2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2022)

Paphos, Cyprus 4-6 July 2022

IEEE Catalog Number: CFP22179-POD **ISBN:**

978-1-6654-6606-6

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP22179-POD 978-1-6654-6606-6 978-1-6654-6605-9 2159-3469

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) ISVLSI 2022

Table of Contents

Message from the General Chairs	xvii
Message from the Technical Program Chairs	xix
Organizing Committee	xxi
Steering Committee	xxii
Technical Program Committee Track Chairs	xxiii
Technical Program Committee Members	xxiv
Keynotes	xxvii
Plenary Talks	xxxi
Sponsors	xxxv

Session 1: Hardware Acceleration

HAJPAQUE: Hardware Accelerator for JSON Parsing, Querying and Schema Validation	-
Design and Evaluation of On-Chip DCT Accelerators Based on Novel Approximate Reverse Carry	
Propagate Adders	;
Shalini Singh (International Institute of Information Technology	
Bangalore, India), Pavan Kumar Pothula (International Institute of	
Information Technology Bangalore, India), and Madhav Rao	
(International Institute of Information Technology Bangalore, India)	
Spiker: an FPGA-Optimized Hardware Accelerator for Spiking Neural Networks	c
Alessio Carpegna (Politecnico di Torino, Italy), Alessandro Savino	
(Politecnico di Torino, Italy), and Stefano Di Carlo (Politecnico di	
Torino, Italy)	

Session 2: Reliability, Fault-Tolerance, and Fault Diagnosis

A Methodology for Identifying Critical Sequential Circuits With Graph Convolutional	
Networks	20
Li Lu (IHP-Leibniz-Institut für innovative Mikroelektronik, Germany),	
Junchao Chen (IHP-Leibniz-Institut für innovative Mikroelektronik,	
Germany; University of Potsdam, Germany), Markus Ulbricht	
(IHP-Leibniz-Institut für innovative Mikroelektronik, Germany), and	
Milos Krstic (IHP-Leibniz-Institut für innovative Mikroelektronik,	
Germany; University of Potsdam, Germany)	

Microarchitectural Reliability Evaluation of a Block Scheduling Controller in GPUs Josie E. Rodriguez Condia (Politecnico di Torino, Italy), Riccardo Faggiano (Politecnico di Torino, Italy), and Matteo Sonza Reorda (Politecnico di Torino, Italy)	26
 High-Level Fault Diagnosis in RISC Processors with Implementation-Independent Functional Test Adeboye Stephen Oyeniran (Tallinn University of Technology, Estonia), Maksim Jenihhin (Tallinn University of Technology, Estonia), Jaan Raik (Tallinn University of Technology, Estonia), and Raimund Ubar (Tallinn University of Technology, Estonia) 	32
Session 3: Simulation and Design Automation	
An Exploration Platform for Microcoded RISC-V Cores Leveraging the One Instruction Set Computer Principle Lucas Klemmer (Johannes Kepler University Linz, Austria) and Daniel Große (Johannes Kepler University Linz, Austria)	38
Soft Tiles: Capturing Physical Implementation Flexibility for Tightly-Coupled Parallel Processing Clusters Gianna Paulin (ETH Zürich, Switzerland), Matheus Cavalcante (ETH Zürich, Switzerland), Paul Scheffler (ETH Zürich, Switzerland), Luca Bertaccini (ETH Zürich, Switzerland), Yichao Zhang (ETH Zürich, Switzerland), Frank Gurkaynak (ETH Zürich, Switzerland), and Luca Benini (ETH Zürich, Switzerland; University of Bologna, Italy)	44
MIDAS: Mutual Information Driven Approximate Synthesis Sina Boroumand (Imperial College London, UK), Christos-Savvas Bouganis (Imperial College London, UK), and George A. Constantinides (Imperial College London, UK)	50

