2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS 2022)

Denver, Colorado, USA 20 – 22 October 2022

IEEE Catalog Number: CFP22MAS-POD **ISBN:**

978-1-6654-7181-7

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

0
9
9
2

CFP22MAS-POD 978-1-6654-7181-7 978-1-6654-7180-0 2155-6806

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS) MASS 2022

Table of Contents

Message from the General Chairs	xx
Message from the Program Chairs	xxi
Workshop - REUNS 2022 Chairs Message	
Workshop - IoTEF 2022 Chairs Message	xxiii

AI/ML based Smart Design 1

Local Performance Trade-Off in Heterogeneous Federated Learning with Dynamic Client Grouping
Trip Planning for Autonomous Vehicles with Wireless Data Transfer Needs Using Reinforcement Learning 10 Yousef AlSaqabi (University of Southern California, USA) and Bhaskar 10 Krishnamachari (University of Southern California, USA) 10
Fusing WiFi Signals and Camera for Driver Activity Recognition based on Deep Learning
Association of IoT Devices Using Fuzzy C-Means Clustering and Apriori Algorithms
Adaptive Task Offloading for Mobile Aware Applications Based on Deep Reinforcement 33 Learning

Algorithms and Theory 1

Spatio-Temporal Mobile Cooperative Charging for Low-Power Wireless Rechargeable Devices40 Lijie Xu (Nanjing University of Posts and Telecommunications, China), Haodong Sha (Nanjing University of Posts and Telecommunications, China), Mingxiang Da (Nanjing University of Posts and Telecommunications, China), Jia Xu (Nanjing University of Posts and Telecommunications, China), and Haipeng Dai (Nanjing University, China)

Coalition Formation Game in the Cross-Silo Federated Learning System	49
A Deep Learning Assisted Approach for Minimizing the Age of Information in a WiFi Network Suyang Wang (Illinois Institute of Technology, USA) and Yu Cheng (Illinois Institute of Technology, USA)	58
An Improved Spray-and-Wait Routing Algorithm Based on Social Relationship between Nodes in DTN Jianqun Cui (Central China Normal University, China), Huanhuan Chen (Central China Normal University, China), Yanan Chang (Central China Normal University, China), Ziyi Chen (Central China Normal University, China), Shuang Gong (Central China Normal University, China), and Yang Yi (Northeastern Illinois University, USA)	67
PPGC: A Path Planning System by Grid Caching based on Cloud-Edge Collaboration for Unmanned Surface Vehicle in IoT Systems Linjie Yan (Ningbo University, China), Haiming Chen (Ningbo University, China), Youpeng Tu (Ningbo University, China), Xinyan Zhou (Ningbo University, China), and Steve Drew (University of Calgary, Canada)	74

Security and Privacy 1

Solution Probing Attack Against Blockchain-Based Quality-Aware Crowdsourcing Platforms
 Multi-Task Learning Framework for Detecting Hashtag Hijack Attack in Mobile Social Networks
 An Intrusion Alarm Data Association Analysis Method
An Uncertain Graph Privacy Preserving Scheme Based on Node Similarity in Social Networks 108

An Uncertain Graph Privacy Preserving Scheme Based on Node Similarity in Social Networks 108 Jiayu Xu (Fujian Normal University, China), Hongyan Zhang (Fujian Normal University, China), and Li Xu (Fujian Normal University, China) Bilinear Pairing and PUF Based Lightweight Authentication Protocol for IoD Environment 115 Cong Pu (Oklahoma State University, USA), Andrew Wall (Marshall University, USA), and Kim-Kwang Raymond Choo (University of Texas at San Antonio, USA)

Experimental Evaluation and Testbeds

A Simulator Driven by Trajectory Big Data for Network Feature Extraction and Data Transmission	2
(Ocean University of China, China)	
Emulating Your eXtended World: An Emulation Environment for XR App Development	1
A Measurement Study of RFID-Based Face Recognition	0
 Analysis of Temperature Effects in Heterogeneous Outdoor Wireless Sensor Networks	8
 Multi-AGV Scheduling based on Hierarchical Intrinsically Rewarded Multi-Agent Reinforcement Learning	5

