2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022)

New Orleans, Louisiana, USA 18-24 June 2022

Pages 1-548

IEEE Catalog Number: CFP22003-POD **ISBN:**

978-1-6654-6947-0

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP22003-POD 978-1-6654-6947-0 978-1-6654-6946-3 1063-6919

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) **CVPR 2022**

Table of Contents

Message from the General and Program Chairs	ccxxiii
CVPR 2022 Organizing Committee	
CVPR 2022 Area Chairs	
CVPR 2022 Outstanding Reviewers	ccxxvi
Donors	

Poster 1.1: Machine Learning

Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers Yunhui Guo (UC Berkeley / ICSI), Xudong Wang (UC Berkeley / ICSI), Yubei Chen (UC Berkeley), and Stella X. Yu (UC Berkeley / ICSI)
CO-SNE: Dimensionality Reduction and Visualization for Hyperbolic Data
 Efficient Deep Embedded Subspace Clustering
Noise Is Also Useful: Negative Correlation-Steered Latent Contrastive Learning
Active Learning for Open-Set Annotation
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training

Robust Optimization As Data Augmentation for Large-Scale Graphs
A Re-Balancing Strategy for Class-Imbalanced Classification Based on Instance Difficulty
The Devil Is in the Margin: Margin-Based Label Smoothing for Network Calibration
Towards Better Plasticity-Stability Trade-Off in Incremental Learning: A Simple Linear
Connector
GCR: Gradient Coreset Based Replay Buffer Selection for Continual Learning
Learning Bayesian Sparse Networks With Full Experience Replay for Continual Learning
A Variational Bayesian Method for Similarity Learning in Non-Rigid Image Registration
Learning To Learn by Jointly Optimizing Neural Architecture and Weights
Learning To Prompt for Continual Learning

Meta-Attention for ViT-Backed Continual Learning	.50
Multi-Frame Self-Supervised Depth With Transformers 1 Vitor Guizilini (Toyota Research Institute), Rareş Ambruş (Toyota 1 Research Institute), Dian Chen (Toyota Research Institute), Sergey 2 Zakharov (Toyota Research Institute), and Adrien Gaidon (Toyota 1 Research Institute) 1	160
Continual Learning With Lifelong Vision Transformer	.71
Rethinking Bayesian Deep Learning Methods for Semi-Supervised Volumetric Medical Image Segmentation	182
Revisiting Random Channel Pruning for Neural Network Compression	.91
Deep Safe Multi-View Clustering: Reducing the Risk of Clustering Performance Degradation Caused by View Increase 2 Huayi Tang (University of Electronic Science and Technology of China) 2 and Yong Liu (Renmin University of China)	202
 Hypergraph-Induced Semantic Tuplet Loss for Deep Metric Learning	212
Towards Robust and Reproducible Active Learning Using Neural Networks	223
Non-Iterative Recovery From Nonlinear Observations Using Generative Models	233
Gaussian Process Modeling of Approximate Inference Errors for Variational Autoencoders	244
Robust Combination of Distributed Gradients Under Adversarial Perturbations	254
Do Learned Representations Respect Causal Relationships?	264

 How Much More Data Do I Need? Estimating Requirements for Downstream Tasks
Pushing the Envelope of Gradient Boosting Forests via Globally-Optimized Oblique Trees
Contrastive Test-Time Adaptation
AutoSDF: Shape Priors for 3D Completion, Reconstruction and Generation
Selective-Supervised Contrastive Learning With Noisy Labels
RecDis-SNN: Rectifying Membrane Potential Distribution for Directly Training Spiking Neural Networks
Corporation), Xinyi Tong (The Second Academy of China Aerospace Science and Industry Corporation), Yuanpei Chen (X LAB, The Second Academy of CASIC, Beijing), Liwen Zhang (X Lab, the Second Academy of CASIC, Beijing), Xiaode Liu (X Lab, The Second Academy of China Aerospace Science and Industry Corporation), Zhe Ma (Xlab, the Second Academy of CASIC, Beijing), and Xuhui Huang (X Lab, The Second Academy of CASIC)
Hierarchical Nearest Neighbor Graph Embedding for Efficient Dimensionality Reduction

Poster 1.1: Statistical Methods

Scalable Penalized Regression for Noise Detection in Learning With Noisy Labels Yikai Wang (Fudan University), Xinwei Sun (MSRA), and Yanwei Fu (Fudan University)	346
Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic NN Design Xiran Fan (University of Florida), Chun-Hao Yang (National Taiwan University), and Baba C. Vemuri (University of Florida)	356
Learning Structured Gaussians To Approximate Deep Ensembles Ivor J. A. Simpson (University of Sussex), Sara Vicente (Niantic), and Neill D. F. Campbell (University of Bath)	366

Out-of-Distribution Generalization With Causal Invariant Transformations Ruoyu Wang (Chinese Academy of Science), Mingyang Yi (Chinese Academy of Science), Zhitang Chen (Huawei Noah's Ark Lab), and Shengyu Zhu (Huawei Noah's Ark Lab)	375
Split Hierarchical Variational Compression Tom Ryder (Huawei, Noah's Ark Lab), Chen Zhang (Huawei Noah's Ark Lab), Ning Kang (Huawei Noah's Ark Lab), and Shifeng Zhang (Huawei Noah's Ark Lab)	386
Implicit Feature Decoupling With Depthwise Quantization Iordanis Fostiropoulos (University of Southern California) and Barry Boehm (USC)	396
 Understanding Uncertainty Maps in Vision With Statistical Testing Jurijs Nazarovs (University of Wisconsin - Madison), Zhichun Huang (CMU), Songwong Tasneeyapant (University of Wisconsin-Madison), Rudrasis Chakraborty (Butlr), and Vikas Singh (University of Wisconsin Madison) 	406

Poster 1.1: Optimization Methods

A Hybrid Quantum-Classical Algorithm for Robust Fitting Anh-Dzung Doan (The University of Adelaide), Michele Sasdelli (The University of Adelaide), David Suter (Edith Cowan University), and Tat-Jun Chin (The University of Adelaide)	417
A Scalable Combinatorial Solver for Elastic Geometrically Consistent 3D Shape Matching Paul Roetzer (TUM), Paul Swoboda (MPI fuer Informatik, Saarbruecken), Daniel Cremers (TU Munich), and Florian Bernard (University of Bonn)	428
FastDOG: Fast Discrete Optimization on GPU Ahmed Abbas (MPI-INF) and Paul Swoboda (MPI fuer Informatik, Saarbruecken)	439
Data-Free Network Compression via Parametric Non-Uniform Mixed Precision Quantization Vladimir Chikin (Huawei Noah's Ark Lab) and Mikhail Antiukh (HSE University)	.450
AdaSTE: An Adaptive Straight-Through Estimator To Train Binary Neural Networks Huu Le (NA), Rasmus Kjær Høier (Chalmers University of Technology), Che-Tsung Lin (Chalmers University of Technology), and Christopher Zach (Chalmers University)	460
Training Quantised Neural Networks With STE Variants: The Additive Noise Annealing Algorithm Matteo Spallanzani (ETH Zurich), Gian Paolo Leonardi (Universita di Trento), and Luca Benini (ETHZ, University of Bologna)	470

 AME: Attention and Memory Enhancement in Hyper-Parameter Optimization	0
Efficient Maximal Coding Rate Reduction by Variational Forms	0
A Unified Framework for Implicit Sinkhorn Differentiation	9
Computing Wasserstein-p Distance Between Images With Linear Cost	9
An Iterative Quantum Approach for Transformation Estimation From Point Sets	9

Poster 1.1: Deep Learning Architectures & Techniques

BoosterNet: Improving Domain Generalization of Deep Neural Nets Using Culpability-Ranked Features Nourhan Bayasi (University of British Columbia), Ghassan Hamarneh (Simon Fraser University), and Rafeef Garbi (University of British Columbia)	528
Pooling Revisited: Your Receptive Field Is Suboptimal Dong-Hwan Jang (Seoul National University), Sanghyeok Chu (Seoul National University), Joonhyuk Kim (Seoul National University), and Bohyung Han (Seoul National University)	539
Why Discard if You Can Recycle?: A Recycling Max Pooling Module for 3D Point Cloud Analysis Jiajing Chen (Syracuse University), Burak Kakillioglu (Motorola Solutions), Huantao Ren (Syracuse University), and Senem Velipasalar (Syracuse University)	. 549
Online Convolutional Re-Parameterization Mu Hu (Zhejiang University), Junyi Feng (Alibaba group), Jiashen Hua (Damo Academy, Alibaba Group), Baisheng Lai (Alibaba Group), Jianqiang Huang (Alibaba Group), Xiaojin Gong (Zhejiang University), and Xian-Sheng Hua (Damo Academy, Alibaba Group)	558

RepMLPNet: Hierarchical Vision MLP With Re-Parameterized Locality	8
DyRep: Bootstrapping Training With Dynamic Re-Parameterization	8
Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free	8
Condensing CNNs With Partial Differential Equations	0
Deep Equilibrium Optical Flow Estimation	0
 Frame Averaging for Equivariant Shape Space Learning	1
Dual-Generator Face Reenactment632Gee-Sern Hsu (National Taiwan University of Science and Technology),632Chun-Hung Tsai (National Taiwan University of Science and Technology),632and Hung-Yi Wu (National Taiwan University of Science and Technology)632	2
Convolution of Convolution: Let Kernels Spatially Collaborate	1
SASIC: Stereo Image Compression With Latent Shifts and Stereo Attention	1
RADU: Ray-Aligned Depth Update Convolutions for ToF Data Denoising	1
Co-Domain Symmetry for Complex-Valued Deep Learning	1
 Paramixer: Parameterizing Mixing Links in Sparse Factors Works Better Than Dot-Product Self-Attention	1

