# **2022 26th International Conference Information** Visualisation (IV 2022)

Vienna, Austria 19 – 22 July 2022



IEEE Catalog Number: CFP22199-POD **ISBN:** 

978-1-6654-9008-5

## Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

*Copyright and Reprint Permissions*: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

#### \*\*\* This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

| IEEE Catalog Number:    |  |
|-------------------------|--|
| ISBN (Print-On-Demand): |  |
| ISBN (Online):          |  |
| ISSN:                   |  |

CFP22199-POD 978-1-6654-9008-5 978-1-6654-9007-8 1550-6037

#### Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com



## 2022 26th International Conference Information Visualisation (IV) **IV 2022**

### Table of Contents

| Preface                                     | xiii  |
|---------------------------------------------|-------|
| Acknowledgments                             | xiv   |
| Organizing Committee                        | xv    |
| Organising & Liaison Committee of Symposium | xvi   |
| D-Art Gallery                               | xix   |
| Reviewers                                   | xxiii |

#### 1: Information Visualization

| <ul> <li>Glyph-Based Visual Analysis of Q-Learning Based Action Policy Ensembles on Racetrack</li> <li>David Groß (TU Dresden, Germany), Michaela Klauck (Saarland University, Germany), Timo P. Gros (Saarland University, Germany), Marcel Steinmetz (Saarland University, Germany), Jörg Hoffmann (Saarland University, Germany), and Stefan Gumhold (TU Dresden, Germany)</li> </ul> | 1  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| VRGrid: Efficient Transformation of 2D Data into Pixel Grid Layout                                                                                                                                                                                                                                                                                                                       | 1  |
| Clustering Ensemble-Based Edge Bundling to Improve the Readability of Graph Drawings                                                                                                                                                                                                                                                                                                     | 1  |
| Visualizing Disks and Labels with Good Visibility and Correspondence                                                                                                                                                                                                                                                                                                                     | .7 |
| Visualizing Temporal Data using Time-Dependent Non-Decreasing Monotone Functions                                                                                                                                                                                                                                                                                                         | 3  |
| Affective Color Palette Recommendations with Non-negative Tensor Factorization                                                                                                                                                                                                                                                                                                           | .0 |

| A Systematic Literature Review of Solution-Space Visualization Approaches in the Context<br>of Optimization Problems                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ennio Willian Lima Silva (Universidade Federal de Goiás, Brazil), Hugo<br>Alexandre Dantas do Nascimento (Universidade Federal de Goiás,<br>Brazil), Juliana Paula Felix (Universidade Federal de Goiás, Brazil),<br>Humberto José Longo (Universidade Federal de Goiás, Brazil), and Bernd<br>Scheuermann (University of Applied Sciences, Germany) |
| Augmenting the Reality of Situated Visualization                                                                                                                                                                                                                                                                                                     |
| Kinematic Motion Analysis with Volumetric Motion Capture                                                                                                                                                                                                                                                                                             |
| An Overview of the Design and Development for Dynamic and Physical Bar Charts                                                                                                                                                                                                                                                                        |
| A Flexible Pipeline to Create Different Types of Data Physicalizations                                                                                                                                                                                                                                                                               |
| Development of a Tourist Added Value Service for the City of Madrid                                                                                                                                                                                                                                                                                  |
| Observation and Visualization of Subjectivity-Based Annotation Tasks                                                                                                                                                                                                                                                                                 |
| Comparing Word Embeddings through Visualisation                                                                                                                                                                                                                                                                                                      |
| Relative Confusion Matrix: Efficient Comparison of Decision Models                                                                                                                                                                                                                                                                                   |

