USA), Eric T. Matson (Purdue University, USA), and Ryan Slater (University of Cincinnati, USA)

Session 4: IRC-2: Modeling and Simulation

A Comparative Analysis of Collaborative Robots for Autonomous Mobile Depalletizing Tasks 34 Alessio Saccuti (University of Parma, Italy), Riccardo Monica (University of Parma, Italy), and Jacopo Aleotti (University of Parma, Italy)
 Teleoperation of an Industrial Robot using Public Networks and 5G SA Campus Networks
 Performance Evaluation of Containerized Systems Before and After using Kubernetes for Smart Farm Visualization Platform Based on LoRaWAN
Mechanical Exploration of the Design of Tactile Fingertips via Finite Element Analysis
A Flexible MATLAB/Simulink Simulator for Robotic Floating-Base Systems in Contact with the Ground
Distributed Computation and Dynamic Load Balancing in Modular Edge Robotics

Session 6: IRC-3: Perception

Gaze-Based Object Detection in the Wild	62
Daniel Weber (University of Tübingen, Germany), Wolfgang Fuhl	
(University of Tübingen, Germany), Andreas Zell (University of	
Tübingen, Germany), and Enkelejda Kasneci (Technical University of	
Munich, Germany)	

6D Pose Estimation and 3D Object Reconstruction from 2D Shape for Robotic Grasping of Objects
 Experimental Assessment of Feature-Based Lidar Odometry and Mapping
A Data-Driven Sensor Model for LIDAR Range Measurements used for Mobile Robot Navigation 76 Spies Florian (University of Applied Sciences Wuerzburg-Schweinfurt), Norbert Strobel (University of Applied Sciences Wuerzburg-Schweinfurt), Tobias Kaupp (University of Applied Sciences Wuerzburg-Schweinfurt), and Samuel Kounev (Julius-Maximilians-University of Wuerzburg)
Sensor-Guided Motions for Robot-Based Component Testing

Session 8: IRC-4: Poster Paper Session

Anthony H. Smith (Purdue University, United States)

Deep Learning Based Malicious Drone Detection using Acoustic and Image Data	91
Juann Kim (Sangmyung University, Republic of Korea), Dongwhan Lee	
(Kyung Hee University, Republic of Korea), Youngseo Kim (Sangmyung	
University, Republic of Korea), Heeyeon Shin (Kyung Hee University,	
Republic of Korea), Yeeun Heo (Soongsil University, Republic of	
Korea), Yaqin Wang (Purdue University, United States), and Eric T	
Matson (Purdue University, United States)	
Time Series Classification of IMU Data for Point of Impact Localization	93
Richard Krieg (Universität Greifswald, Germany) and Marc Ebner	
(Universität Greifswald, Germany)	

Session 10: IRC-5: Best Paper Session

External Torque Estimation for Mobile Manipulators: A Comparison of Model-Based and LSTM Methods	95
State Estimation for Hybrid Locomotion of Driving-Stepping Quadrupeds Mojtaba Hosseini (University of Bonn, Germany), Diego Rodriguez (Dexterity Inc.), and Sven Behnke (University of Bonn, Germany)	103
Variability Analysis for Robot Operating System Applications André Santos (Vortex-CoLab, Portugal), Alcino Cunha (INESC TEC and University of Minho, Portugal), Nuno Macedo (INESC TEC and University of Porto, Portugal), Sara Melo (University of Minho, Portugal), and Ricardo Pereira (University of Minho, Portugal)	111
Robust Photogrammetry-Based Online Pose Correction of Industrial Robots Employing Adaptive Integral Terminal Fractional-Order Super-Twisting Algorithm Ehsan Zakeri (Concordia University, Canada) and Wen-Fang Xie (Concordia University, Canada)	119

Session 13: IRC-6: Modeling and Simulation

 Analytical Solutions for Two-Contact Whole-Arm Manipulation Inverse Kinematics for Manipulators with Link Offsets Pascal Hinrichs (OFFIS - Institute for Information Technology, Germany), Minh Tam Vu (OFFIS - Institute for Information Technology, Germany), Max Pfingsthorn (OFFIS - Institute for Information Technology, Germany), Christian Kowalski (Carl von Ossietzky University of Oldenburg, Germany), and Andreas Hein (OFFIS - Institute for Information Technology, Carl von Ossietzky University of Oldenburg, Germany) 	127
Autonomous Golf Putting with Data-Driven and Physics-Based Methods Annika Junker (Paderborn University, Germany), Niklas Fittkau (Paderborn University, Germany), Julia Timmermann (Paderborn University, Germany), and Ansgar Trächtler (Paderborn University, Germany)	134