Compressing Models With Few Samples: Mimicking Then Replacing	L
Total Variation Optimization Layers for Computer Vision	1
AIM: An Auto-Augmenter for Images and Meshes	2
Recurrent Variational Network: A Deep Learning Inverse Problem Solver Applied to the Task of Accelerated MRI Reconstruction	2
Deep Orientation-Aware Functional Maps: Tackling Symmetry Issues in Shape Matching	2
 Weakly-Supervised Metric Learning With Cross-Module Communications for the Classification of Anterior Chamber Angle Images	2
Delving Into the Estimation Shift of Batch Normalization in a Network	3
Generalizing Interactive Backpropagating Refinement for Dense Prediction Networks	3
Brain-Inspired Multilayer Perceptron With Spiking Neurons	3
 Smooth Maximum Unit: Smooth Activation Function for Deep Networks Using Smoothing Maximum Technique 784 Koushik Biswas (Indraprastha Institute of Information Technology, New Delhi, India), Sandeep Kumar (Shaheed Bhagat Singh College, University of Delhi, Delhi), Shilpak Banerjee (Indian Institute of Technology Tirupati), and Ashish Kumar Pandey (Indraprastha Institute of Information Technology, New Delhi, India) 	
 Revisiting Weakly Supervised Pre-Training of Visual Perception Models	1

On the Integration of Self-Attention and Convolution Xuran Pan (Tsinghua University), Chunjiang Ge (Tsinghua University), Rui Lu (Tsinghua University), Shiji Song (Department of Automation, Tsinghua University), Guanfu Chen (Huawei), Zeyi Huang (Huawei), and Gao Huang (Tsinghua)	805
 Hire-MLP: Vision MLP via Hierarchical Rearrangement Jianyuan Guo (Noah's Ark Lab, Huawei Technologies), Yehui Tang (Peking University), Kai Han (Noah's Ark Lab, Huawei Technologies), Xinghao Chen (Huawei Noah's Ark Lab), Han Wu (University of Sydney), Chao Xu (Peking University), Chang Xu (University of Sydney), and Yunhe Wang (Huawei Technologies) 	816
Stable Long-Term Recurrent Video Super-Resolution Benjamin Naoto Chiche (Université Paris-Saclay / Safran Electronics & Defense), Arnaud Woiselle (Safran Electronics & Defense), Joana Frontera-Pons (CEA & IPSA), and Jean-Luc Starck (Commissariat à l'énergie atomique (CEA))	827
Single-Domain Generalized Object Detection in Urban Scene via Cyclic-Disentangled Self-Distillation Aming Wu (Xidian University) and Cheng Deng (Xidian University)	837
Progressive End-to-End Object Detection in Crowded Scenes Anlin Zheng (Megvii Technology), Yuang Zhang (Shanghai Jiao Tong University), Xiangyu Zhang (Megvii Technology), Xiaojuan Qi (The University of Hong Kong), and Jian Sun (Megvii Technology)	847
Zero-Shot Text-Guided Object Generation With Dream Fields Ajay Jain (UC Berkeley), Ben Mildenhall (Google Research), Jonathan T. Barron (Google Research), Pieter Abbeel (UC Berkeley), and Ben Poole (Google Brain)	857

Poster 1.1: Recognition: Detection, Categorization, Retrieval

ISNet: Shape Matters for Infrared Small Target Detection Mingjin Zhang (Xidian University), Rui Zhang (XDU), Yuxiang Yang (Hangzhou Dianzi University), Haichen Bai (Xidian University), Jing Zhang (The University of Sydney), and Jie Guo (Xidian University)	867
Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving Yi-Nan Chen (Zhejiang University), Hang Dai (Mohamed bin Zayed University of Artificial Intelligence), and Yong Ding (Zhejiang University)	877
CLRNet: Cross Layer Refinement Network for Lane Detection Tu Zheng (FABU), Yifei Huang (zhejiang university), Yang Liu (Zhejiang University), Wenjian Tang (Hangzhou Feibu Technology Co., Ltd.), Zheng Yang (FABU), Deng Cai (ZJU), and Xiaofei He (Zhejiang University)	888
CAT-Det: Contrastively Augmented Transformer for Multi-Modal 3D Object Detection Yanan Zhang (Beihang University), Jiaxin Chen (Beihang University),	898

and Di Huang (Beihang University, China)

Modality-Agnostic Learning for Radar-Lidar Fusion in Vehicle Detection Yu-Jhe Li (Carnegie Mellon University), Jinhyung Park (Carnegie Mellon University), Matthew O'Toole (Carnegie Mellon University), and Kris Kitani (Carnegie Mellon University)	. 908
Group Contextualization for Video Recognition Yanbin Hao (University of Science and Technology of China), Hao Zhang (Singapore Management University), Chong-Wah Ngo (Singapore Management University), and Xiangnan He (University of Science and Technology of China)	. 918
Learning Transferable Human-Object Interaction Detector With Natural Language Supervision Suchen Wang (Nanyang Technological University), Yueqi Duan (Tsinghua University), Henghui Ding (ETH Zurich), Yap-Peng Tan (Nanyang Technological University, Singapore), Kim-Hui Yap (Nanyang Technological University), and Junsong Yuan (State University of New York at Buffalo, USA)	. 929
Accelerating DETR Convergence via Semantic-Aligned Matching Gongjie Zhang (Nanyang Technological University), Zhipeng Luo (Nanyang Technological University), Yingchen Yu (Nanyang Technological University), Kaiwen Cui (Nanyang Technological University), and Shijian Lu (Nanyang Technological University)	. 939
Efficient Video Instance Segmentation via Tracklet Query and Proposal Jialian Wu (State University of New York at Buffalo), Sudhir Yarram (University at Buffalo), Hui Liang (Amazon), Tian Lan (Amazon Inc), Junsong Yuan (State University of New York at Buffalo, USA), Jayan Eledath (Amazon), and Gérard Medioni (USC)	. 949
Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation Zhaozheng Chen (Singapore Management University), Tan Wang (Nanyang Technological University), Xiongwei Wu (Singapore Management U), Xian-Sheng Hua (Damo Academy, Alibaba Group), Hanwang Zhang (Nanyang Technological University), and Qianru Sun (Singapore Management University)	.959
Democracy Does Matter: Comprehensive Feature Mining for Co-Salient Object Detection Siyue Yu (Xi'an Jiaotong-Liverpool University), Jimin Xiao (Xi'an Jiaotong-Liverpool University), Bingfeng Zhang (Xi'an Jiaotong-Liverpool University), and Eng Gee Lim (Xian jiaotong-liverpool University)	. 969
C2AM: Contrastive Learning of Class-Agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation Jinheng Xie (Shenzhen University), Jianfeng Xiang (ShenZhen University), Junliang Chen (Shenzhen University), Xianxu Hou (Shenzhen University), Xiaodong Zhao (Shenzhen University), and Linlin Shen (Shenzhen University)	. 979
 Sketching Without Worrying: Noise-Tolerant Sketch-Based Image Retrieval Ayan Kumar Bhunia (University of Surrey), Subhadeep Koley (West Bengal University of Technology), Abdullah Faiz Ur Rahman Khilji (National Institute of Technology Silchar), Aneeshan Sain (University of Surrey), Pinaki Nath Chowdhury (University of Surrey), Tao Xiang (University of Surrey), and Yi-Zhe Song (University of Surrey) 	. 989

AutoLoss-Zero: Searching Loss Functions From Scratch for Generic Tasks
Consistency Learning via Decoding Path Augmentation for Transformers in Human Object Interaction Detection
A Proposal-Based Paradigm for Self-Supervised Sound Source Localization in Videos 1019 Hanyu Xuan (Nanjing University of Science and Technology), Zhiliang Wu (Nanjing University of Science and Technology), Jian Yang (Nanjing University of Science and Technology), Yan Yan (Nanjing University of Science and Technology), and Xavier Alameda-Pineda (INRIA)
SimAN: Exploring Self-Supervised Representation Learning of Scene Text viaSimilarity-Aware Normalization1029Canjie Luo (South China University of Technology), Lianwen Jin (South China University of Technology), and Jingdong Chen (Ant Group)
Towards End-to-End Unified Scene Text Detection and Layout Analysis
Clothes-Changing Person Re-Identification With RGB Modality Only
MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D Object Detection 1060 Qing Lian (Hong Kong University of Science and Technology), Peiliang Li (DJI), and Xiaozhi Chen (DJI)
 Homography Loss for Monocular 3D Object Detection
 TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection With Transformers

 TWIST: Two-Way Inter-Label Self-Training for Semi-Supervised 3D Instance Segmentation 1090 Ruihang Chu (The Chinese University of Hong Kong), Xiaoqing Ye (baidu), Zhengzhe Liu (The Chinese University of Hong Kong), Xiao Tan (Baidu Inc.), Xiaojuan Qi (The University of Hong Kong), Chi-Wing Fu (The Chinese University of Hong Kong), and Jiaya Jia (Chinese University of Hong Kong)
RBGNet: Ray-Based Grouping for 3D Object Detection
 Voxel Field Fusion for 3D Object Detection
Learning To Detect Mobile Objects From LiDAR Scans Without Labels
OccAM's Laser: Occlusion-Based Attribution Maps for 3D Object Detectors on LiDAR Data 1131 David Schinagl (Graz University of Technology), Georg Krispel (Graz University of Technology), Horst Possegger (Graz University of Technology), Peter M. Roth (TU Munich), and Horst Bischof (Graz University of Technology)
Confidence Propagation Cluster: Unleash Full Potential of Object Detectors
TransGeo: Transformer Is All You Need for Cross-View Image Geo-Localization
A Voxel Graph CNN for Object Classification With Event Cameras
OSKDet: Orientation-Sensitive Keypoint Localization for Rotated Object Detection
Canonical Voting: Towards Robust Oriented Bounding Box Detection in 3D Scenes

Poster 1.1: Segmentation, Grouping and Shape Analysis

Category Contrast for Unsupervised Domain Adaptation in Visual Tasks
Amodal Segmentation Through Out-of-Task and Out-of-Distribution Generalization With a Bayesian Model 1205 Yihong Sun (Johns Hopkins University), Adam Kortylewski (Max Planck Institute for Informatics), and Alan Yuille (Johns Hopkins University)
GANSeg: Learning To Segment by Unsupervised Hierarchical Image Generation
Segment-Fusion: Hierarchical Context Fusion for Robust 3D Semantic Segmentation
Deep Hierarchical Semantic Segmentation
Semantic Segmentation by Early Region Proxy
 Panoptic, Instance and Semantic Relations: A Relational Context Encoder To Enhance Panoptic Segmentation
 Panoptic SegFormer: Delving Deeper Into Panoptic Segmentation With Transformers
Masked-Attention Mask Transformer for Universal Image Segmentation
FocalClick: Towards Practical Interactive Image Segmentation