Session 4: Emerging and Post-CMOS Technologies 1

Processing-In-Memory With Temporal Encoding Mohammad Nazmus Sakib (University of Virginia), Rahul Sreekumar (University of Virginia), Xinyuan Zhu (University of Virginia), Tommy Tracy II (University of Virginia), and Mircea R. Stan (University of Virginia)	56
Multi-Phase Clocking for Multi-Threaded Gate-Level-Pipelined Superconductive Logic Xi Li (University of Southern California, USA), Min Pan (Synopsys Inc., USA), Tong Liu (Synopsys Inc., USA), and Peter A. Beerel (University of Southern California, USA)	62
 Variation-Aware Design Space Exploration of Mott Memristor-Based Neuristors Shamiul Alam (University of Tennessee Knoxville, USA), Md Mazharul Islam (University of Tennessee Knoxville, USA), Akhilesh Jaiswal (University of Southern California, USA), Nathaniel Cady (SUNY Polytechnic Institute, USA), Garrett Rose (University of Tennessee Knoxville, USA), and Ahmedullah Aziz (University of Tennessee Knoxville, USA) 	. 68

Session 5: Test and Verification

Deriving FSM-Based Tests Using a, b-Faults for Logic Circuits	80
Deriving FSM-Based Tests Using a, b-Faults for Logic Circuits Andrey Laputenko (National Research Tomsk State University, Russia),	
Nina Yevtushenko (Ivannikov Institute for System Programming of the	
Russian Academy of Sciences, Russia), Valentina Andreeva (National	
Research Tomsk State University, Russia), and Anzhela Matrosova	
(National Research Tomsk State University, Russia)	
Optimization of BDD-Based Approximation Error Metrics Calculations	86
Vojtech Mrazek (Brno University of Technology, Czech Republic)	
Polynomial Formal Verification of Approximate Functions	92
Martha Schnieber (University of Bremen, Germany), Saman Froehlich	
(University of Bremen, Germany), and Rolf Drechsler (DFKI GmbH and	
University of Bremen, Germany)	

Session 6: High Speed Computing - Accelerators and Asynchronous Circuits

RecLight: A Recurrent Neural Network Accelerator With Integrated Silicon Photonics Febin Sunny (Colorado State University, USA), Mahdi Nikdast (Colorado State University, USA), and Sudeep Pasricha (Colorado State University, USA)	98
 Automated Mapping of Asynchronous Circuits on FPGA Under Timing Constraints	04
An Efficient Accelerator of Deformable 3D Convolutional Network for Video Super-Resolution1 Siyu Zhang (Nanjing University, China), Wendong Mao (Nanjing	10

University, China), and Zhongfeng Wang (Nanjing University, China)

Session 7: Emerging and Post-CMOS Technologies 2

Energy-Efficient High-Performance Photonic Backplane Network for Rack-Scale Computing Systems	122
Jun Feng (Hong Kong University of Science and Technology, China),	
Shixi Chen (Hong Kong University of Science and Technology, China),	
Jiaxu Zhang (Hong Kong University of Science and Technology, China),	
Yuxiang Fu (Hong Kong University of Science and Technology, China),	
and Jiang Xu (Hong Kong University of Science and Technology	
(Guangzhou), China)	
Pruning Coherent Integrated Photonic Neural Networks Using the Lottery Ticket Hypothesis Sanmitra Banerjee (Duke University, USA), Mahdi Nikdast (Colorado	128
State University, USA), Sudeep Pasricha (Colorado State University,	
USA), and Krishnendu Chakrabarty (Duke University, USA)	

Session 8: Hardware Security 1

LDTFI: Layout-Aware Timing Fault-Injection Attack Assessment Against Differential Fault Analysis Amit Mazumder Shuvo (University of Florida), Nitin Pundir (University of Florida), Jungmin Park (University of Florida), Farimah Farahmandi (University of Florida), and Mark Tehranipoor (University of Florida)	134
ISPLock: A Hybrid Internal State Locking Method Using Polymorphic Gates Nikhil Saxena (University of Cincinnati, USA) and Ranga Vemuri (University of Cincinnati, USA)	140
On Protecting IJTAG from Data Sniffing and Alteration Attacks Anjum Riaz (Indian Institute of Technology Jammu, India), Gaurav Kumar (Indian Institute of Technology Jammu, India), Jaynarayan Tudu (Indian Institute of Technology Tirupati, India), and Satyadev Ahlawat (Indian Institute of Technology Jammu, India)	146

