2022 IEEE 35th Computer Security Foundations Symposium (CSF 2022)

Haifa, Israel 7 – 10 August 2022

IEEE Catalog Number: CFP22037-POD ISBN: 978-1-6654-8418-3

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22037-POD

 ISBN (Print-On-Demand):
 978-1-6654-8418-3

 ISBN (Online):
 978-1-6654-8417-6

ISSN: 1940-1434

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE 35th Computer Security Foundations Symposium (CSF) CSF 2022

Table of Contents

CSF 2022 Committees	
Session 1: Security Protocols 1	
Conditional Observational Equivalence and Off-Line Guessing Attacks in Multiset Rewriting Petar Paradžik (Faculty of Electrical Engineering and Computing) and Ante Derek (Faculty of Electrical Engineering and Computing)	. 1
Is Eve Nearby? Analysing Protocols under the Distant-Attacker Assumption Reynaldo Gil-Pons (University of Luxembourg), Ross Horne (University of Luxembourg), Sjouke Mauw (University of Luxembourg), Alwen Tiu (The Australian National University, Australia), and Rolando Trujillo-Rasua (Deakin University, Australia)	17
A Small Bound on the Number of Sessions for Security Protocols	33
Session 2: Language-Based Security	
A Formal Model of Checked C Liyi Li (University of Maryland), Yiyun Liu (University of Pennsylvania), Deena Postol (University of Maryland), Leonidas Lampropoulos (University of Maryland), David Van Horn (University of Maryland), and Michael Hicks (University of Maryland)	49
SecurePtrs: Proving Secure Compilation with Data-Flow Back-Translation and Turn-Taking Simulation	64
Akram El-Korashy (Max Planck Institute for Software Systems (MPI-SWS)), Roberto Blanco (Max Planck Institute for Security and Privacy (MPI-SP)), Jérémy Thibault (Max Planck Institute for Security and Privacy (MPI-SP)), Adrien Durier (Max Planck Institute for Security and Privacy (MPI-SP)), Deepak Garg (Max Planck Institute for Software Systems (MPI-SWS)), and Catalin Hritcu (Max Planck Institute for Security and Privacy (MPI-SP))	

Proving Full-System Security Properties under Multiple Attacker Models on Capability Machines
Session 3: Privacy 1
Interpreting Epsilon of Differential Privacy in Terms of Advantage in Guessing or Approximating Sensitive Attributes 96 Alisa Pankova (Cybernetica AS, Estonia) and Peeter Laud (Cybernetica AS, Estonia)
DPL: A Language for GDPR Enforcement
Privacy as Reachability
Session 4: Voting and Distributed Systems
N-Tube: Formally Verified Secure Bandwidth Reservation in Path-Aware Internet Architectures
Thilo Weghorn (Swisscom), Si Liu (ETH Zurich), Christoph Sprenger (ETH Zurich), Adrian Perrig (ETH Zurich), and David Basin (ETH Zurich)
Architectures
Applying Consensus and Replication Securely with FLAQR
Applying Consensus and Replication Securely with FLAQR
Applying Consensus and Replication Securely with FLAQR

Bringing State-Separating Proofs to EasyCrypt - A Security Proof for Cryptobox
Session 6: Information Flow
IFCIL: An Information Flow Configuration Language for SELinux
Towards a General-Purpose Dynamic Information Flow Policy
Beware of Greeks Bearing Entanglement? Quantum Covert Channels, Information Flow and Non-Local Games
Session 7: Security Protocols 2
Cracking the Stateful Nut: Computational Proofs of Stateful Security Protocols using the Squirrel Proof Assistant
Exploiting Partial Order of Keys to Verify Security of a Vehicular Group Protocol
Symbolic Protocol Verification with Dice: Process Equivalences in the Presence of Probabilities
Session 8: Privacy 2
Machine-Checked Proofs of Privacy Against Malicious Boards for Selene & Co

Universal Optimality and Robust Utility Bounds for Metric Differential Privacy
Unlinkability of an Improved Key Agreement Protocol for EMV 2nd Gen Payments
Session 9: Verification and Synthesis
Adversarial Robustness Verification and Attack Synthesis in Stochastic Systems
The Complexity of Verifying Boolean Programs as Differentially Private
Adversary Safety by Construction in a Language of Cryptographic Protocols
Session 10: Cryptography 2
Legendre PRF (Multiple) Key Attacks and the Power of Preprocessing
Legendre PRF (Multiple) Key Attacks and the Power of Preprocessing
Legendre PRF (Multiple) Key Attacks and the Power of Preprocessing
Legendre PRF (Multiple) Key Attacks and the Power of Preprocessing
Legendre PRF (Multiple) Key Attacks and the Power of Preprocessing
Legendre PRF (Multiple) Key Attacks and the Power of Preprocessing