High Quality Segmentation for Ultra High-Resolution Images
 Wnet: Audio-Guided Video Object Segmentation via Wavelet-Based Cross-Modal Denoising Networks
Recurrent Dynamic Embedding for Video Object Segmentation
Accelerating Video Object Segmentation With Compressed Video
Per-Clip Video Object Segmentation
SWEM: Towards Real-Time Video Object Segmentation With Sequential Weighted Expectation-Maximization 1352 Zhihui Lin (Tsinghua University), Tianyu Yang (Tencent AI Lab), Maomao 1352 Li (Tencent AIlab), Ziyu Wang (Tsinghua University), Chun Yuan (Graduate school at ShenZhenTsinghua university), Wenhao Jiang (Tencent), and Wei Liu (Tencent) (Tencent)
Neural Recognition of Dashed Curves With Gestalt Law of Continuity
CVNet: Contour Vibration Network for Building Extraction

A Keypoint-Based Global Association Network for Lane Detection	32
EDTER: Edge Detection With Transformer	€2
Fixing Malfunctional Objects With Learned Physical Simulation and Functional Prediction 140 Yining Hong (University of California, Los Angeles), Kaichun Mo (Stanford), Li Yi (Tsinghua University), Leonidas J. Guibas (Stanford University), Antonio Torralba (MIT), Joshua B. Tenenbaum (MIT), and Chuang Gan (MIT-IBM Watson AI Lab))3
Coherent Point Drift Revisited for Non-Rigid Shape Matching and Registration	14
CodedVTR: Codebook-Based Sparse Voxel Transformer With Geometric Guidance	25
 FLOAT: Factorized Learning of Object Attributes for Improved Multi-Object Multi-Part Scene Parsing	35
Rotationally Equivariant 3D Object Detection	16
AUV-Net: Learning Aligned UV Maps for Texture Transfer and Synthesis	55

Poster 1.1: 3D From Single Images

Learning To Estimate Robust 3D Human Mesh From In-the-Wild Crowded Scenes Hongsuk Choi (Seoul National University), Gyeongsik Moon (Seoul National University), JoonKyu Park (Seoul National Univ.), and Kyoung Mu Lee (Seoul National University)	1465
Human Mesh Recovery From Multiple Shots Georgios Pavlakos (UC Berkeley), Jitendra Malik (University of California at Berkeley), and Angjoo Kanazawa (University of California Berkeley)	1475

HandOccNet: Occlusion-Robust 3D Hand Mesh Estimation Network
Photorealistic Monocular 3D Reconstruction of Humans Wearing Clothing
Disentangled3D: Learning a 3D Generative Model With Disentangled Geometry and Appearance From Monocular Images
 NeuralHDHair: Automatic High-Fidelity Hair Modeling From a Single Image Using Implicit Neural Representations
Topologically-Aware Deformation Fields for Single-View 3D Reconstruction
Generating Diverse 3D Reconstructions From a Single Occluded Face Image 1537 Rahul Dey (Michigan State University) and Vishnu Naresh Boddeti (Michigan State University)
LOLNerf: Learn From One Look
Learning Local Displacements for Point Cloud Completion
Exploiting Pseudo Labels in a Self-Supervised Learning Framework for Improved Monocular Depth Estimation
 Dimension Embeddings for Monocular 3D Object Detection
Understanding 3D Object Articulation in Internet Videos

P3Depth: Monocular Depth Estimation With a Piecewise Planarity Prior
Neural Face Identification in a 2D Wireframe Projection of a Manifold Object
PanopticDepth: A Unified Framework for Depth-Aware Panoptic Segmentation
Stability-Driven Contact Reconstruction From Monocular Color Images
 LGT-Net: Indoor Panoramic Room Layout Estimation With Geometry-Aware Transformer Network 1644 Zhigang Jiang (East China Normal University), Zhongzheng Xiang (Shanghai Yiwo Information Technology Co., Ltd.), Jinhua Xu (East China Normal University), and Ming Zhao (Shanghai Yiwo Information Technology Limited)
Collaborative Learning for Hand and Object Reconstruction With Attention-Guided Graph Convolution
RM-Depth: Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes
 Exploring Geometric Consistency for Monocular 3D Object Detection
Learning 3D Object Shape and Layout Without 3D Supervision
 Single-Stage 3D Geometry-Preserving Depth Estimation Model Training on Dataset Mixtures With Uncalibrated Stereo Data

Occluded Human Mesh Recovery
LAKe-Net: Topology-Aware Point Cloud Completion by Localizing Aligned Keypoints 1716 Junshu Tang (Shanghai Jiao Tong University), Zhijun Gong (Shanghai Jiao Tong University), Ran Yi (Shanghai Jiao Tong University), Yuan Xie (East China Normal University), and Lizhuang Ma (Shanghai Jiao Tong University)
OcclusionFusion: Occlusion-Aware Motion Estimation for Real-Time Dynamic 3D Reconstruction 1726 Wenbin Lin (Tsinghua University), Chengwei Zheng (Tsinghua University), Jun-Hai Yong (Tsinghua University), and Feng Xu (Tsinghua University)
Depth Estimation by Combining Binocular Stereo and Monocular Structured-Light
Learning From Pixel-Level Noisy Label: A New Perspective for Light Field Saliency Detection

Poster 1.1: Photogrammetry and Remote Sensing

HyperTransformer: A Textural and Spectral Feature Fusion Transformer for Pansharpening 1757 Wele Gedara Chaminda Bandara (Johns Hopkins University) and Vishal M. Patel (Johns Hopkins University)
Revisiting Near/Remote Sensing With Geospatial Attention
 Memory-Augmented Deep Conditional Unfolding Network for Pan-Sharpening
 Mutual Information-Driven Pan-Sharpening

Sparse and Complete Latent Organization for Geospatial Semantic Segmentation
The Probabilistic Normal Epipolar Constraint for Frame-to-Frame Rotation Optimization Under Uncertain Feature Positions 1809 Dominik Muhle (Technical University of Munich), Lukas Koestler 1809 (Technical University of Munich), Nikolaus Demmel (TU Munich), Florian Bernard (University of Bonn), and Daniel Cremers (TU Munich)
Oriented RepPoints for Aerial Object Detection
Using 3D Topological Connectivity for Ghost Particle Reduction in Flow Reconstruction
PolyWorld: Polygonal Building Extraction With Graph Neural Networks in Satellite Images 1838 Stefano Zorzi (Graz University of Technology), Shabab Bazrafkan (Blackshark.ai), Stefan Habenschuss (Blackshark.ai), and Friedrich Fraundorfer (Graz University of Technology)
Self-Supervised Super-Resolution for Multi-Exposure Push-Frame Satellites

Poster 1.1: Low-Level Vision

MISF: Multi-Level Interactive Siamese Filtering for High-Fidelity Image Inpainting Xiaoguang Li (University of South Carolina), Qing Guo (Nanyang Technological University), Di Lin (Tianjin University), Ping Li (The Hong Kong Polytechnic University), Wei Feng (College of Intelligence and Computing, Tianjin University, China), and Song Wang (University of South Carolina)	1859
Iterative Deep Homography Estimation Si-Yuan Cao (Zhejiang University), Jianxin Hu (Zhejiang University), Zehua Sheng (Zhejiang University), and Hui-Liang Shen (Zhejiang University)	1869
GCFSR: A Generative and Controllable Face Super Resolution Method Without Facial and GAN Priors	1879
Jingwen He (Bytedance Inc), Wu Shi (Shenzhen Institutes of Advanced Technology), Kai Chen (Bytedance Inc), Lean Fu (ByteDance), and Chao Dong (SIAT)	
Deep Color Consistent Network for Low-Light Image Enhancement Zhao Zhang (Hefei University of Technology), Huan Zheng (Hefei University of Technology), Richang Hong (Hefei University of Technology), Mingliang Xu (Zhengzhou University), Shuicheng Yan (Sea AI Labs), and Meng Wang (Hefei University of Technology)	1889

LAR-SR: A Local Autoregressive Model for Image Super-Resolution
Multi-Scale Memory-Based Video Deblurring
Local Texture Estimator for Implicit Representation Function
Chitransformer: Towards Reliable Stereo From Cues
BNUDC: A Two-Branched Deep Neural Network for Restoring Images From Under-Display Cameras
ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior
IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation
Learning Graph Regularisation for Guided Super-Resolution
Self-Supervised Deep Image Restoration via Adaptive Stochastic Gradient Langevin Dynamics 1979 Weixi Wang (National University of Singapore), Ji Li (National University of Singapore), and Hui Ji (National University of Singapore)
 Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit Neural Representation 1989 Wenbo Zhao (Peng Cheng Laboratory), Xianming Liu (Harbin Institute of Technology), Zhiwei Zhong (Harbin Institute of Technology), Junjun Jiang (Harbin Institute of Technology), Wei Gao (SECE, Shenzhen Graduate School, Peking University), Ge Li (SECE, Shenzhen Graduate School, Peking University), and Xiangyang Ji (Tsinghua University)
Noise Distribution Adaptive Self-Supervised Image Denoising Using Tweedie Distribution and Score Matching