Session 9: Future Computing and Learning Techniques

TNN7: A Custom Macro Suite for Implementing Highly Optimized Designs of Neuromorphic TNNs 152
Harideep Nair (Carnegie Mellon University, USA), Prabhu Vellaisamy (Carnegie Mellon University, USA), Santha Bhasuthkar (Carnegie Mellon University, USA), and John Paul Shen (Carnegie Mellon University, USA)
Performance Evaluation of Video Analytics Workloads on Emerging Processing-In-Memory
Architectures
Nagadastagiri Challapalle (The Pennsylvania State University, USA) and
Vijaykrishnan Narayanan (The Pennsylvania State University, USA)
Power Management for Chiplet-Based Multicore Systems Using Deep Reinforcement Learning 164 Xiao Li (Hong Kong University of Science and Technology, China), Lin Chen (Hong Kong University of Science and Technology, China), Shixi Chen (Hong Kong University of Science and Technology, China), Fan Jiang (Hong Kong University of Science and Technology, China), Chengeng Li (Hong Kong University of Science and Technology, China), and Jiang Xu (Hong Kong University of Science and Technology (Guangzhou), China; HKUST Fok Ying Tung Research Institute, China)

Session 10: Hardware Security 2

zk-Sherlock: Exposing Hardware Trojans in Zero-Knowledge Dimitris Mouris (University of Delaware), Charles Gouert (University of Delaware), and Nektarios Georgios Tsoutsos (University of Delaware)	170
LOKI: A Hardware Trojan Affecting Multiple Components of an SoC Manju Rajan (Indian Institute of Technology Guwahati, India; Government Engineering College Idukki, India), Abhijit Das (Univ Rennes, Inria, France; Indian Institute of Technology Guwahati, India), and John Jose (Indian Institute of Technology Guwahati, India)	176
Enhancing Security of Memristor Computing System Through Secure Weight Mapping Minhui Zou (Technion - Israel Institute of Technology, Israel), Junlong Zhou (Nanjing University of Science and Technology, China), Xiaotong Cui (Chongqing University of Posts and Telecommunications, China), Wei Wang (Technion - Israel Institute of Technology, Israel), and Shahar Kvatinksy (Technion - Israel Institute of Technology, Israel)	182

Session 11: Delay- Aware and Energy-Aware Design

Delay-Aware Evolutionary Optimization of Digital Circuits Jitka Kocnová (Brno University of Technology, Czech Republic) and Zdenek Vasicek (Brno University of Technology, Czech Republic)	. 188
CmpctArch: A Generic Low Power Architecture for Compact Data Structures in Energy Harvesting Devices Priyanka Singla (Indian Institute of Technology Delhi, India) and Sumuti R. Samuei (Indian Institute of Technology Delhi, India)	194
Smruti R. Sarangi (Indian Institute of Technology Delhi, India) LeapConv: An Energy-Efficient Streaming Convolution Engine With Reconfigurable Stride Dionysios Filippas (Democritus University of Thrace, Greece), Chrysostomos Nicopoulos (University of Cyprus, Cyprus), and Giorgos Dimitrakopoulos (Democritus University of Thrace, Greece)	. 200

Session 12: Circuits for Networking and Communication

High-Throughput VLSI Architecture for LDPC Decoder Based on Low-Latency Decoding Technique for Wireless Communication Systems
An RS-BCH Concatenated FEC Code for Beyond 400 Gb/s Networking

Special Session 1: Secure and Dependable Cyberphysical Systems I

Improving GPU Throughput Through Parallel Execution Using Tensor Cores and CUDA Cores Khoa Ho (University of North Texas), Hui Zhao (University of North Texas), Adwait Jog (William and Mary University), and Saraju Mohanty (University of North Texas)	223
CosMos: Building A Network Reliability Cost Modeling System for Customer SLA	229
Manasa Leela Gummadavelly (University of Missouri-Kansas City, Kansas	
City, MO, USA), Haymanot Gebre-Amlak (Sprint, OSS Design & Deployment	
Tools, Overland Park, KS, USA), Henry Zhu (University of	
Missouri-Kansas City, Kansas City, MO, USA), Sejun Song (University of	
Missouri-Kansas City, Kansas City, MO, USA), and Baek-Young Choi	
(University of Missouri-Kansas City, Kansas City, MO, USA)	
Adiabatic Logic-Based STT-MRAM Design for IoT	235
Wu Yang (University of Tennessee, USA), Amit Degada (University of	
Tennessee, USA), and Himanshu Thapliyal (University of Tennessee, USA)	