Localization in Seemingly Sensory-Denied Environments Through Spatio-Temporal Varying Fields	. 142
Jose Fuentes (Florida International University, USA), Leonardo Bobadilla (Florida International University, USA), and Ryan N. Smith (Florida International University, USA)	
Task Mapping for Hardware-Accelerated Robotics Applications using ReconROS Christian Lienen (Paderborn University, Germany) and Marco Platzner (Paderborn University, Germany)	.148
Efficient Representations of Object Geometry for Reinforcement Learning of Interactive Grasping Policies	. 156
Dynamics Modeling of Industrial Robots using Transformer Networks Minh Trinh (RWTH Aachen University, Germany), Mohamed Behery (RWTH Aachen University, Germany), Mahmoud Emara (RWTH Aachen University, Germany), Gerhard Lakemeyer (RWTH Aachen University, Germany), Simon Storms (RWTH Aachen University, Germany), and Christian Brecher (RWTH Aachen University, Germany)	. 164

Session 15: IRC-7: Mobile Robots I

 Generating Robot-Dependent Cost Maps for Off-Road Environments using Locomotion Experiments and Earth Observation Data
 Design and Implementation of Telemarketing Robot with Emotion Identification for Human-Robot Interaction
Pedestrian Intention Anticipation with Uncertainty Based Decision for Autonomous Driving 181 João Correia (Institute for Systems and Robotics, Portugal), Plinio Moreno (Institute for Systems and Robotics, Portugal), and João Avelino (Institute for Systems and Robotics, Portugal)
A Large-Scale UAV Audio Dataset and Audio-Based UAV Classification using CNN

Session 17: IRC-8: Perception I

PrimitivePose: 3D Bounding Box Prediction of Unseen Objects via Synthetic Geometric Primitives	90
Andreas Kriegler (AIT Austrian Institute of Technology, Austria), Csaba Beleznai (AIT Austrian Institute of Technology, Austria), Markus Murschitz (AIT Austrian Institute of Technology, Austria), Kai Göbel (AIT Austrian Institute of Technology, Austria), and Margrit Gelautz (TU Wien, Austria)	
Object-Level 3D Semantic Mapping using a Network of Smart Edge Sensors	98
Self-Calibrating Anomaly and Change Detection for Autonomous Inspection Robots	07

Session 20: IRC-9: Perception II

 Cost-Effective Solution for Fallen Tree Recognition using YOLOX Object Detection	215
Learning Implicit Probability Distribution Functions for Symmetric Orientation Estimation from RGB Images Without Pose Labels	221
An Improved Approach to 6D Object Pose Tracking in Fast Motion Scenarios	229

Session 22: IRC-10: Mobile Robots II

Coverage Path Planning and Precise Localization for Autonomous Lawn Mowers	
María Höffmann (Optimization and Optimal Control, University of	
Bremen, Ĝermany), Joachim Clemens (Cognitive Neuroinformatics,	
University of Bremen, Germany), David Štronzek-Pfeifer (Optimization	
and Optimal Control, University of Germany, Germany), Ruggero	
Simonelli (Optimization and Optimal Control, University of Bremen,	
Germany), Andreas Serov (Cognitive Neuroinformatics, University of	
Bremen, Germany), Sven Schettino (Optimization and Optimal Control,	
University of Bremen, Germany), Margareta Runge (Optimization and	
Optimal Control, University of Bremen, Germany), Kerstin Schill	
(Cognitive Neuroinformatics, University of Bremen, Germany), and	
Christof Büskens (Optimization and Optimal Control, University of	
Bremen, Germany)	

Autonomous Drone Landing with Fiducial Markers and a Gimbal-Mounted Camera for Active Tracking Joshua Springer (Reykjavik University, Iceland) and Marcel Kyas (Reykjavik University, Iceland)	43
Practical Validation of Autonomous Source Localization with Ground Robots	.48
 Scenario and System Concept for a Firefighting UAV-UGV Team	.53
Tracking Visual Landmarks of Opportunity as Rally Points for Unmanned Ground Vehicles2 Martin Rebert (French-German Research Institute of Saint-Louis (ISL) Saint-Louis, France), Gwenael Schmitt (French-German Research Institute of Saint-Louis (ISL) Saint-Louis, France), and David Monnin (French-German Research Institute of Saint-Louis (ISL) Saint-Louis, France)	.57

NFCR Workshop

 Labeling Custom Indoor Point Clouds Through 2D Semantic Image Segmentation
 Training a Robot with Limited Computing Resources to Crawl using Reinforcement Learning 265 Moritz P. Heimbach (University of Würzburg, Germany), Jan Weber (Bochum University of Applied Sciences, Germany), and Marco Schmidt (University of Würzburg, Germany)
On Embedding a Dataflow Architecture in a Multi-Robot System
Privacy Protection and Regulatory Aspects in the Context of Medical Apps
Evaluation of Orientation Ambiguity and Detection Rate in April Tag and WhyCode

CHARMS Workshop + PhD Workshop (II)