Unpaired Deep Image Deraining Using Dual Contrastive Learning	. 2007
Blind2Unblind: Self-Supervised Image Denoising With Visible Blind Spots Zejin Wang (Institute of Automation, Chinese Academy of Sciences), Jiazheng Liu (Institute of AutomationChinese Academy of Sciences), Guoqing Li (Institute of Automation, Chinese Academy of Sciences), and Hua Han (Institute of Automation, Chinese Academy of Sciences)	. 2017
Self-Augmented Unpaired Image Dehazing via Density and Depth Decomposition Yang Yang (Tianjin University), Chaoyue Wang (JD.com), Risheng Liu (Dalian University of Technology), Lin Zhang (Tongji University, China), Xiaojie Guo (Tianjin University), and Dacheng Tao (JD.com)	2027
 VideoINR: Learning Video Implicit Neural Representation for Continuous Space-Time Super-Resolution Zeyuan Chen (University of Science and Technology of China), Yinbo Chen (UC San Diego), Jingwen Liu (University of California, San Diego), Xingqian Xu (UIUC), Vidit Goel (Indian Institute of Technology, Kharagpur), Zhangyang Wang (University of Texas at Austin), Humphrey Shi (U of Oregon/UIUC), and Xiaolong Wang (UCSD) 	. 2037
Fast Algorithm for Low-Rank Tensor Completion in Delay-Embedded Space Ryuki Yamamoto (Nagoya Institute of Technology), Hidekata Hontani (Nagoya Institute of Technology), Akira Imakura (University of Tsukuba), and Tatsuya Yokota (Nagoya Institute of Technology)	. 2048
 Exploring and Evaluating Image Restoration Potential in Dynamic Scenes Cheng Zhang (Northwestern Polytechnical University), Shaolin Su (Northwestern Polytechnical University), Yu Zhu (Northwestern Polytechnical University), Qingsen Yan (The University of Adelaide), Jinqiu Sun (Northwestern Polytechnical University), and Yanning Zhang (Northwestern Polytechnical University) 	2057
GIQE: Generic Image Quality Enhancement via Nth Order Iterative Degradation Pranjay Shyam (Korea Advanced Institute of Science and technology), Kyung-Soo Kim (KAIST), and Kuk-Jin Yoon (KAIST)	. 2067
Does Text Attract Attention on E-Commerce Images: A Novel Saliency Prediction Dataset and Method Lai Jiang (BUAA), Yifei Li (Beihang university), Shengxi Li (Imperial College London), Mai Xu (BUAA), Se Lei (Beihang university), Yichen Guo (Beihang university), and Bo Huang (ALIBABA GROUP)	2078
IDR: Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang (CUHK), Dasong Li (Chinese University of Hong Kong), Ka Lung Law (Sensetime), Xiaogang Wang (Chinese University of Hong Kong, Hong Kong), Hongwei Qin (Sensetime), and Hongsheng Li (The Chinese University of Hong Kong)	2088

ABPN: Adaptive Blend Pyramid Network for Real-Time Local Retouching of Ultra High-Resolution Photo	2098
Di Huang (Individual) Texture-Based Error Analysis for Image Super-Resolution	2108
University of Sydney), and Hanspeter Pfister (Harvard University)	
 Blind Image Super-Resolution With Elaborate Degradation Modeling on Noise and Kernel	118
KNN Local Attention for Image Restoration2Hunsang Lee (Yonsei Univ.), Hyesong Choi (Ewha w. university),2Kwanghoon Sohn (Yonsei Univ.), and Dongbo Min (Ewha Womans University)	129
Can You Spot the Chameleon? Adversarially Camouflaging Images From Co-Salient Object Detection	2140
Ruijun Gao (College of Intelligence and Computing, Tianjin University, China), Qing Guo (Nanyang Technological University), Felix Juefei-Xu (Alibaba Group, USA), Hongkai Yu (Cleveland State University), Huazhu Fu (IHPC, ASTAR), Wei Feng (College of Intelligence and Computing, Tianjin University, China), Yang Liu (Nanyang Technology University, Singapore), and Song Wang (University of South Carolina)	
Zoom in and Out: A Mixed-Scale Triplet Network for Camouflaged Object Detection	150

Poster 1.1: Behavior Analysis

Self-Supervised Keypoint Discovery in Behavioral Videos
Jennifer J. Sun (Čaltech), Serim Rýou (California Institute of Technology), Roni H. Goldshmid (California Institute of Technology),
Brandon Weissbourd (Caltech), John O. Dabiri (California Institute of
Technology), David J. Anderson (Caltech), Ann Kennedy (Northwestern
University), Yisong Yue (Caltech), and Pietro Perona (California
Institute of Technology)
Learning To Align Sequential Actions in the Wild
Weizhe Liu (EPFL), Bugra Tekin (Microsoft), Huseyin Coskun (Technical
University of Munich), Vibhav Vineet (Microsoft Research), Pascal Fua
(EPFL, Switzerland), and Marc Pollefeys (ETH Zurich / Microsoft)
Dynamic 3D Gaze From Afar: Deep Gaze Estimation From Temporal Eye-Head-Body Coordination
2182
Soma Nonaka (Kuoto Universitu). Shohei Nobuhara (Kuoto Universitu).

Soma Nonaka (Kyoto University), Shohei Nobuhara (Kyoto University), and Ko Nishino (Kyoto University)

 End-to-End Human-Gaze-Target Detection With Transformers	12
Automatic Synthesis of Diverse Weak Supervision Sources for Behavior Analysis)1
MUSE-VAE: Multi-Scale VAE for Environment-Aware Long Term Trajectory Prediction	1
Graph-Based Spatial Transformer With Memory Replay for Multi-Future Pedestrian Trajectory Prediction	21
End-to-End Trajectory Distribution Prediction Based on Occupancy Grid Maps	32
Learning Affordance Grounding From Exocentric Images	12

Poster 1.1: Vision Applications & Systems

3D Scene Painting via Semantic Image Synthesis
Learning Invisible Markers for Hidden Codes in Offline-to-Online Photography
ETHSeg: An Amodel Instance Segmentation Network and a Real-World Dataset for X-Ray Waste Inspection

Doodle It Yourself: Class Incremental Learning by Drawing a Few Sketches	283
Image Disentanglement Autoencoder for Steganography Without Embedding	293
Adaptive Hierarchical Representation Learning for Long-Tailed Object Detection	303
Semiconductor Defect Detection by Hybrid Classical-Quantum Deep Learning	313
Density-Preserving Deep Point Cloud Compression	323
Graph-Context Attention Networks for Size-Varied Deep Graph Matching	333
TransWeather: Transformer-Based Restoration of Images Degraded by Adverse Weather 23 Conditions 23 Jeya Maria Jose Valanarasu (Johns Hopkins University), Rajeev Yasarla 23 (Johns Hopkins University, Whiting School of Engineering), and Vishal 24 M. Patel (Johns Hopkins University) 25	343
ObjectFormer for Image Manipulation Detection and Localization	354
Sequential Voting With Relational Box Fields for Active Object Detection	364
Efficient Classification of Very Large Images With Tiny Objects	374
 Partially Does It: Towards Scene-Level FG-SBIR With Partial Input	385
 Long-Term Visual Map Sparsification With Heterogeneous GNN	396

Connecting the Complementary-View Videos: Joint Camera Identification and Subject 2 Association 2 Ruize Han (College of Intelligence and Computing, Tianjin University), 2 Yiyang Gan (College of Intelligence and Computing, Tianjin 2 University), Jiacheng Li (College of Intelligence and Computing, 7 Tianjin University), Feifan Wang (College of Intelligence and 2 Computing, Tianjin University), Wei Feng (College of Intelligence and 2 Computing, Tianjin University), Wei Feng (College of Intelligence and 2 Computing, Tianjin University, China), and Song Wang (University of 3 South Carolina) 3	2406
DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation	2416
Aesthetic Text Logo Synthesis via Content-Aware Layout Inferring	2426
Rethinking Image Cropping: Exploring Diverse Compositions From Global Views	2436
Defensive Patches for Robust Recognition in the Physical World	2446
 Semi-Supervised Video Paragraph Grounding With Contrastive Encoder	2456
 Large-Scale Pre-Training for Person Re-Identification With Noisy Labels	.466
Meta Distribution Alignment for Generalizable Person Re-Identification	477

 FvOR: Robust Joint Shape and Pose Optimization for Few-View Object Reconstruction
It's About Time: Analog Clock Reading in the Wild
Consistency Driven Sequential Transformers Attention Model for Partially Observable Scenes 2508 Samrudhdhi B. Rangrej (McGill University), Chetan L. Srinidhi (University of Toronto), and James J. Clark (McGill University)
 SmartAdapt: Multi-Branch Object Detection Framework for Videos on Mobiles
Generating 3D Bio-Printable Patches Using Wound Segmentation and Reconstruction To Treat Diabetic Foot Ulcers
Investigating the Impact of Multi-LiDAR Placement on Object Detection for Autonomous Driving

Oral 1.2.1: Segmentation, Grouping and Shape Analysis

CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation Qihang Yu (Johns Hopkins University), Huiyu Wang (JHU), Dahun Kim (KAIST), Siyuan Qiao (Google), Maxwell Collins (Google Inc.), Yukun Zhu (Google Inc.), Hartwig Adam (Google), Alan Yuille (Johns Hopkins University), and Liang-Chieh Chen (Google Inc.)	2550
Unsupervised Hierarchical Semantic Segmentation With Multiview Cosegmentation and Clustering Transformers <i>Tsung-Wei Ke (UC Berkeley), Jyh-Jing Hwang (Waymo), Yunhui Guo (UC Berkeley / ICSI), Xudong Wang (UC Berkeley / ICSI), and Stella X. Yu (UC Berkeley / ICSI)</i>	2561
Rethinking Semantic Segmentation: A Prototype View Tianfei Zhou (ETH Zurich), Wenguan Wang (Eidgenössische Technische Hochschule Zürich), Ender Konukoglu (ETH Zurich), and Luc Van Gool (ETH Zurich)	2572
Semantic-Aware Domain Generalized Segmentation Duo Peng (Sichuan University), Yinjie Lei (Sichuan University), Munawar Hayat (Monash University), Yulan Guo (Sun Yat-sen University), and Wen Li (University of Electronic Science and Technology of China)	2584

Adaptive Early-Learning Correction for Segmentation From Noisy Annotations
Pointly-Supervised Instance Segmentation
Joint Forecasting of Panoptic Segmentations With Difference Attention
FocusCut: Diving Into a Focus View in Interactive Segmentation
Human Instance Matting via Mutual Guidance and Multi-Instance Refinement
Deformable Sprites for Unsupervised Video Decomposition
Eigencontours: Novel Contour Descriptors Based on Low-Rank Approximation
Robust and Accurate Superquadric Recovery: A Probabilistic Approach
 Medial Spectral Coordinates for 3D Shape Analysis
Scribble-Supervised LiDAR Semantic Segmentation
SoftGroup for 3D Instance Segmentation on Point Clouds