Emerging Technologies 1

Resource Allocation in 5G Multi-Tenancy Network Slicing for Balancing Distribution Power	1()
Systems	162
Vajiheh Farhadi (Bucknell University), Thomas La Porta (Pennsylvania	
State Universitu). Ting He (Pennsylvania State University). and	
Nilanjan Ray Chaudhuri (Pennsylvania State University)	

R-Drive: Resilient Data Storage and Sharing for Mobile Edge Clouds
 Aequitas: A Uniformly Fair 5G Scheduler for Minimizing Outdated Information
DQN-Based QoE Enhancement for Data Collection in Heterogeneous IoT Network
Indy528 - Federated Learning Model Tokenization with Non-Fungible Tokens(NFT) and Model Cards

Systems and Applications 1

OSWireless: Enhancing Automation for Optimizing Intent-Driven Software-Defined Wireless Networks	202
Ultra-Low Power Analog Recurrent Neural Network Design Approximation for Wireless Health Monitoring Yung-Ting Hsieh (Rutgers University, USA), Khizar Anjum (Rutgers University, USA), and Dario Pompili (Rutgers University, USA)	211
Task-Oriented Source Coding for Real-Time Applications Junjie Wu (Tsinghua University, China) and Wei Chen (Tsinghua University, China)	220
CamPressID: Optimizing Camera Configuration and Finger Pressure for Biometric Authentication Weizheng Wang (Delft University of Technology, The Netherlands), Marek Vette (Delft University of Technology, The Netherlands), Qing Wang (Delft University of Technology, The Netherlands), Jie Yang (Delft University of Technology, The Netherlands), and Marco Zuniga (Delft University of Technology, The Netherlands)	229

BECT: Beacon-Based Contact Tracing for Detecting Direct & Indirect Contacts	236
Akshay Madan (University of Pittsburgh, USA), David Tipper (University	
of Pittsburgh, USA), Balaji Palanisamy (University of Pittsburgh,	
USA), Mai Abdelhakim (University of Pittsburgh, USA), and Prashant	
Krishnamurthy (University of Pittsburgh, USA)	
WiPd: Contactless Water-Injected Pork Detection Using Commodity WiFi Devices	. 243
Pengming Hu (Henan University of Technology, China), Weidong Yang	
(Henan University of Technology, China), Xuyu Wang (Florida	
International University, USA), Shiwen Mao (Department of Electrical	
and Computer Engineering, Auburn University, USA), and Chao Niu (Henan	
University of Technology, China)	
university of Technology, China)	

Poster & Demo Session and Reception

 False Data Injection Attacks Detection in Real Smart Grid with Edge Computing
A Device-Edge-Cloud Collaborative Framework for Hierarchical Computation Offloading
Packet Classification using Tuple Space with Improved Cuckoo Filter
CIOFL: Collaborative Inference-Based Online Federated Learning for UAV Object Detection 258 Feiyu Wu (Nanjing University of Aeronautics and Astronautics, China), Chao Dong (Nanjing University of Aeronautics and Astronautics, China), Yuben Qu (Nanjing University of Aeronautics and Astronautics, China), Hao Sun (Nanjing University of Aeronautics and Astronautics, China), Lei Zhang (Nanjing University of Aeronautics and Astronautics, China), and Qihui Wu (Nanjing University of Aeronautics and Astronautics, China), China)
A Mobile App for Intersectional Traffic Optimization through Real-Time Vehicle-to-Infrastructure (V2I) Communication and Cyber-Physical Control

AI/ML based Smart Design 2

 SSTGCN: A Deep Learning Framework for Road Intersection Similarity Learning	4
 Escaping Filter-Based Adversarial Example Defense: A Reinforcement Learning Approach	2
A Quantum Feature Selection Method for Network Intrusion Detection	1
Wireless Network Fault Localization via Metric Classification	0
A Universal Adversarial Attack on Time-Series DNNs for Connected Autonomous Vehicles 29 Qichang Liu (University of Virginia), Tanmoy Sen (University of Virginia), Haiying Shen (University of Virginia), and Sai Manoj (George Mason University)	7