Human-Aware Waypoint Planner for Mobile Robot in Indoor Environments
Implemention of Reinforcement Learning Environment for Mobile Manipulator using Robo-gym . 292 Myunghyun Kim (Kyung Hee University, Republic of Korea), Sungwoo Yang (Kyung Hee University, Republic of Korea), Sumin Kang (Kyung Hee University, Republic of Korea), Wonha Kim (Kyung Hee University, Republic of Korea), and Donghan Kim (Kyung Hee University, Republic of Korea)
Outdoor Visual SLAM and Path Planning for Mobile-Robot
Towards Advanced Robotic Manipulation302Francisco Roldan Sanchez (Insight SFI Research Centre for Data302Analytics), Stephen Redmond (Insight SFI Research Centre for Data302Analytics), Kevin McGuinness (Insight SFI Research Centre for Data302Analytics), and Noel O'Connor (Insight SFI Research Centre for Data302Analytics)302
Indoors Traversability Estimation with Less Labels for Mobile Robots
Session B: IRC-V1: Industrial Robotics and Applications A Distributed Deep Learning Approach for A Team of Unmanned Aerial Vehicles for Wildfire Tracking and Coverage
UAV Velocity Prediction using Audio Data
 CNN-Based Feature Extraction for Robotic Laser Scanning of Weld Grooves in Tubular T-Joints

Terrain Dependent Power Estimation for Legged Robots in Unstructured Environments Christopher Allred (Utah State University, Utah), Huzeyfe Kocabas (Utah State University, Utah), Mario Harper (Utah State University, Utah), and Jason Pusey (Army Research Laboratory, USA)	329
Patterns and Tools in Robotic Systems Integration Nadia Hammoudeh Garcia (Fraunhofer IPA, Germany) and Andreas Wortmann (University of Stuttgart, Germany)	334
An Approach to Apply Automated Acceptance Testing for Industrial Robotic Systems Marcela G. dos Santos (Université du Québec à Chicoutimi, Canada), Fabio Petrillo (École de Technologie Supérieure (ÉTS), Canada), Sylvain Hallé (Université du Québec à Chicoutimi, Canada), and Yann-Gael Guéhéneuc (Concordia University, Canada)	336

Session C: IRC-V2: Robot Programming and Control

Multi-View Contrastive Learning from Demonstrations	338
Human-Inspired Video Imitation Learning on Humanoid Model	345
Voluntary Interaction Detection for Safe Human-Robot Collaboration	353
Synchronisation in Extended Robot State Automata	360
Remarks on Direct Controller using a Commutative Quaternion Neural Network	364

Session G: IRC-V3: Path Planning and Autonomous Driving (I)

NIAR: Interaction-Aware Maneuver Prediction using Graph Neural Networks and Recurrent	
Neural Networks for Autonomous Driving	. 368
Petrit Rama (Technische Universität Kaiserslautern, Germany) and Naim	
Bajcinca (Technische Universität Kaiserslautern, Germany)	

A Virtual Suturing Task: Proof of Concept for Awareness in Autonomous Camera Motion Nicolò Pasini (Politecnico di Milano, Italu), Andrea Mariani (Scuola	376
Superiore Sant'Anna, Italy), Adnan Munawar (Johns Hopkins University, USA), Elena De Momi (Politecnico di Milano, Italy), and Peter Kazanzides (Johns Hopkins University, USA)	
On Path Regression with Extreme Learning and the Linear Configuration Space Victor Parque (Waseda University, Japan) and Tomoyuki Miyashita (Waseda University, Japan)	383
Real-Time Multi-Objective Trajectory Optimization Ilya Gukov (Huawei Technologies Company Ltd.) and Alvis Logins (Huawei Technologies Company Ltd.)	391

Session H: IRC-V4: Path Planning and Autonomous Driving (II)

Single Frame Lidar-Camera Calibration using Registration of 3D Planes Ashutosh Singandhupe (University of Nevada, USA), Hung La (University of Nevada, USA), and Quang Ha (University of Technology Sydney, Australia)	395
DVF-RRT: Randomized Path Planning on Predictive Vector Fields Tauhidul Alam (Louisiana State University Shreveport, USA), Fabian Okafor (Louisiana State University Shreveport, USA), Ankit Patel (Louisiana State University Shreveport, USA), and Abdullah Al Redwan Newaz (University of New Orleans, USA)	403
Path Smoothing with Deterministic Shortcuts	411
Smart Robot Vision System for Plant Inspection for Disaster Prevention Saifuddin Mahmud (Kent State University, USA), Justin Dannemiller (Kent State University, USA), Redwanul Sourave (Kent State University, USA), Xiangxu Lin (Kent State University, USA), and Jong-Hoon Kim (Kent State University, USA)	416
ZigZag Algorithm: Scanning an Unknown Maze by an Autonomous Drone Jeryes Danial (University of Haifa CS) and Yosi Ben Asher (University of Haifa CS)	421

PhD Workshop (I)

Autonomous Multirotor Landing on Landing Pads and Lava Flows	425
Intelligent Adaptative Robotic System for Physical Interaction Tasks	429
Spain)	

Neural Network Control of Industrial Robots using ROS Minh Trinh (RWTH Aachen University, Germany) and Christian Brecher (RWTH Aachen University, Germany)	431
Object Pose Estimation in Industrial Environments using a Synthetic Data Generation Pipeline	435
Manuel Belke (RWTH Aachen University, Germany), Philipp Blanke (RWTH Aachen University, Germany), Simon Storms (RWTH Aachen University, Germany), and Werner Herfs (RWTH Aachen University, Germany)	

Author Index	 	