Oral 1.2.2: 3D From Single Images

Accurate 3D Body Shape Regression Using Metric and Semantic Attributes	2708
JIFF: Jointly-Aligned Implicit Face Function for High Quality Single View Clothed Human Reconstruction	2719
Tracking People by Predicting 3D Appearance, Location and Pose	2730
 ArtiBoost: Boosting Articulated 3D Hand-Object Pose Estimation via Online Exploration and Synthesis Lixin Yang (Shanghai Jiao Tong University), Kailin Li (Shanghai Jiao Tong University), Xinyu Zhan (Shanghai Jiao Tong University), Jun Lv (Shanghai Jiao Tong University), Wenqiang Xu (Shanghai Jiao Tong University), Jiefeng Li (Shanghai Jiao Tong University), and Cewu Lu (Shanghai Jiao Tong University) 	2740
Interacting Attention Graph for Single Image Two-Hand Reconstruction	2751
3D Human Tongue Reconstruction From Single "In-the-Wild" Images	2761
EPro-PnP: Generalized End-to-End Probabilistic Perspective-N-Points for Monocular Object Pose Estimation	2771
 Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection	2781

OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion
Gated2Gated: Self-Supervised Depth Estimation From Gated Images
IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes 2812 Rui Zhu (University of California San Diego), Zhengqin Li (Meta), Janarbek Matai (Qualcomm AI Research), Fatih Porikli (Qualcomm AI Research), and Manmohan Chandraker (UC San Diego)
Egocentric Scene Understanding via Multimodal Spatial Rectifier
Multi-View Depth Estimation by Fusing Single-View Depth Probability With Multi-View Geometry 2832 Gwangbin Bae (University of Cambridge), Ignas Budvytis (Department of Engineering, University of Cambridge), and Roberto Cipolla (University of Cambridge)
The Implicit Values of a Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement 2842 Ilya Chugunov (Princeton University), Yuxuan Zhang (Princeton University), Zhihao Xia (Adobe), Xuaner Zhang (Adobe), Jiawen Chen (Adobe, Inc.), and Felix Heide (Princeton University)
BANMo: Building Animatable 3D Neural Models From Many Casual Videos

Oral 1.2.3: Video Analysis & Understanding

Self-Supervised Video Transformer2 Kanchana Ranasinghe (Stony Brook University), Muzammal Naseer (Australian National University (ANU), ,), Salman Khan (MBZUAI/ANU), Fahad Shahbaz Khan (MBZUAI), and Michael S. Ryoo (Stony Brook/Google)	2864
Femporally Efficient Vision Transformer for Video Instance Segmentation	2875
Shusheng Yang (Huazhong University of Science and Technology),	
Xinggang Wang (Huazhong University of Science and Technology), Yu Li	
(International Digital Economy Academy), Yuxin Fang (Huazhong	
University of Science and Technology), Jiemin Fang (Huazhong	
University of Science and Technology), Wenyu Liu (Huazhong University	
of Science and Technology), Xun Zhao (Tencent Company), and Ying Shan	
(Tencent)	

 VISOLO: Grid-Based Space-Time Aggregation for Efficient Online Video Instance Segmentation 2886 Su Ho Han (Yonsei University), Sukjun Hwang (Yonsei University), Seoung Wug Oh (Adobe Research), Yeonchool Park (LG Electronics), Hyunwoo Kim (LG AI Research), Min-Jung Kim (KAIST), and Seon Joo Kim (Yonsei University)
Temporal Alignment Networks for Long-Term Video
Revisiting the "Video" in Video-Language Understanding
Invariant Grounding for Video Question Answering
P3IV: Probabilistic Procedure Planning From Instructional Videos With Weak Supervision 2928 He Zhao (York University), Isma Hadji (Samsung AI Center - Toronto), Nikita Dvornik (Samsung), Konstantinos G. Derpanis (York University), Richard P. Wildes (York University), and Allan D. Jepson (Samsung Toronto AIC)
FineDiving: A Fine-Grained Dataset for Procedure-Aware Action Quality Assessment
Cross-Model Pseudo-Labeling for Semi-Supervised Action Recognition
Revisiting Skeleton-Based Action Recognition
OpenTAL: Towards Open Set Temporal Action Localization

Dual-AI: Dual-Path Actor Interaction Learning for Group Activity Recognition
TransRank: Self-Supervised Video Representation Learning via Ranking-Based Transformation 2990 Haodong Duan (The Chinese University of Hong Kong), Nanxuan Zhao (Chinese University of Hong Kong), Kai Chen (SenseTime Research), and Dahua Lin (The Chinese University of Hong Kong)
Revealing Occlusions With 4D Neural Fields
 HODOR: High-Level Object Descriptors for Object Re-Segmentation in Video Learned From Static Images

Poster 1.2: Video Analysis & Understanding

Compositional Temporal Grounding With Structured Variational Cross-Graph Correspondence Learning Juncheng Li (Zhejiang University), Junlin Xie (Zhejiang University), Long Qian (Zhejiang University), Linchao Zhu (University of Technology, Sydney), Siliang Tang (Zhejiang University), Fei Wu (Zhejiang University, China), Yi Yang (UTS), Yueting Zhuang (Zhejiang University), and Xin Eric Wang (University of California, Santa Cruz)	. 3022
 UMT: Unified Multi-Modal Transformers for Joint Video Moment Retrieval and Highlight Detection	. 3032
Future Transformer for Long-Term Action Anticipation Dayoung Gong (POSTECH), Joonseok Lee (POSTECH), Manjin Kim (POSTECH), Seong Jong Ha (NCSOFT), and Minsu Cho (POSTECH)	.3042
MLP-3D: A MLP-Like 3D Architecture With Grouped Time Mixing Zhaofan Qiu (JD.com), Ting Yao (JD AI Research), Chong-Wah Ngo (Singapore Management University), and Tao Mei (AI Research of JD.com)	3052

Learning Pixel-Level Distinctions for Video Highlight Detection	063
 DR.VIC: Decomposition and Reasoning for Video Individual Counting)73
 Slot-VPS: Object-Centric Representation Learning for Video Panoptic Segmentation	083
 Explore Spatio-Temporal Aggregation for Insubstantial Object Detection: Benchmark Dataset and Baseline	094
 Video Shadow Detection via Spatio-Temporal Interpolation Consistency Training	106
Coarse-To-Fine Feature Mining for Video Semantic Segmentation	116
Tencent-MVSE: A Large-Scale Benchmark Dataset for Multi-Modal Video Similarity Evaluation31 Zhaoyang Zeng (Tencent), Yongsheng Luo (Tencent), Zhenhua Liu (Tencent), Fengyun Rao (Tencent), Dian Li (Tencent.com), Weidong Guo (Tencent), and Zhen Wen (Tencent Technology (Shenzhen) Co., Ltd, ,)	128
Object-Region Video Transformers	138
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars	150

SimVP: Simpler Yet Better Video Prediction	.3160
Imposing Consistency for Optical Flow Estimation Jisoo Jeong (Seoul National University), Jamie Menjay Lin (Google Research), Fatih Porikli (Qualcomm AI Research), and Nojun Kwak (Seoul National University)	. 3171
Stand-Alone Inter-Frame Attention in Video Models Fuchen Long (JD.com), Zhaofan Qiu (JD.com), Yingwei Pan (JD AI Research), Ting Yao (JD AI Research), Jiebo Luo (U. Rochester), and Tao Mei (AI Research of JD.com)	. 3182
Video Swin Transformer Ze Liu (USTC), Jia Ning (Huazhong University of Science and Technology), Yue Cao (Microsoft Research), Yixuan Wei (Tsinghua University), Zheng Zhang (MSRA), Stephen Lin (Microsoft Research), and Han Hu (Microsoft Research Asia)	.3192
Bayesian Nonparametric Submodular Video Partition for Robust Anomaly Detection Hitesh Sapkota (Rochester Institute of Technology) and Qi Yu (Rochester Institute of Technology)	. 3202
Self-Supervised Predictive Learning: A Negative-Free Method for Sound Source Localization in Visual Scenes	. 3212
Likert Scoring With Grade Decoupling for Long-Term Action Assessment Angchi Xu (Sun Yat-sen University), Ling-An Zeng (Sun Yat-sen University), and Wei-Shi Zheng (Sun Yat-sen University, China)	. 3222
Complex Video Action Reasoning via Learnable Markov Logic Network Yang Jin (Peking University), Linchao Zhu (University of Technology, Sydney), and Yadong Mu (Peking University)	. 3232
Learning From Temporal Gradient for Semi-Supervised Action Recognition Junfei Xiao (Johns Hopkins University), Longlong Jing (Waymo LLC), Lin Zhang (Carnegie Mellon University), Ju He (Johns Hopkins University), Qi She (Bytedance AI Lab), Zongwei Zhou (Johns Hopkins University), Alan Yuille (Johns Hopkins University), and Yingwei Li (Johns Hopkins University)	. 3242
Semi-Supervised Video Semantic Segmentation With Inter-Frame Feature Reconstruction Jiafan Zhuang (University of Science and Technology of China), Zilei Wang (University of Science and Technology of China), and Yuan Gao (University of Science and Technology of China)	.3253
Weakly Supervised Temporal Action Localization via Representative Snippet Knowledge Propagation Linjiang Huang (The Chinese University of Hong Kong), Liang Wang (NLPR, China), and Hongsheng Li (The Chinese University of Hong Kong)	. 3262
Joint Hand Motion and Interaction Hotspots Prediction From Egocentric Videos Shaowei Liu (UCSD), Subarna Tripathi (Intel Labs), Somdeb Majumdar (Intel Labs), and Xiaolong Wang (UCSD)	. 3272

Human Hands As Probes for Interactive Object Understanding
LD-ConGR: A Large RGB-D Video Dataset for Long-Distance Continuous Gesture Recognition 3294 Dan Liu (Institute of Software Chinese Academy of Sciences), Libo Zhang (Institute of Software Chinese Academy of Sciences), and Yanjun Wu (Institute of Software Chinese Academy of Sciences)
Object-Aware Video-Language Pre-Training for Retrieval
Fast and Unsupervised Action Boundary Detection for Action Segmentation
Multiview Transformers for Video Recognition
Semi-Weakly-Supervised Learning of Complex Actions From Instructional Task Videos
Progressive Attention on Multi-Level Dense Difference Maps for Generic Event Boundary Detection
Comparing Correspondences: Video Prediction With Correspondence-Wise Losses

Poster 1.2: Image & Video Synthesis and Generation

Sound-Guided Semantic Image Manipulation	3367
Seung Hyun Lee (Korea University), Wonseok Roh (Korea University),	
Wonmin Byeon (NVIDIA Research), Sang Ho Yoon (KAIST), Chanyoung Kim	
(Korea University), Jinkyu Kim (Korea University), and Sangpil Kim	
(Korea University)	
(Rolew Childeloug)	