Algorithms and Theory 2

An Adaptive Fault-Tolerant Transmission Mechanism for CMT in Unreliable Wireless Networks .. 304 Wenfeng Du (Shenzhen University, China), Liqian Lai (Jiaying University, China), and Kaishun Wu (Shenzhen University, China)

Time Constraint Finite-Horizon Path Planning Solution for Micromouse Extreme Problem Anway Bose (Temple University, USA), Joseph Bruno (Temple University, USA), Philip Dames (Temple University, USA), and Li Bai (Temple University, USA)	325
LCFIL: A Loss Compensation Mechanism for Latest Data in Federated Incremental Learning Bokai Cao (Sun Yat-Sen University, China), Jieying Zhou (Sun Yat-Sen University, China), and Weigang Wu (Sun Yat-Sen University, China)	332
Localization of Autonomous Vehicle with Low Cost Sensors Mohamad Albilani (Télécom SudParis - Institut Polytechnique de Paris, France) and Amel Bouzeghoub (Télécom SudParis - Institut Polytechnique de Paris, France)	339

Security and Privacy 2

Gas Price Prediction Based on Machine Learning Combined with Ethereum Mempool
Anomaly Detection based on Robust Spatial-Temporal Modeling for Industrial Control Systems 355 Shijie Li (University of Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China), Junjiao Liu (University of Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China), Zhiwen Pan (Institute of Information Engineering, Chinese Academy of Sciences, China), Shichao Lv (University of Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China), Shuaizong Si (Institute of Information Engineering, Chinese Academy of Sciences, China), and Limin Sun (University of Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China; Chinese Academy of Sciences, China), Shuaizong Si (Institute of Information Engineering, Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China)
Towards Characterization of General Conditions for Correlated Differential Privacy
A Bi-Layer Intrusion Detection Based on Device Behavior Profiling for Smart Home IoT
Cooperative Attack Detection of Power CPS Based on Feature Relation Graph Convolutional Network

Systems and Applications 2

 Towards WiFi-Based Real-Time Sensing Model Deployed on Low-Power Devices	385
Adaptive Cross-Camera Video Analytics at the Edge Kaiyang Chen (Shanghai Jiao Tong University, China), Yifei Zhu (Shanghai Jiao Tong University, China), Zhu Han (University of Houston, USA), and Xudong Wang (Shanghai Jiao Tong University, China)	394
Is Universal Broadband Service Impossible?	403
Outdoor 2.5D-Terrain IoT Deployment Algorithms: Repairing Partitions While Mitigating Coverage Loss	410

Emerging Technologies 2

A Stackelberg Queuing Model and Analysis for the Emerging Connection-Based Pricing in IoT Markets	417
Mobile Tracking in 5G and Beyond Networks: Problems, Challenges, and New Directions Changlai Du (Virginia Polytechnic Institute and State University, USA), Hexuan Yu (Virginia Polytechnic Institute and State University, USA), Yang Xiao (University of Kentucky, USA), Wenjing Lou (Virginia Polytechnic Institute and State University, USA), Chonggang Wang (InterDigital, Inc., USA), Robert Gazda (InterDigital, Inc., USA), and Y. Thomas Hou (Virginia Polytechnic Institute and State University, USA)	126
Teleoperation Technologies for Enhancing Connected and Autonomous Vehicles	435

