2022 IEEE 28th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2022)

Taipei, Taiwan 23-25 August 2022

IEEE Catalog Number: ISBN: CFP22066-POD 978-1-6654-5345-5

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP22066-POD
ISBN (Print-On-Demand):	978-1-6654-5345-5
ISBN (Online):	978-1-6654-5344-8
ISSN:	2325-1271

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE 28th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA) **RTCSA 2022**

Table of Contents

Welcome Message from the RTCSA 2022 Chairs	ix
RTCSA 2022 Organizers	x
Keynotes	aii

Session 1: Best Paper Candidates

A Concurrency Framework for Priority-Aware Intercomponent Requests in CAmkES on seL4 Marion Sudvarg (Washington University in St. Louis) and Christopher Gill (Washington University in St. Louis)
Statistical Hypothesis Testing of Controller Implementations Under Timing Uncertainties
Bineet Ghosh (The University of North Carolina at Chapel Hill), Clara
Hobbs (The University of North Carolina at Chapel Hill), Shengjie Xu
(The University of North Carolina at Chapel Hill), Parasara Sridhar
Duggirala (The University of North Carolina at Chapel Hill), James H.
Anderson (The University of North Carolina at Chapel Hill), P. S.
Thiagarajan (Chennai Mathematical Institute), and Samarjit Chakraborty
(The University of North Carolina at Chapel Hill)
Agnostic Hardware-Accelerated Operating System for Low-End IoT
Miguel Silva (Centro ALGORITMI, Universidade do Minho, Portugal),
Tiago Gomes (Centro ALGORITMI, Universidade do Minho, Portugal), and
Sandro Pinto (Centro ALGORITMI, Universidade do Minho, Portugal)

Session 2a: Real-Time Systems Track (I)

Anytime-Lidar: Deadline-Aware 3D Obj	ect Detection	31
Ahmet Soyyigit (University of Kansas, U	ISA), Shuochao Yao (George Mason	
University, ŬSA), and Heechul Yun (Ui	niversity of Kansas, USA)	

IP Core for Cache and Memory Thrashing	41
Michal Dobeš (Honeywell Aerospace, Czechia), Pavel Zaykov (Honeywell	
Aerospace, Czechia), Larry Miller (Honeywell Aerospace, USA), Pavel	
Badin (Honeywell Aerospace, Czechia), and Srivatsan Varadarajan	
(Honeywell Aerospace, USA)	
 Analyzing Fixed Task Priority Based Memory Centric Scheduler for the 3-Phase Task Model Jatin Arora (CISTER Research Centre, ISEP, Porto, Portugal), Syed Aftab Rashid (CISTER Research Centre, ISEP and VORTEX CoLab, Porto, Portugal), Cláudio Maia (CISTER Research Centre, ISEP, Porto, Portugal), and Eduardo Tovar (CISTER Research Centre, ISEP, Porto, Portugal) 	51
Session 2b: IoT, CPS, and Emerging Applications Track (I)	
An Open-World Time-Series Sensing Framework for Embedded Edge Devices	61

Abdulrahman Bukhari (University of California - Riverside, USA), Seyedmehdi Hosseinimotlagh (University of California - Riverside, USA), and Hyoseung Kim (University of California - Riverside, USA)
Distributed Successive Packet Scheduling for Multi-channel Real-Time Wireless Networks
QoS Guaranteed Resource Allocation for Coexisting eMBB and URLLC Traffic in 5G Industrial Networks

Session 3a: Real-time Systems Track (II)

The Role of Causality in a Formal Definition of Timing Anomalies	91
Benjamin Binder (Université Paris-Saclay, CEA, List, France), Mihail	
Asavoae (Université Paris-Saclay, CEA, List, France), Florian Brandner	
(LTCI, Télécom Paris, Institut Polytechnique de Paris, France),	
Belgacem Ben Hedia (Université Paris-Saclay, CEA, List, France), and	
Mathieu Jan (Université Paris-Saclay, CEA, List, France)	
Building Time-Triggered Schedules for Typed-DAG Tasks with Alternative Implementations 1	.03
Houssam-Eddine Zahaf (Nantes Université, École Centrale Nantes, IMT	

Atlantique(1), CNRS, INRIA (1), LS2N, UMR 6004, France) and Nicola Capodieci (Università degli Studi di Modena e Reggio Emilia, Italy)

Session 3b: Embedded Systems Track (I)

Exploiting Binary Equilibrium for Efficient LDPC Decoding in 3D NAND Flash	113
DeepPicarMicro: Applying TinyML to Autonomous Cyber Physical Systems	120
DVFS Virtualization for Energy Minimization of Mixed-Criticality Dual-OS Platforms	128

Session 4: Invited Papers

Performance Acceleration of Secure Machine Learning Computations for Edge Applications
On the Trade-offs between Generalization and Specialization in Real-Time Systems
Germany), Robert I. Davis (University of York, UK), and Jan Reineke

(Saarland University, Germany)

Session 5a: Embedded Systems Track (II)

IPDeN: Real-Time deflection-based NoC with in-order flits delivery	.60
 Scalable and Bounded-Time Decisions on Edge Device Network using Eclipse Zenoh	.70
Design Methodology for Deep Out-of-Distribution Detectors in Real-Time Cyber-Physical Systems	.80

Session 5b: IoT, CPS, and Emerging Applications Track (II)

Segment-Level FP-Scheduling in FreeRTOS	186
Robin Edmaier (TU Dortmund University, Germany), Niklas Ueter (TU	
Dortmund University, Germany), and Iian-Iia Chen (TU Dortmund	
University. Germany)	

Enabling Real-Time AI Inference on Mobile Devices via GPU-CPU Collaborative Execution1	95
Hao Li (Hong Kong Baptist University), Joseph Ng (Hong Kong Baptist	
University), and Tarek Abdelzaher (University of Illinois at	
Urbana-Champaign)	
Energy-Adaptive Real-time Sensing for Batteryless Devices	205
Mohsen Karimi (University of California, Riverside), Yidi Wang	
(University of California, Riverside), and Hyoseung Kim (University of	
California, Riverside)	

Session 6a: Short Paper Session (Embedded Systems Track)

Controlling High-Performance Platform Uncertainties with Timing Diversity Robin Hapka (Institute of Computer and Network Engineering, Technische Universitat Braunschweig, Germany), Anika Christmann (Institute of Computer and Network Engineering, Technische Universitat Braunschweig, Germany), and Rolf Ernst (Institute of Computer and Network Engineering, Technische Universitat Braunschweig, Germany)	212
QoS-MAN: A Novel QoS Mapping Algorithm for TSN-5G Flows Zenepe Satka (Mälardalen University), Mohammad Ashjaei (Mälardalen University), Hossein Fotouhi (Mälardalen University), Masoud Daneshtalab (Mälardalen University), Mikael Sjödin (Mälardalen University), and Saad Mubeen (Mälardalen University)	220

Session 6b: Short Paper Session (Real Time Systems Track)

Using Trace Data for Run-Time Optimization of Parallel Execution in Real-Time	
Multi-core-Systems	. 228
Florian Schade (Institut fuer Technik der Informationsverarbeitung	
(ITIV), Karlsruhe Institute of Technology, Germany), Timo Sandmann	
(Institut fuer Technik der Informationsverarbeitung (ITIV), Karlsruhe	
Institute of Technology, Germany), Jürgen Becker (Institut fuer	
Technik der Informationsverarbeitung (ITIV), Karlsruhe Institute of	
Technology, Germany), and Henrik Theiling (SYSGO GmbH, Germany)	

Author Index	
--------------	--