 Expressive Talking Head Generation With Granular Audio-Visual Control
Depth-Aware Generative Adversarial Network for Talking Head Video Generation
Learning Motion-Dependent Appearance for High-Fidelity Rendering of Dynamic Humans From a Single Camera
Audio-Driven Neural Gesture Reenactment With Video Motion Graphs
Portrait Eyeglasses and Shadow Removal by Leveraging 3D Synthetic Data
 Weakly Supervised High-Fidelity Clothing Model Generation
TemporalUV: Capturing Loose Clothing With Temporally Coherent UV Coordinates
Full-Range Virtual Try-On With Recurrent Tri-Level Transform3450Han Yang (ETH Zurich), Xinrui Yu (Harbin Institute of Technology (Shenzhen)), and Ziwei Liu (Nanyang Technological University)
Style-Based Global Appearance Flow for Virtual Try-On
Dressing in the Wild by Watching Dance Videos

A Brand New Dance Partner: Music-Conditioned Pluralistic Dancing Controlled by Multiple Dance Genres	. 3480
Jinwoo Kim (Yonsei University), Heeseok Oh (Hansung University), Seongjean Kim (Yonsei University), Hoseok Tong (Yonsei University), and Sanghoon Lee (Yonsei University, Korea)	
Unpaired Cartoon Image Synthesis via Gated Cycle Mapping Yifang Men (Alibaba), Yuan Yao (Alibaba Group), Miaomiao Cui (Alibaba-inc), Zhouhui Lian (Peking University), Xuansong Xie (Alibaba), and Xian-Sheng Hua (Damo Academy, Alibaba Group)	3491
DLFormer: Discrete Latent Transformer for Video Inpainting Jingjing Ren (South China University of Technology), Qingqing Zheng (Chinese Academic of Sciences), Yuanyuan Zhao (tencent), Xuemiao Xu (South China University of Technology), and Chen Li (Tencent)	. 3501
ST-MFNet: A Spatio-Temporal Multi-Flow Network for Frame Interpolation Duolikun Danier (University of Bristol), Fan Zhang (University of Bristol), and David Bull (University of bristol)	3511
Video Frame Interpolation With Transformer Liying Lu (The Chinese University of Hong Kong), Ruizheng Wu (The Chinese University of Hong KONG), Huaijia Lin (The Chinese University of Hong Kong), Jiangbo Lu (SmartMore Corporation), and Jiaya Jia (Chinese University of Hong Kong)	3522
Long-Term Video Frame Interpolation via Feature Propagation Dawit Mureja Argaw (KAIST) and In So Kweon (KAIST)	. 3533
Many-to-Many Splatting for Efficient Video Frame Interpolation Ping Hu (Boston University), Simon Niklaus (Adobe Research), Stan Sclaroff (Boston University), and Kate Saenko (Boston University)	3543
Look Outside the Room: Synthesizing a Consistent Long-Term 3D Scene Video From a Single Image	. 3553
 Spatial-Temporal Space Hand-in-Hand: Spatial-Temporal Video Super-Resolution via Cycle-Projected Mutual Learning	3564
Playable Environments: Video Manipulation in Space and Time Willi Menapace (University of Trento), Stéphane Lathuilière (Telecom-Paris), Aliaksandr Siarohin (Snapchat), Christian Theobalt (MPI Informatik), Sergey Tulyakov (Snap Inc), Vladislav Golyanik (MPI for Informatics), and Elisa Ricci (University of Trento)	. 3574
Event-Based Video Reconstruction via Potential-Assisted Spiking Neural Network Lin Zhu (Peking University), Xiao Wang (Peng Cheng Laboratory), Yi Chang (PengCheng Laboratory), Jianing Li (Peking University), Tiejun Huang (Peking University), and Yonghong Tian (Peking University)	3584

Modular Action Concept Grounding in Semantic Video Prediction
 Show Me What and Tell Me How: Video Synthesis via Multimodal Conditioning
StyleGAN-V: A Continuous Video Generator With the Price, Image Quality and Perks of StyleGAN2
 Structure-Aware Motion Transfer With Deformable Anchor Model
Image Animation With Perturbed Masks
Thin-Plate Spline Motion Model for Image Animation 3647 Jian Zhao (Tsinghua University) and Hui Zhang (Tsinghua University)
Controllable Animation of Fluid Elements in Still Images
Watch It Move: Unsupervised Discovery of 3D Joints for Re-Posing of Articulated Objects
Geometric Structure Preserving Warp for Natural Image Stitching
Few-Shot Incremental Learning for Label-to-Image Translation
Exemplar-Based Pattern Synthesis With Implicit Periodic Field Network

SIMBAR: Single Image-Based Scene Relighting for Effective Data Augmentation for Automated Driving Vision Tasks	3708
SoftCollage: A Differentiable Probabilistic Tree Generator for Image Collage Jiahao Yu (Tsinghua University), Li Chen (Tsinghua University), Mingrui Zhang (Tsinghua University), and Mading Li (Kuaishou Technology)	. 3719
PILC: Practical Image Lossless Compression With an End-to-End GPU Oriented Neural Framework Ning Kang (Huawei Noah's Ark Lab), Shanzhao Qiu (Tsinghua University), Shifeng Zhang (Huawei Noah's Ark Lab), Zhenguo Li (Huawei Noah's Ark Lab), and Shu-Tao Xia (Tsinghua University)	. 3729
 Kubric: A Scalable Dataset Generator	. 3739

Poster 1.2: 3D From Single Images

360MonoDepth: High-Resolution 360° Monocular Depth Estimation	3752
Pre-Train, Self-Train, Distill: A Simple Recipe for Supersizing 3D Reconstruction	3763
DGECN: A Depth-Guided Edge Convolutional Network for End-to-End 6D Pose Estimation 3 Tuo Cao (Wuhan University), Fei Luo (Wuhan University), Yanping Fu (Anhui University), Wenxiao Zhang (Wuhan University), Shengjie Zheng (Wuhan university), and Chunxia Xiao (Wuhan University)	3773
MonoGround: Detecting Monocular 3D Objects From the Ground	3783

3D Shape Reconstruction From 2D Images With Disentangled Attribute Flow Xin Wen (Tsinghua University and JD.com), Junsheng Zhou (Tsinghua University), Yu-Shen Liu (Tsinghua University), Hua Su (Kuaishou Technology), Zhen Dong (Wuhan University), and Zhizhong Han (Wayne State University)	. 3793
Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu (University of Southern California), Jialiang Wang (Facebook Inc.), Michael Hall (Facebook), Ulrich Neumann (USC), and Shuochen Su (Facebook Inc.)	3804
Focal Length and Object Pose Estimation via Render and Compare Georgy Ponimatkin (Ecole des Ponts ParisTech), Yann Labbé (Inria), Bryan Russell (Adobe Research), Mathieu Aubry (École des ponts ParisTech), and Josef Sivic (Czech Technical University)	. 3815
CLIP-NeRF: Text-and-Image Driven Manipulation of Neural Radiance Fields Can Wang (City University of Hong Kong), Menglei Chai (Snap Inc.), Mingming He (USC ICT), Dongdong Chen (Microsoft Cloud AI), and Jing Liao (City University of Hong Kong)	. 3825
Registering Explicit to Implicit: Towards High-Fidelity Garment Mesh Reconstruction From Single Images Heming Zhu (Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong (Shenzhen)), Lingteng Qiu (Shenzhen Research Institute of Big Data, the Chinese University of Hong Kong (Shenzhen)), Yuda Qiu (Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong (Shenzhen)), and Xiaoguang Han (Shenzhen Research Institute of Big Data, the Chinese University of Hong Kong (Shenzhen))	. 3835
Layered Depth Refinement With Mask Guidance Soo Ye Kim (KAIST), Jianming Zhang (Adobe Research), Simon Niklaus (Adobe Research), Yifei Fan (Adobe), Simon Chen (Adobe Research), Zhe Lin (Adobe Research), and Munchurl Kim (Korea Advanced Institute of Science and Technology)	. 3845
HEAT: Holistic Edge Attention Transformer for Structured Reconstruction Jiacheng Chen (Simon Fraser University), Yiming Qian (University of Manitoba), and Yasutaka Furukawa (Simon Fraser University)	. 3856
BARC: Learning To Regress 3D Dog Shape From Images by Exploiting Breed Information Nadine Rüegg (ETH Zürich, Max-Planck Institute for Intelligent Systems), Silvia Zuffi (IMATI-CNR), Konrad Schindler (ETH Zurich), and Michael J. Black (Max Planck Institute for Intelligent Systems)	. 3866
Time3D: End-to-End Joint Monocular 3D Object Detection and Tracking for Autonomous Driving 3875 Peixuan Li (Autonomous Driving Center SAIC MOTOR) and Jieyu Jin (Autonomous Driving Center SAIC MOTOR)	g
What's in Your Hands? 3D Reconstruction of Generic Objects in Hands Yufei Ye (Carnegie Mellon University), Abhinav Gupta (CMU/FAIR), and Shubham Tulsiani (Carnegie Mellon University)	3885

3D Moments From Near-Duplicate Photos
Neural Window Fully-Connected CRFs for Monocular Depth Estimation
PUMP: Pyramidal and Uniqueness Matching Priors for Unsupervised Learning of Local Descriptors
CroMo: Cross-Modal Learning for Monocular Depth Estimation
f-SfT: Shape-From-Template With a Physics-Based Deformation Model
 Human-Aware Object Placement for Visual Environment Reconstruction
AutoRF: Learning 3D Object Radiance Fields From Single View Observations
Pix2NeRF: Unsupervised Conditional p-GAN for Single Image to Neural Radiance Fields Translation
MonoScene: Monocular 3D Semantic Scene Completion
GenDR: A Generalized Differentiable Renderer

MonoDTR: Monocular 3D Object Detection With Depth-Aware Transformer	002
Kuan-Chih Huang (National Taiwan University), Tsung-Han Wu (National	
Taiwan University), Hung-Ting Su (National Taiwan University), and	
Winston H. Hsu (National Taiwan University)	
ROCA: Robust CAD Model Retrieval and Alignment From a Single Image	012
Can Gümeli (Technical University of Munich), Angela Dai (Technical	
University of Munich), and Matthias Nießner (Technical University of	
Munich)	