EdgeKeeper: Resilient and Lightweight Coordination for Mobile Edge Clouds
Suman Bhunia (Texas A&M University, USA), Radu Stoleru (Texas A&M
University, USA), Amran Haroon (Texas A&M University, USA), Mohammad
Sagor (Texas A&M University, USA), Ala Altaweel (Texas A&M University,
USA), Mengyuan Chao (Texas A&M University, USA), Maxwell Maurice
(National Institute of Standards and Technology, USA), and Roger
Blalock (National Institute of Standards and Technology, USA)
An Accurate and Energy-Efficient Anomaly Detection in Edge-Cloud Networks
Yi Li (China University of Geosciences, China), Deng Zhao (China
University of Geosciences, China), Patrick C.K. Hung (Ontario Tech
University, Canada), Lei Shu (Nanjing Agricultural University, China),
and Zhangbing Zhou (China University of Geosciences (Beijing), China;

TELECOM SudParis, France)

System and Applications 3

Security and Privacy 3

De-Anonymizing Online Social Network with Conditional Generative Adversarial Network 496 Tianchong Gao (Southeast University, China) and Feng Li (Indiana University-Purdue University Indianapolis, USA)

Joint User Association and Resource Pricing for Metaverse: Distributed and Centralized Approaches Xumin Huang (Guangdong University of Technology, China), Weifeng Zhong (Guangdong University of Technology, China), Jiangtian Nie (Nanyang Technological University, Singapore), Qin Hu (Indiana University-Purdue University Indianapolis, USA), Zehui Xiong (Singapore University of Technology and Design, Singapore), Jiawen Kang (Guangdong University of Technology, China), and Tony Q. S. Quek (Singapore University of Technology and Design, Singapore)	505
Real-Time Video Anonymization in Smart City Intersections Alex Angus (Columbia University), Zhuoxu Duan (Columbia University), Gil Zussman (Columbia University), and Zoran Kostic (Columbia University)	514
Layered Malicious Nodes Detection with Graph Attention Network in Human-Cyber-Physical Networks Yuhang Lin (Fujian Normal University, China), Yanze Huang (Fujian Normal University, Fujian University of Technology, China), Sun-Yuan Hsieh (National Cheng Kung University, Taiwan), Limei Lin (Fujian Normal University, China), and Feng Xia (Federation University Australia, Australia)	523
Anomaly Detection for CPS via Memory-Augmented Reconstruction and Time Series Prediction <i>Zhe Sun (Shanghai University of Electric Power, China) and Jinguo Li</i> <i>(Shanghai University of Electric Power, China)</i>	530

Protocols and Cross-Layer Technologies

Joint Participant Selection and Learning Scheduling for Multi-Model Federated Edge Learning Xinliang Wei (Temple University, USA), Jiyao Liu (Temple University, USA), and Yu Wang (Temple University, USA)	. 537
Delay Efficient D2D Communications Over 5G Edge-Computing Mobile Networks with Power Control	. 546
 Congestion Control with Deterministic Service Delay Guarantee	. 555
A Case for Line-of-Sight Blockage Detection as a Primitive in Millimeter-Wave Networks Sanjib Sur (University of South Carolina) and Srihari Nelakuditi (University of South Carolina)	. 564

An Enhanced Tree Routing through Multi-Criteria Decision Making over Wireless Sensor

Networks	 	 	 	 570

Beom-Su Kim (Chungnam National Universityn, Republic of Korea), Beomkyu Suh (Chungnam National University, Republic of Korea), Ki-Il Kim (Chungnam National University, Republic of Korea), In Jin Seo (Korea Electric Power Research Institute, Republic of Korea), Han Byul Lee (Korea Electric Power Research Institute, Republic of Korea), and Ji Seon Gong (Korea Electric Power Research Institute, Republic of Korea)

