2022 IEEE 13th International Green and Sustainable Computing Conference (IGSC 2022)

Virtual Conference 24-25 October 2022

IEEE Catalog Number: CFP2228K-POD ISBN: 978-1-6654-6551-9

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP2228K-POD

 ISBN (Print-On-Demand):
 978-1-6654-6551-9

 ISBN (Online):
 978-1-6654-6550-2

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

Contents

Ι	Main-Session	3
1	ViT-LR: Pushing the Envelope for Transformer-Based On-Device Embedded Continual Learning	e 5
2	${\bf Evaluation\ of\ Heuristics\ to\ Manage\ a\ Data\ Center\ Under\ Power}$ ${\bf Constraints}$	13
3	Optimizing Energy Efficiency of Node.js Applications with CPU DVFS Awareness	23
4	Channel-wise Mixed-precision Assignment for DNN Inference on Constrained Edge Nodes	33
5	Raptor: Mitigating CPU-GPU False Sharing Under Unified Memory Systems	41
6	Optimal Launch Bound Selection in CPU-GPU Hybrid Graph Applications with Deep Learning	51
7	Optimal Launch Bound Selection in CPU-GPU Hybrid Graph Applications with Deep Learning	59
8	Towards Energy Efficient Memristor-based TCAM for Match-Action Processing	69
9	Exploring Automatic Gym Workouts Recognition Locally On Wearable Resource-Constrained Devices	75
10	Less is More: Learning Simplicity in Datacenter Scheduling	83
11	Unified Cross-layer Cluster-node Scheduling for Heterogeneous Datacenters	91
II	The 4th Energy Efficient HPC State of the Practice	

1

Workshop 101
12 Electrical Commissioning Owner's Project Requirements: A Template 103
13 Guiding Hardware-Driven Turbo with Application Performance Awareness 109
14 Soft Cluster powercap at SuperMUC-NG with EAR 119
15 Energy Aware Scheduler of Single/Multi-node Jobs Considering CPU Node Heterogeneity 129
III Special Session 1 139
16 Toward a Behavioral-Level End-to-End Framework for Silicon Photonics Accelerators 141
17 Energy-Efficient Deployment of Machine Learning Workloads on Neuromorphic Hardware 149
18 Energy-Efficient Deployment of Machine Learning Workloads on Neuromorphic Hardware 157
IV Special Session 2 165
19 Towards an Energy-Efficient Hash-based Message Authentication Code (HMAC) 167
20 Energy-Performance-Security Trade-off in Mobile Edge Computing 175
21 A review of smart buildings protocol and systems with a consideration of security and energy awareness 183