Poster 1.2: Face & Gestures

 HP-Capsule: Unsupervised Face Part Discovery by Hierarchical Parsing Capsule Network	22
 Killing Two Birds With One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC	32
 Sparse Local Patch Transformer for Robust Face Alignment and Landmarks Inherent Relation Learning	12
 Enhancing Face Recognition With Self-Supervised 3D Reconstruction	52
Learning To Learn Across Diverse Data Biases in Deep Face Recognition	52

An Efficient Training Approach for Very Large Scale Face Recognition
MogFace: Towards a Deeper Appreciation on Face Detection
 Exploring Frequency Adversarial Attacks for Face Forgery Detection
 End-to-End Reconstruction-Classification Learning for Face Forgery Detection
Domain Generalization via Shuffled Style Assembly for Face Anti-Spoofing
Privacy-Preserving Online AutoML for Domain-Specific Face Detection
Simulated Adversarial Testing of Face Recognition Models
Decoupled Multi-Task Learning With Cyclical Self-Regulation for Face Parsing
Towards Semi-Supervised Deep Facial Expression Recognition With an Adaptive Confidence Margin 4156 Hangyu Li (Xidian University), Nannan Wang (Xidian University), Xi Yang (Xidian University), Xiaoyu Wang (The Chinese University of Hong Kong (Shenzhen), ,), and Xinbo Gao (Chongqing University of Posts and Telecommunications)

Towards Accurate Facial Landmark Detection via Cascaded Transformers	1166
PhysFormer: Facial Video-Based Physiological Measurement With Temporal Difference Transformer	4176
GazeOnce: Real-Time Multi-Person Gaze Estimation Mingfang Zhang (Pengcheng Laboratory), Yunfei Liu (Beihang University), and Feng Lu (Beihang University)	1 187
Generalizing Gaze Estimation With Rotation Consistency Yiwei Bao (Beihang University), Yunfei Liu (Beihang University), Haofei Wang (Peng Cheng Laboratory), and Feng Lu (Beihang University)	¥197
Face Relighting With Geometrically Consistent Shadows	1207
HairMapper: Removing Hair From Portraits Using GANs Yiqian Wu (Zhejiang University), Yong-Liang Yang (University of Bath), and Xiaogang Jin (Zhejiang University)	1 217
Learning To Restore 3D Face From In-the-Wild Degraded Images	1227

Poster 1.2: Segmentation, Grouping and Shape Analysis

 Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels	1238
Perturbed and Strict Mean Teachers for Semi-Supervised Semantic Segmentation4	248
Yuyuan Liu (University of Adelaide), Yu Tian (Australian Institute for	
Machine Learning, University of Adelaide), Yuanhong Chen (Australian	
Institute for Machine Learning, University of Adelaide), Fengbei Liu	
(University of Adelaide), Vasileios Belagiannis (Otto von Guericke	
University Magdeburg), and Gustavo Carneiro (University of Adelaide)	

ST++: Make Self-Training Work Better for Semi-Supervised Semantic Segmentation
Beyond Semantic to Instance Segmentation: Weakly-Supervised Instance Segmentation via Semantic Knowledge Transfer and Self-Refinement
 Self-Supervised Image-Specific Prototype Exploration for Weakly Supervised Semantic Segmentation
Regional Semantic Contrast and Aggregation for Weakly Supervised Semantic Segmentation 4289 Tianfei Zhou (ETH Zurich), Meijie Zhang (Beijing Institute of Technology), Fang Zhao (Tencent AI Lab), and Jianwu Li (Beijing Institute of Technology)
Multi-Class Token Transformer for Weakly Supervised Semantic Segmentation
 Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast
Threshold Matters in WSSS: Manipulating the Activation for the Robust and Accurate Segmentation Model Against Thresholds 4320 Minhyun Lee (Yonsei University), Dongseob Kim (Yonsei University), and 4320 Hyunjung Shim (Yonsei University) 100
Novel Class Discovery in Semantic Segmentation
Pin the Memory: Learning To Generalize Semantic Segmentation
ISDNet: Integrating Shallow and Deep Networks for Efficient Ultra-High Resolution Segmentation

Incremental Learning in Semantic Segmentation From Image Labels
Instance Segmentation With Mask-Supervised Polygonal Boundary Transformers
 SharpContour: A Contour-Based Boundary Refinement Approach for Efficient and Accurate Instance Segmentation
 Sparse Object-Level Supervision for Instance Segmentation With Pixel Embeddings
 Mask Transfiner for High-Quality Instance Segmentation
Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity
Sparse Instance Activation for Real-Time Instance Segmentation4423Tianheng Cheng (Huazhong University of Science and Technology),Xinggang Wang (Huazhong University of Science and Technology), ShaoyuChen (Huazhong University of Science and Technology), Wenqiang Zhang(Huazhong University of Science and Technology), Wenqiang Zhang(Huazhong University of Science and Technology), Qian Zhang (HorizonRobotics), Chang Huang (Horizon Robotics), Zhaoxiang Zhang (ChineseAcademy of Sciences, China), and Wenyu Liu (Huazhong University ofScience and Technology)
 E2EC: An End-to-End Contour-Based Method for High-Quality High-Speed Instance Segmentation 4433 <i>Tao Zhang (Wuhan University), Shiqing Wei (Wuhan University), and</i> <i>Shunping Ji (Wuhan University)</i>
Hyperbolic Image Segmentation4443Mina Ghadimi Atigh (University of Amsterdam), Julian Schoep(Promaton), Erman Acar (Vrije Universiteit Amsterdam), Nanne van Noord(University of Amsterdam), and Pascal Mettes (University of Amsterdam)
SeeThroughNet: Resurrection of Auxiliary Loss by Preserving Class Probability Information 4453 Dasol Han (Samsung Electronics), Jaewook Yoo (Samsung), and Dokwan Oh (Samsung Electronics)

CDGNet: Class Distribution Guided Network for Human Parsing Kunliang Liu (Ajou university; Tiangong university), Ouk Choi (Incheon National University), Jianming Wang (Tiangong University), and Wonjun Hwang (Ajou University)	4463
CLIMS: Cross Language Image Matching for Weakly Supervised Semantic Segmentation Jinheng Xie (Shenzhen University), Xianxu Hou (Shenzhen University), Kai Ye (Shenzhen University), and Linlin Shen (Shenzhen University)	4473
Sparse Non-Local CRF Olga Veksler (University of Waterloo) and Yuri Boykov (University of Waterloo)	4483
Detecting Camouflaged Object in Frequency Domain Yijie Zhong (Nanjing University), Bo Li (Nanjing University), Lv Tang (University of Chinese Academy of Sciences), Senyun Kuang (Southwest Jiaotong University), Shuang Wu (Tencent), and Shouhong Ding (Tencent)	4494
Progressive Minimal Path Method With Embedded CNN Wei Liao (Independent Researcher)	4504

Poster 1.2: Document Analysis & Understanding

Open-Set Text Recognition via Character-Context Decoupling
Neural Collaborative Graph Machines for Table Structure Recognition
Revisiting Document Image Dewarping by Grid Regularization
Syntax-Aware Network for Handwritten Mathematical Expression Recognition
Few Could Be Better Than All: Feature Sampling and Grouping for Scene Text Detection
Fourier Document Restoration for Robust Document Dewarping and Recognition

XYLayoutLM: Towards Layout-Aware Multimodal Networks for Visually-Rich Document Understanding	3
Zhangxuan Gu (Shanghai Jiao Tong University), Changhua Meng (Ant Group), Ke Wang (Ant Group Co., Ltd.), Jun Lan (antgroup), Weiqiang Wang (Ant Group), Ming Gu (Ant Group), and Liqing Zhang (Shanghai Jiao Tong University)	
 SwinTextSpotter: Scene Text Spotting via Better Synergy Between Text Detection and Text Recognition	3
Towards Weakly-Supervised Text Spotting Using a Multi-Task Transformer	F
TableFormer: Table Structure Understanding With Transformers 4604 Ahmed Nassar (IBM Research), Nikolaos Livathinos (IBM Research), Maksym Lysak (IBM Research), and Peter Staar (IBM Research)	f
 Knowledge Mining With Scene Text for Fine-Grained Recognition	F
PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents	F

Poster 1.2: Recognition: Detection, Categorization, Retrieval

Focal and Global Knowledge Distillation for Detectors
Li (Bytedance Inc.), Xiaohu Jiang (Graduate School at Shenzhen,
Tsinghua University), Yuan Gong (Graduate School at Shenzhen, Tsinghua University), Zehuan Yuan (Bytedance.Inc), Danpei Zhao (Beihang
University), and Chun Yuan (Graduate school at ShenZhenTsinghua university)
Speed Up Object Detection on Gigapixel-Level Images With Patch Arrangement
Jiahao Fan (Shanghai Jiao Tong University), Huabin Liu (Shanghai Jiao
Tong University), Wenjie Yang (ShangHaiJiaoTong University), John See
(Heriot-Watt University Malaysia), Aixin Zhang (Shanghai Jiao Tong
University), and Weiyao Lin (Shanghai Jiao Tong university)

Training Object Detectors From Scratch: An Empirical Study in the Era of Vision Transformer
Weixiang Hong (National University of Singapore), Jiangwei Lao (Ant Group), Wang Ren (Ant Group), Jian Wang (Ant Group), Jingdong Chen (Ant Group), and Wei Chu (Ant Group)
Learning With Neighbor Consistency for Noisy Labels
 Meta Convolutional Neural Networks for Single Domain Generalization
Dual Cross-Attention Learning for Fine-Grained Visual Categorization and Object Re-Identification
Haowei Zhu (Xilinx), Wenjing Ke (Xilinx), Dong Li (Xilinx), Ji Liu (Xilinx Beijing), Lu Tian (Xilinx, Inc.), and Yi Shan (Xilinx)
Geometry-Aware Guided Loss for Deep Crack Recognition
 Segment, Magnify and Reiterate: Detecting Camouflaged Objects the Hard Way
Dynamic Sparse R-CNN
Deep Hybrid Models for Out-of-Distribution Detection
 AutoLoss-GMS: Searching Generalized Margin-Based Softmax Loss Function for Person Re-Identification
Feature Erasing and Diffusion Network for Occluded Person Re-Identification