Special Session 2: Secure and Dependable Cyberphysical Systems II

Robust Perception Architecture Design for Automotive Cyber-Physical Systems Joydeep Dey (Colorado State University, USA) and Sudeep Pasricha (Colorado State University, USA)	241
Secure and Scalable Collaborative Edge Computing Using Decision Tree Deepak Puthal (Khalifa University, UAE), Ernesto Damiani (Khalifa University, UAE), and Saraju P. Mohanty (University of North Texas, USA)	247
Predicting GPU Performance and System Parameter Configuration Using Machine Learning	253

Special Session 3: In Memory Processing I

Methodologies, Workloads, and Tools for Processing-In-Memory: Enabling the Adoption of

Zurich, Switzerland), Saugata Ghose (University of Illinois

Urbana-Champaign, USA), and Onur Mutlu (ETH Zurich, Switzerland)

PiDRAM: An FPGA-Based Framework for End-to-end Evaluation of Processing-in-DRAM Techniques 267

Ataberk Olgun (ETH Zurich, Switzerland), Juan Gómez Luna (ETH Zurich, Switzerland), Konstantinos Kanellopoulos (ETH Zurich, Switzerland), Behzad Salami (ETH Zurich, Switzerland), Hasan Hassan (ETH Zurich, Switzerland), Oguz Ergin (TOBB University of Economics and Technology, Türkiye), and Onur Mutlu (ETH Zurich, Switzerland)

Special Session 4: In Memory Processing II

Heterogeneous Data-Centric Architectures for Modern Data-Intensive Applications: Case Studies in Machine Learning and Databases Geraldo F. Oliveira (ETH Zurich, Switzerland), Amirali Boroumand (Google, USA), Saugata Ghose (University of Illinois Urbana-Champaign, USA), Juan Gomez-Luna (ETH Zurich, Switzerland), and Onur Mutlu (ETH Zurich, Switzerland)	. 273
 Exploiting Near-Data Processing to Accelerate Time Series Analysis	. 279
GenStore: In-Storage Filtering of Genomic Data for High-Performance and Energy-Efficient Genome Analysis Nika Mansouri Ghiasi (ETH Zurich), Jisung Park (ETH Zurich), Harun Mustafa (ETH Zurich), Jeremie Kim (ETH Zurich), Ataberk Olgun (ETH Zurich), Arvid Gollwitzer (ETH Zurich), Damla Senol Cali (Bionano Genomics), Can Firtina (ETH Zurich), Haiyu Mao (ETH Zurich), Nour Almadhoun Alserr (ETH Zurich), Rachata Ausavarungnirun (KMUTNB), Nandita Vijaykumar (University of Toronto), Mohammed Alser (ETH Zurich), and Onur Mutlu (ETH Zurich)	. 283
SparseP: Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures Christina Giannoula (ETH Zürich; National Technical University of Athens), Ivan Fernandez (University of Malaga; ETH Zürich), Juan Gomez-Luna (ETH Zürich), Nectarios Koziris (National Technical University of Athens), Georgios Goumas (National Technical University of Athens), and Onur Mutlu (ETH Zürich)	. 288
Machine Learning Training on a Real Processing-In-Memory System Juan Gomez Luna (ETHz), Yuxin Guo (ETHz), Sylvan Brocard (UPMEM), Julien Legriel (UPMEM), Remy Cimadomo (UPMEM), Geraldo F. Oliveira (ETHz), Gagandeep Singh (ETHz), and Onur Mutlu (ETHz)	. 292

Special Session 5: Secured Neurmorphic Computing I

WESCO: Weight-Encoded Reliability and Security Co-Design for In-Memory Computing Systems 296 Jiangwei Zhang (Tsinghua University), Chong Wang (Tsinghua University), Yi Cai (Tsinghua University), Zhenhua Zhu (Tsinghua University), Donald Kline Jr (Intel Corporation), Huazhong Yang (Tsinghua University), and Yu Wang (Tsinghua University)
A Method for Reverse Engineering Neural Network Parameters from Compute-in-Memory Accelerators
James Read (Georgia Institute of Technology, USA), Wantong Li (Georgia Institute of Technology, USA), and Shimeng Yu (Georgia Institute of Technology, USA)
SCRAMBLE: A Secure and Configurable, Memristor-Based Neuromorphic Hardware Leveraging 3D Architecture 308 Nikhil Rangarajan (New York University Abu Dhabi), Satwik Patnaik 308 (Texas A&M University), Mohammed Nabeel (New York University Abu Dhabi), Shubham Rai (TU Dresden), Gopal Raut (IIT Indore), Heba Abunahla (Khalifa University), Baker Mohammad (Khalifa University), Santosh Kumar Vishvakarma (IIT Indore), Akash Kumar (TU Dresden), Johann Knechtel (New York University Abu Dhabi), and Ozgur Sinanoglu (New York University Abu Dhabi) (Tu Dresity Abu Dhabi) (New York University Abu Dhabi)