| Visualization Overview: Using Modern Text Mining Techniques to Provide Insight into         Visualization Research Practice         Ana Figueiras (CICANT, Universidade Lusófona, Portugal)                                                                     | 4 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Comparative Evaluation of the Scatter Plot Matrix and Parallel Coordinates Plot Matrix                                                                                                                                                                          | 4 |
| Task-Based Quantitative Evaluation of the Concordance Mosaic Visualization       12         Shane Sheehan (The University of Edinburgh, UK), Masood Masoodian       12         (Aalto University, Finland), and Saturnino Luz (The University of Edinburgh, UK) | 3 |
| Code-Space Quality Evaluation for Information Visualization                                                                                                                                                                                                     | ) |
| Predicting Individual Sentiment for Emotion-Evoking Pictures using Metrics of Oculo-Motors 13<br>Minoru Nakayama (Tokyo Institute of Technology, Japan)                                                                                                         | 6 |
| Natural Language Interface for Data Visualization with Deep Learning Based Language Models14<br>Andreas Stöckl (University of Applied Sciences Upper Austria, Austria)                                                                                          | 2 |
| Visualisation of Swarm Metrics on a Handheld Device for Human-Swarm Interaction                                                                                                                                                                                 | 9 |
| <ul> <li>Estimation of Older Driver's Cognitive Performance and Workload using Features of Eye</li> <li>Movement and Pupil Response on Test Routes</li></ul>                                                                                                    | 5 |
| Gaze Analysis in Spot the Difference                                                                                                                                                                                                                            | 1 |
| Effects of Image Features and Task Complexity on Eye Movement while Searching Metro Map                                                                                                                                                                         | _ |
| Taiki Kodomaru (Tokyo Institute of Technology, Japan) and Minoru<br>Nakayama (Tokyo Institute of Technology, Japan)                                                                                                                                             | / |
| Regression Estimation Model for Emotion and Intensity of Speech using Perception Rating 175<br>Megumi Kawase (Tokyo Institute of Technology, Japan) and Minoru<br>Nakayama (Tokyo Institute of Technology, Japan)                                               | 3 |
| <ul> <li>Applying Data-driven Visualization with Seven-Step Process for Academic Research</li></ul>                                                                                                                                                             | ) |
| <ul> <li>Mapping the Colocalization Network: A Wayfinding Approach to Interacting with Complex</li> <li>Network Diagrams</li></ul>                                                                                                                              | 5 |

| Big Data in 3D: Design Guidelines for an Immersive 3 Dimensional Approach to Big Data<br>Interaction Design                                                                                                                                                                                                                            | 194 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Akshay Shenvi Rege (Delft University of Technology, The Netherlands)                                                                                                                                                                                                                                                                   |     |
| Visualization of the Relationship Between Void and Eye Movement Scan Paths in Shan Shui<br>Paintings                                                                                                                                                                                                                                   | 199 |
| Kuan-Chen Chen (National Yunlin University of Science and Technology,<br>Taiwan), Chang-Franw Lee (National Yunlin University of Science and<br>Technology, Taiwan), and Teng-Wen Chang (National Yunlin University of<br>Science and Technology, Taiwan)                                                                              |     |
| Using Information Visualization Techniques for Fish Genetic Management<br>Adriano Requena (Sao Paulo State University, Brazil), Juliana da Costa<br>Feitosa (Sao Paulo State University, Brazil), Luiz Felipe de Camargo<br>(Sao Paulo State University, Brazil), and Jose Remo Ferreira Brega<br>(Sao Paulo State University, Brazil) | 204 |
| Using HoloLens for Remote Collaboration in Extended Data Visualization<br>Passant Farouk (German University in Cairo), Nourhan El-Faransawy<br>(German University in Cairo), and Nada Ahmed Hamed Sharaf (The German<br>International University)                                                                                      | 209 |
| In-Place Collaboration in Extended Reality Data Visualization<br>Heidi Abdelhamed (The German University in Cairo), Nourhan<br>El-Faransawy (The German University in Cairo), and Nada Ahmed Hamed<br>Sharaf (The German International University)                                                                                     | 215 |