Emerging Technologies 3

A Novel Emergency Light Based Smart Building Solution: Design, Implementation, and Use Cases	577
Analysis on the Scalability Issues of Wireless Mesh Networks: Key Factors and Potential Solutions Lei Lei (Shanghai Jiao Tong University, China), Aimin Tang (Shanghai Jiao Tong University, China), and Xudong Wang (Shanghai Jiao Tong University, China)	586
Collaborative Task Offloading in Vehicular Edge Computing Networks Geng Sun (Jilin University, China), Jiayun Zhang (Jilin University), Zemin Sun (Jilin University, China), Long He (Jilin University, China), and Jiahui Li (Jilin University, China)	592
Communication-Efficient Federated Learning Design with Fronthaul Awareness in NG-RANs Ayman Younis (Rutgers University, USA), Chuanneng Sun (Rutgers University, USA), and Dario Pompili (Rutgers University, USA)	599
 Blockchain-Based Federated Learning with Contribution-Weighted Aggregation for Medical Data Modeling Yibei Chen (Zhejiang Normal University, P. R. China), Feilong Lin (Zhejiang Normal University, P. R. China), Zhongyu Chen (Zhejiang Normal University, P. R. China), Changbing Tang (Zhejiang Normal University, P. R. China), Riheng Jia (Zhejiang Normal University, P. R. China), and Minglu Li (Zhejiang Normal University, P. R. China) 	606
 fuzzyCom: Privacy-Aware Trajectory Data Compression Using Fuzzy Sets in Edge Vehicular Networks Yinglong Li (Zhejiang University of Technology, China), Jinyuan Shi (Zhejiang University of Technology, China), Dan Meng (Zhejiang University of Technology, China), Tieming Chen (Zhejiang University of Technology, China), Xinchen Xu (Zhejiang University of Technology, China), and Fan Liu (Zhejiang University of Technology, China) 	613

Blockchain-Based Edge Resource Sharing for Metaverse	620
Zhilin Wang (Indiana University-Purdue University Indianapolis, USA),	
Qin Hu (Indiana University-Purdue University Indianapolis, USA),	
Minghui Xu (Shandong University, USA), and Honglu Jiang (Miami	
University, USA)	

AI/ML based Smart Design 3

Edge-AI Enabled Automated Flaggers for Roadway Work Zone Management Foad Hajiaghajani Memar (University, USA), Chunming Qiao (University, USA), and Adel Sadek (University, USA)	. 627
A 3D-DCT and Convolutional FEC Approach to Agile Video Streaming Han Yang (Tsinghua University), Xiangyu Chen (Huawei), Xi Chen (Chinatelecom Cloud), Bin Guo (Chinatelecom Cloud), Shaoteng Liu (Huawei), Xia Zhu (Huawei), and Zongpeng Li (Tsinghua University)	636
Distributed Deep Learning in An Edge Computing System Tanmoy Sen (University of Virginia), Haiying Shen (University of Virginia), and Zakaria Mehrab (University of Virginia)	. 645
Signal Restoration and Prediction for End-to-End Learning of Practical Wireless Communication System Zhe Chen (Northeastern University, China)	. 654
A Deep Reinforcement Learning-Based Adaptive Charging Policy for WRSNs Ngoc Bui (Hanoi University of Science and Technology, Vietnam; VinAI Research, Vietnam), Phi Le Nguyen (Hanoi University of Science and Technology, Vietnam), Viet Anh Nguyen (VinAI Research, Vietnam), and Phan Thuan Do (Hanoi University of Science and Technology, Vietnam)	.661
Reinforcement Learning Based Route and Stop Planning For Autonomous Vehicle Shuttle Service	. 668
Shohaib Mahmud (University of Virginia), Haiying Shen (University of Virginia), Ying Natasha Zhang Foutz (University of Virginia), and Joshua Anton (XMODE social)	

REUNS 2022 Workshops

Cloud Computing and Systems

Self-Driving Vehicle Data Scheduling in Edge-Clouds Brandon Burtchell (Texas State University), Michael Finch (Gonzaga University), and Xiao Chen (Texas State University)	675
Optimizing Energy Utilization of Flexible Deep Neural Network Accelerators via Cache Incorporation	681
Dalton Hensley (University of Morehead, USA) and Wei Zhang (University of Louisville, USA)	