Special Session 6: Secured Neurmorphic Computing II

Security as an Important Ingredient in Neuromorphic Engineering Farhad Merchant (RWTH Aachen University, Germany)	314
rumuu Merchuni (Kwi III Auchen University, Germuny)	
A DNN Protection Solution for PIM Accelerators With Model Compression	320
Lei Zhao (University of Pittsburgh, USA), Youtao Zhang (University of	
Pittsburgh, USA), and Jun Yang (University of Pittsburgh, USA)	

Special Session 7: Approximate Computing for ML

Exploiting Approximate Computing for Efficient and Reliable Convolutional Neural Networks Alberto Bosio (Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, France), Bastien Deveautour (Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, France), and Ian O'Connor (Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, France)	. 326
Evaluating the Impact of Mixed-Precision on Fault Propagation for Deep Neural Networks on GPUs	. 327
Fernando Fernandes dos Santos (Univ of Rennes INRIA, France), Paolo	-
Rech (University of Trento, Italy), Angeliki Kritikakou (Univ of	
Rennes INRIA, France), and Olivier Sentieys (Univ of Rennes INRIA,	
France)	

Energy-Aware Adaptive Approximate Computing for Deep Learning Applications	328
Nima TaheriNejad (TU Wien, Austria) and Salar Shakibhamedan (TU Wien,	
Austria)	

Special Session 8: Towards Efficient Testing of AI Accelerators

Fault Resilience of DNN Accelerators for Compressed Sensor Inputs	329
Probabilistic Fault Grading for AI Accelerators Using Neural Twins	333
Towards Yield Improvement for AI Accelerators: Analysis and Exploration	339
Exploring Image Selection for Self-Testing in Neural Network Accelerators	345

Special Session 9: Embedded Machine Learning

Towards Independent On-Device Artificial Intelligence
Hardware-Aware Automated Architecture Search for Brain-Inspired Hyperdimensional Computing 352
Junhuan Yang (University of New Mexico, USA), Venkat Kalyan Reddy Yasa (George Mason University, USA), Yi Sheng (George Mason University, USA), Dayane Reis (University of South Florida, USA), Xun Jiao (Villanova University, USA), Weiwen Jiang (George Mason University, USA), and Lei Yang (University of New Mexico, USA)
 Hardware/Software Co-Exploration for Graph Neural Architectures on FPGAs

Special Session 10: Multipartner Projects

A Novel Marketplace Perspective Promoting Customized Low Energy Computing and IoT: The SMART4ALL Approach	3
 Safety by Construction: Pattern-Based Application of Safety Mechanisms in XANDAR	•
Data Movement Reduction for DNN Accelerators: Enabling Dynamic Quantization Through an eFPGA	1
Tim Hotfilter (Karlsruhe Institute of Technology, Germany), Fabian Kreß (Karlsruhe Institute of Technology, Germany), Fabian Kempf (Karlsruhe Institute of Technology, Germany), Jürgen Becker (Karlsruhe Institute of Technology, Germany), and Imen Baili (Menta eFPGA S.A.S., France)	-
Efficient Autonomous Driving System Design: From Software to Hardware	;
Poster Session Details	

Towards Everlasting Flash: Preventing Permanent Flash Cell Damage Using Circadian Rhythms M. Ceylan Morgul (University of Virginia, USA), Xinfei Guo (Shanghai Jiao Tong University, China), and Mircea Stan (University of Virginia, USA)	376
Hardware Emulation of FeFET on FPGA Paul-Antoine Matrangolo (University of Lyon, France), Cédric Marchand (University of Lyon, France), David Navarro (University of Lyon, France), and Ian O'Connor (University of Lyon, France)	380
Secure PUF-Based Authentication and Key Exchange Protocol using Machine Learning Amir Ali-pour (Université Grenoble Alpes (UGA), Grenoble INP, LCIS, France), Fatemeh Afghah (Clemson University, France), David Hely (CEA Leti, France), Vincent Beroulle (Université Grenoble Alpes (UGA), Grenoble INP, LCIS, France), and Giorgio Di Natale (Université Grenoble Alpes (UGA), CNRS, TIMA, France)	386