### 2: Knowledge Visualization

| Data, Information and Knowledge Visualization for Frequent Patterns<br>Calvin S.H. Hoi (University of Manitoba, Canada), Carson K. Leung<br>(University of Manitoba, Canada), and Adam G.M. Pazdor (University of<br>Manitoba, Canada)                                                                                                                                                                                                                         | 221 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Design Thinking at a Glance – An Overview of Models Along with Enablers and Barriers of<br>Bringing it to the Workplace and Life<br>Sebastian Kernbach (University of St. Gallen, Switzerland; Stanford<br>University, United States), Anja Svetina Nabergoj (Stanford<br>University, United States; University of Ljubljana, Slovenia),<br>Anastasia Liakhavets (University of Ljubljana, Slovenia), and Andrei<br>Petukh (University of Ljubljana, Slovenia) | 227 |
| Phrase Features in Essay Report Sentences for Developing Critical Thinking Ability in a<br>Fully Online Course<br><i>Minoru Nakayama (Tokyo Institute of Technology, Japan), Satoru Kikuchi</i><br><i>(Shinshu University, Japan), and Hiroh Yamamoto (Shinshu University,<br/>Japan)</i>                                                                                                                                                                      | 234 |
| A Deep Learning Approach to Concept Maps Similarity<br>Antonella Gabriella Montanaro (Universitas Mercatorum, Italy), Filippo<br>Sciarrone (Universitas Mrcatorum, Italy), and Marco Temperini<br>(Sapienza, University of Rome, Italy)                                                                                                                                                                                                                        | 239 |
| Monitoring Programming Styles in Massive Open Online Courses Using Source Embedding<br>Stefano Mastrostefano (Tuscia University, Italy) and Filippo Sciarrone<br>(Universitas Mercatorum, Italy)                                                                                                                                                                                                                                                               | 245 |

| Visual Analytics for Session-Based Time-Windows Identification in Virtual Learning<br>Environments                                                                                                                                                                                                       | 251 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Aleksandra Maslennikova (University of Pisa, Italy), Daniela Rotelli<br>(University of Pisa, Italy), and Anna Monreale (University of Pisa,<br>Italy)                                                                                                                                                    |     |
| Classification and Visualization of Lyric Collections Using Guided LDA<br>Yuki Nakai (Ochanomizu University) and Takayuki Itoh (Ochanomizu<br>University)                                                                                                                                                | 259 |
| How Originality Looks Like. Integrating Visualization and Meta-Heuristics to Dissect Music Plagiarism                                                                                                                                                                                                    | 263 |
| Nicola Lettieri (National Institute for Public Policy Analisys,<br>Italy), Roberto De Prisco (University of Salerno, Italy), Delfina<br>Malandrino (University of Salerno, Italy), Rocco Zaccagnino<br>(University of Salerno, Italy), and Alfonso Guarino (University of<br>Foggia, Italy)              |     |
| Behavioral Web Tracking in e-Learning: An Educational Process Mining Application<br>Andrea Rocco (University of Torino, Italy), Emilio Sulis (University<br>of Torino, Italy), and Sara Capecchi (University of Torino, Italy)                                                                           | 269 |
| Managing Large Multiple-Choice Test Items Repositories<br>Valentina Albano (Dip. Funzione Pubblica, Italy), Donatella Firmani<br>(Sapienza University, Italy), Luigi Laura (Uninettuno University,<br>Italy), Anna Lucia Paoletti (Dip. Funzione Pubblica, Italy), and Irene<br>Torrente (Formez, Italy) | 275 |

## 3: Visual Analytics & Visual Knowledge Discovery

| Visualization Tool for Comparative Analysis of Seabird Movement Data            | 280         |
|---------------------------------------------------------------------------------|-------------|
| <ul> <li>Traffic Flow Indicator: Predicting Jams in a City</li></ul>            | <u>'</u> 87 |
| Visual Collaboration - An Approach for Visual Analytical Collaborative Research | :93         |
| Improving Cybersecurity Incident Analysis Workflow with Analytical Provenance   | 00          |
| Visual Analytics for Systematic Reviews According to PRISMA                     | 507         |