Developing, Analyzing, and Evaluating Self-Drive Algorithms Using Electric Vehicles on a	
Test Course	687
Ryan Kaddis (Larwrence Technological University), Enver Stading	
(Nebraska Wesleyan University), Aarna Bhuptani (Vanderbilt	
University), Heather Song (The Ohio State University), Chan-Jin Chung	
(Lawrence Technological University), and Joshua Siegel (Michigan State	
University)	
Evaluation of Various Defense Techniques Against Targeted Poisoning Attacks in Federated	
Learning	693
Charles Richards (Rochester Institute of Technology, USA), Sofia	
Khemani (Yale University, USA), and Feng Li (Indiana University-Purdue	
University Indianapolis, USA)	

Ubiquitous/Mobible/Wearable Computing

Development and Implementation of an AI-Embedded and ROS-Compatible Smart Glove System in Human-Robot Interaction
Performance of Camera-Assisted Underwater Visible Light Communication
Integrating Computer Science and Physical Education in Elementary Schools with Data Science Learning Modules Using Wearable Microcontrollers

Poster Session (Simultaneus)

Modeling Human-Cyber Interactions in Safety-Critical Cyber-Physical/Industrial Control Systems	716
Assessing Purpose-Extraction for Automated Corpora Annotations Vincent Miller (Columbus State University), Jesus Rijo Candelario (Mercer University), Lydia Ray (Columbus State University), and Alfredo Perez (University of Nebraska)	718
Blockchain Ensured Physical Visitor Access Control and Authentication Frederick Stock (University of Massachusetts Lowell, USA), Jarel Hearst (Columbus State University, USA), and Yesem Peker (Columbus State University, USA)	720

 Formal UML-Based Modeling and Analysis for Securing Location-Based IoT Applications	2
A Collaborative Augmented Reality Platform for Interactive and Immersive Education	4
 Poster: Near-Zero Power Underwater Acoustic Networks Using Scatter Communications Principles	6
Virtual Reality-Based Gymnastics Visualization Using Real-Time Motion Capture Suit	8
Investigating the State of Security of Household Smart Appliances	0
Security and Privacy	
Automatic Classification of Web and IoT Privacy Policies	2
Internet of Medical Things: Forensics Investigation on Zebra Phones	6
 Medical Device Security Regulations and Assessment Case Studies	2
 Formulating Parallel Supervised Machine Learning Designs for Anomaly-Based Network Intrusion Detection in Resource Constrained use Cases	8
Malware Network Traffic Classification on the Edge	4

Machine Learning

A Convolutional Neural Network for Emotion Assessment and Recognition Comfort Anyanwu (University of South Florida, USA) and Caitlin Hays (University of South Florida, USA)	759
Investigating the Effect of Machine-Translation on Automated Classification of Toxic Comments	764
James Roy (University of Cambridge, UK), Siddhi Suresh (Southern Connecticut State University, USA), Mohamed Elsayed (New York Institute of Technology, USA), Ronie Rocca (New York Institute of Technology, USA), Ziqian Dong (New York Institute of Technology, USA), Huanying Gu (New York Institute of Technology, USA), and N. Sertac Artan (New York Institute of Technology, USA)	
A Python Library for Matrix Algebra on GPU and Multicore Architectures Delario Nance (Davidson College, USA), Stanimire Tomov (University of Tennessee, USA), and Kwai Wong (University of Tennessee, USA)	770
How To Convince People To Get A COVID-19 Vaccine: An Opinion Dynamics Model for REUNS 2022 Micah Payton (Tufts University) and Natasa Dragovic (Tufts University)	776
Spatial Analysis of Tumor Heterogeneity Using Machine Learning Techniques Chancharik Mitra (University of California), Jin Young Yoo (University of Illinois Urbana-Champaign), Zeynep Madak-Erdogan (University of Illinois Urbana-Champaign), and Aiman Soliman (University of Illinois Urbana-Champaign)	781

IoTEF 2022 Workshops

Towards Analysis of the Performance of IDSs in Software-Defined Networks	787
On Off-Grid Green Solar Panel Supplied Edge Computing	′94
DARwIn-OP: A Smart Elderly-Assistant and Companion	300
Relay Assisted Network Coded (RANC) Wireless Multicast	305

Author Index	1
--------------	---