Optoelectronic Implementation of Compact and Power-Efficient Recurrent Neural Networks 390 Taisei Ichikawa (Nagoya University, Japan), Yutaka Masuda (Nagoya University, Japan), Tohru Ishihara (Nagoya University, Japan), Akihiko Shinya (NTT Nanophotonics Center / Basic Research Laboratories, Japan), and Masaya Notomi (NTT Nanophotonics Center / Basic Research Laboratories, Japan)
REFU: Redundant Execution with Idle Functional Units, Fault Tolerant GPGPU Architecture 394 Raghunandana K K (U R Rao Satellite Center Bangalore, India), Varaprasad Bksvl (U R Rao Satellite Center Bangalore, India), M. Sonza Reorda (Politecnico di Torino Torino, Italy), and Virendra Singh (Indian Institute of Technology Bombay Mumbai, India)
On-Demand Redundancy Grouping: Selectable Soft-Error Tolerance for a Multicore Cluster 398 Michael Rogenmoser (ETH Zürich, Switzerland), Nils Wistoff (ETH Zürich, Switzerland), Pirmin Vogel (lowRISC C.I.C., United Kingdom), Frank K. Gürkaynak (ETH Zürich, Switzerland), and Luca Benini (ETH Zürich, Switzerland; University of Bologna, Italy)
Exact Mapping of Quantum Circuit Partitions to Building Blocks of the SAQIP Architecture 402 Amirmohammad Biuki (Shahed University, Iran), Naser Mohammadzadeh (Shahed University, Iran), Robert Wille (Technical University of Munich, Germany; Software Competence Center Hagenberg GmbH, Austria), and Sahar Sargaran (Shahed University, Iran)
 Possible Reductions to Generate Circuits From BDDs
Accelerating NLP Tasks on FPGA With Compressed BERT and a Hardware-Oriented Early Exit Method
A New Hardware-Efficient VLSI-Architecture of GoogLeNet CNN-Model Based Hardware Accelerator for Edge Computing Applications
A Permutation Challenge Input Interface for Arbiter PUF Variants Against Machine Learning Attacks

Student Posters

Accuracy Configurable FPGA Implementation of Harris Corner Detection Shivani Maurya (International Institute of Information Technology, India), Ziaul Choudhury (International Institute of Information Technology, India), and Suresh Purini (International Institute of Information Technology, India)	422
Designing Data-Aware Network-on-Chip for Performance Abhijit Das (Univ Rennes, Inria, France; Indian Institute of Technology Guwahati, India) and John Jose (Indian Institute of Technology Guwahati, India)	428
On the Detection and Circumvention of Bitstream-Level Trojans in FPGAs Qazi Arbab Ahmed (Paderborn University, Germany) and Marco Platzner (Paderborn University, Germany)	
Architectural-Space Exploration of Energy-Efficient Approximate Arithmetic Units for Error-Tolerant Applications	440
Research Demos	
Securing Hard Drives With the Security Protocol and Data Model (SPDM) Renan C. A. Alves (Universidade de São Paulo, Brazil), Bruno C.	446

Renan C. A. Alves (Universidade de São Paulo, Brazil), Bruno C. Albertini (Universidade de São Paulo, Brazil), and Marcos A. Simplicio Jr. (Universidade de São Paulo, Brazil)	
Fall-Sense: An Enhanced Sensor System to Predict and Detect Elderly Falls Using IoMT4 Laavanya Rachakonda (University of North Carolina Wilmington, USA) and Daniel T. Marchand (University of North Carolina Wilmington, USA)	448
A Novel Approach to Quantum Circuit Partitioning Joseph Clark (University of Tennessee, USA), Himanshu Thapliyal (University of Tennessee, USA), and Travis S. Humble (Oak Ridge National Laboratory, USA)	450
MC-PUF: A Robust Lightweight Controlled Physical Unclonable Function for Resource Constrained Environments	452

Author Index		455
--------------	--	-----