| Explainable Mixed Data Representation and Lossless Visualization Toolkit for Knowledge<br>Discovery                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| McCoy (Central Washington University, USA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Interpretable Machine Learning for Self-Service High-Risk Decision-Making                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Visualization and Visual Knowledge Discovery from Big Uncertain Data                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Advanced Algorithms for Segmentation of Space Debris Astronomical Images                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Optimized Fully Convolutional Neural Network Encoder for Water Detection in SAR Images 343<br>Chao Huang Lin (Central Washington University, USA), Razvan Andonie<br>(Central Washington University, USA; Transilvania University of<br>Braşov, Romania), and Adrian-Catalin Florea (Transilvania<br>University of Braşov, Romania)                                                                                                                                                                                |
| Visualization of Decision Trees Based on General Line Coordinates to Support Explainable<br>Models                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>Evaluation of Deep Learning Context-Sensitive Visualization Models</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bicycle Demand Prediction to Optimize the Rebalancing of a Bike Sharing System in Lisbon 366<br>Sofia Afonso (NOVA LINCS, NOVA School of Science and Technology,<br>Portugal), Joao Moura Pires (NOVA LINCS, NOVA School of Science and<br>Technology, Portugal), Nuno Datia (NOVA LINCS, NOVA School of Science<br>and Technology, Portugal; Future Internet Technologies, ISEL - Lisbon<br>School of Engineering, Portugal), and Fernando Birra (NOVA LINCS, NOVA<br>School of Science and Technology, Portugal) |
| The Eye of the Rider. Visualization and Data-Driven Heuristics for the Critical Analysis         of Gig Economy       373         Nicola Lettieri (National Institute for Public Policy Analysis,       371         Italy), Delfina Malandrino (University of Salerno, Italy), Rocco       Zaccagnigno (University of Salerno, Italy), and Alfonso Guarino         (University of Foggia, Italy)       100                                                                                                         |

#### 4: AIMH – Visualization and Artificial Intelligence for Medicine, Healthcare and Social Good

| Interactive Web-Based 3D Viewer for Multidimensional Microscope Imaging Modalities                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Creating Audio-Visual Content for a Personalized Prevention Programme in Coronary Heart<br>Disease                                                                                                                                                                                                 |
| Identification of Morphological Patterns for the Detection of Premature Ventricular         Contractions                                                                                                                                                                                           |
| <ul> <li>VennSOM: A SOM-Assisted Visualization of Binary Data</li></ul>                                                                                                                                                                                                                            |
| Identifying the Correlation between Alzheimer and Type 2 Diabetes                                                                                                                                                                                                                                  |
| A Deep Learning and Genetic Algorithm Based Feature Selection Processes on Leukemia Data 412<br>Rita Francese (University of Salerno, Italy), Maria Frasca (University<br>of Salerno, Italy), Michele Risi (University of Salerno, Italy), and<br>Genoveffa Tortora (University of Salerno, Italy) |
| Glyph-Based Visualization of Health Trajectories                                                                                                                                                                                                                                                   |
| <ul> <li>Keyframe Selection from Colonoscopy Videos to Enhance Visualization for Polyp Detection</li></ul>                                                                                                                                                                                         |

| Composition of Geospatial Visualizations for Scale-Aware Views of Multiple Outcome             |     |
|------------------------------------------------------------------------------------------------|-----|
| Variables in Population Surveys                                                                | 432 |
| Harshitha Ravindra (IIIT Bangalore, India) and Jaya Sreevalsan-Nair<br>(IIIT Bangalora, India) |     |
| (1111 Dungulore, India)                                                                        |     |

## 5: GMAI – Geometric Modelling and Imaging

| Preoperative Image Segmentation for Organ Visualization Using Augmented Reality Technology<br>During Open Liver Surgery 44                                                                                                                                                                                                                  | 42 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Aymen Afli (University of Sousse\ Tunisia), Nessrine Elloumi<br>(University of Sfax, Tunisia), Aicha Ben Makhlouf (University of<br>Sousse, Tunisia), Borhen Louhichi (University of Sousse, Tunisia),<br>Mehdi Jaidane (Sahloul University Hospital 4011 Sousse, Tunisia), and<br>João Manuel RS Tavares (Universidade do Porto, Portugal) |    |
| Biomechanical Modeling and Pre-Operative Projection of a Human Organ Using an Augmented<br>Reality Technique During Open Hepatic Surgery                                                                                                                                                                                                    | 16 |
| Retrieve Reusable 3D CAD Objects Based on Hidden Markov Models (HMM)                                                                                                                                                                                                                                                                        | 51 |
| DeepFingerPCANet: Automatic Fingerprint Classification Using Deep Learning                                                                                                                                                                                                                                                                  | 57 |
| Author Index                                                                                                                                                                                                                                                                                                                                | 63 |