Multi-Label Classification With Partial Annotations Using Class-Aware Selective Loss
BoxeR: Box-Attention for 2D and 3D Transformers
Multi-Label Iterated Learning for Image Classification With Label Ambiguity
Vision Transformer With Deformable Attention
MViTv2: Improved Multiscale Vision Transformers for Classification and Detection
Dense Learning Based Semi-Supervised Object Detection
R(Det)2: Randomized Decision Routing for Object Detection
GlideNet: Global, Local and Intrinsic Based Dense Embedding NETwork for Multi-Category Attributes Prediction
Kareem Metwaly (The Pennsylvania State University), Aerin Kim (Scale AI), Elliot Branson (Scale AI), and Vishal Monga (The Pennsylvania State University)
Self-Supervised Equivariant Learning for Oriented Keypoint Detection
Label Relation Graphs Enhanced Hierarchical Residual Network for Hierarchical Multi-Granularity Classification 4848 Jingzhou Chen (Zhejiang University), Peng Wang (Zhejiang University), 4848 Jian Liu (Ant Group), and Yuntao Qian (Zhejiang University, China) 4848
Object Localization Under Single Coarse Point Supervision

Rethinking Visual Geo-Localization for Large-Scale Applications
 Whose Hands Are These? Hand Detection and Hand-Body Association in the Wild
Cloning Outfits From Real-World Images to 3D Characters for Generalizable Person Re-Identification
Yanan Wang (Inception Institute of Artificial Intelligence), Xuezhi Liang (Inception Institute of Artificial Intelligence), and Shengcai Liao (Inception Institute of Artificial Intelligence)
Towards Unsupervised Domain Generalization
ViM: Out-of-Distribution With Virtual-Logit Matching
 Vision Transformer Slimming: Multi-Dimension Searching in Continuous Optimization Space 4921 Arnav Chavan (Indian Institute of Technology - Dhanbad), Zhiqiang Shen (Carnegie Mellon University), Zhuang Liu (UC Berkeley), Zechun Liu (Carnegie Mellon University), Kwang-Ting Cheng (Hong Kong University of Science and Technology), and Eric P. Xing (MBZUAI, CMU, and Petuum Inc.)
 Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation

Poster 1.2: Vision & Language

Align and Prompt: Video-and-Language Pre-Training With Entity Prompts Dongxu Li (Salesforce), Junnan Li (Salesforce), Hongdong Li (Australian National University, Australia), Juan Carlos Niebles (Salesforce & Stanford University), and Steven C.H. Hoi (Salesforce)	4943
 Language-Bridged Spatial-Temporal Interaction for Referring Video Object Segmentation	4954

Language As Queries for Referring Video Object Segmentation
End-to-End Referring Video Object Segmentation With Multimodal Transformers
Multi-Level Representation Learning With Semantic Alignment for Referring Video Object Segmentation
X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval
Video-Text Representation Learning via Differentiable Weak Temporal Alignment
MAD: A Scalable Dataset for Language Grounding in Videos From Movie Audio Descriptions 5016 Mattia Soldan (KAUST), Alejandro Pardo (KAUST), Juan León Alcázar (KAUST), Fabian Caba (Adobe Research), Chen Zhao (KAUST), Silvio Giancola (KAUST), and Bernard Ghanem (KAUST)
Advancing High-Resolution Video-Language Representation With Large-Scale Video Transcriptions
Measuring Compositional Consistency for Video Question Answering
 SimVQA: Exploring Simulated Environments for Visual Question Answering
 Transform-Retrieve-Generate: Natural Language-Centric Outside-Knowledge Visual Question Answering

 SwapMix: Diagnosing and Regularizing the Over-Reliance on Visual Context in Visual Question Answering
 MuKEA: Multimodal Knowledge Extraction and Accumulation for Knowledge-Based Visual Question Answering
Maintaining Reasoning Consistency in Compositional Visual Question Answering
MLSLT: Towards Multilingual Sign Language Translation
A Simple Multi-Modality Transfer Learning Baseline for Sign Language Translation
C2SLR: Consistency-Enhanced Continuous Sign Language Recognition
Signing at Scale: Learning to Co-Articulate Signs for Large-Scale Photo-Realistic Sign Language Production
Generating Diverse and Natural 3D Human Motions From Text
Sub-Word Level Lip Reading With Visual Attention

Habitat-Web: Learning Embodied Object-Search Strategies From Human Demonstrations at Scale 5163
Ram Ramrakhya (Georgia Institute of Technology), Eric Undersander (Facebook), Dhruv Batra (Georgia Tech & Facebook AI Research), and Abhishek Das (Facebook AI Research)
 ViSTA: Vision and Scene Text Aggregation for Cross-Modal Retrieval
Cross Modal Retrieval With Querybank Normalisation
Prompt Distribution Learning
 VALHALLA: Visual Hallucination for Machine Translation
VL-Adapter: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks
 Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality

Oral 2.1.1: Recognition: Detection, Categorization, Retrieval

MixFormer: Mixing Features Across Windows and Dimensions Qiang Chen (Baidu Inc), Qiman Wu (Baidu Inc.), Jian Wang (Baidu), Qinghao Hu (Institute of Automation, Chinese Academy of Sciences), Tao Hu (baidu), Errui Ding (Baidu Inc.), Jian Cheng (Chinese Academy of Sciences, China), and Jingdong Wang (Baidu)	5239
Recurrent Glimpse-Based Decoder for Detection With Transformer Zhe Chen (The University of Sydney), Jing Zhang (The University of Sydney), and Dacheng Tao (JD.com)	5250

Mobile-Former: Bridging MobileNet and Transformer	:60
 Unsupervised Domain Generalization by Learning a Bridge Across Domains	270
SIGMA: Semantic-Complete Graph Matching for Domain Adaptive Object Detection	281
 Target-Relevant Knowledge Preservation for Multi-Source Domain Adaptive Object Detection 529 Jiaxi Wu (Beihang University), Jiaxin Chen (Beihang University), Mengzhe He (Shenzhen Institutes of Advanced Technology Chinese Academy of Science), Yiru Wang (SenseTime Group Limited), Bo Li (SenseTime Group Limited), Bingqi Ma (Sensetime Group Limited), Weihao Gan (SenseTime Group Limited), Wei Wu (SenseTime Group Limited), Yali Wang (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences), and Di Huang (Beihang University, China) 	:91
 PNP: Robust Learning From Noisy Labels by Probabilistic Noise Prediction	01
Few-Shot Object Detection With Fully Cross-Transformer	11
Task Discrepancy Maximization for Fine-Grained Few-Shot Classification53SuBeen Lee (Sungkyunkwan University), WonJun Moon (SungkyunkwanUniversity), and Jae-Pil Heo (Sungkyunkwan University)	521
Leveraging Self-Supervision for Cross-Domain Crowd Counting	31
 What To Look at and Where: Semantic and Spatial Refined Transformer for Detecting Human-Object Interactions	343

AdaMixer: A Fast-Converging Query-Based Object Detector	5354
Correlation Verification for Image Retrieval Seongwon Lee (Yonsei university), Hongje Seong (Yonsei University), Suhyeon Lee (Yonsei University), and Euntai Kim (Yonsei University)	5364
Real-Time Object Detection for Streaming Perception	5375
Deep Visual Geo-Localization Benchmark	5386
RendNet: Unified 2D/3D Recognizer With Latent Space Rendering	5398
 Sparse Fuse Dense: Towards High Quality 3D Detection With Depth Completion	5408
Focal Sparse Convolutional Networks for 3D Object Detection	5418

Oral 2.1.2: 3D From Multi-View & Sensors

Point-NeRF: Point-Based Neural Radiance Fields Qiangeng Xu (USC), Zexiang Xu (Adobe Research), Julien Philip (Adobe), Sai Bi (Adobe Research), Zhixin Shu (Adobe Research), Kalyan Sunkavalli (Adobe Research), and Ulrich Neumann (USC)	5428
NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction Xiaoshuai Zhang (UC San Diego), Sai Bi (Adobe Research), Kalyan Sunkavalli (Adobe Research), Hao Su (University of California San Diego), and Zexiang Xu (Adobe Research)	5439
Direct Voxel Grid Optimization: Super-Fast Convergence for Radiance Fields Reconstruction Cheng Sun (National Tsing Hua University), Min Sun (NTHU), and	5449

Hwann-Tzong Chen (National Tsing Hua University)

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
RegNeRF: Regularizing Neural Radiance Fields for View Synthesis From Sparse Inputs
Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields
Plenoxels: Radiance Fields Without Neural Networks
Neural 3D Scene Reconstruction With the Manhattan-World Assumption
Neural 3D Video Synthesis From Multi-View Video
Learning To Solve Hard Minimal Problems
Learning a Structured Latent Space for Unsupervised Point Cloud Completion
Lepard: Learning Partial Point Cloud Matching in Rigid and Deformable Scenes

IRON: Inverse Rendering by Optimizing Neural SDFs and Materials From Photometric Images 5555 Kai Zhang (Cornell University), Fujun Luan (Adobe Research), Zhengqi Li (Cornell University), and Noah Snavely (Cornell University and Google AI)
Learning Multi-View Aggregation in the Wild for Large-Scale 3D Semantic Segmentation
 HyperDet3D: Learning a Scene-Conditioned 3D Object Detector
KeyTr: Keypoint Transporter for 3D Reconstruction of Deformable Objects in Videos
SelfRecon: Self Reconstruction Your Digital Avatar From Monocular Video
Ditto: Building Digital Twins of Articulated Objects From Interaction

Oral 2.1.3: Low-Level Vision

Bijective Mapping Network for Shadow Removal	5617
Toward Fast, Flexible, and Robust Low-Light Image Enhancement	5627
Robust Equivariant Imaging: A Fully Unsupervised Framework for Learning To Image From Noisy and Partial Measurements	5637
Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution	5647

Dual Adversarial Adaptation for Cross-Device Real-World Image Super-Resolution
SphereSR: 360° Image Super-Resolution With Arbitrary Projection via Continuous Spherical Image Representation
Learning Trajectory-Aware Transformer for Video Super-Resolution
Discrete Cosine Transform Network for Guided Depth Map Super-Resolution
 Faithful Extreme Rescaling via Generative Prior Reciprocated Invertible Representations
ELIC: Efficient Learned Image Compression With Unevenly Grouped Space-Channel Contextual Adaptive Coding
Restormer: Efficient Transformer for High-Resolution Image Restoration
Deep Rectangling for Image Stitching: A Learning Baseline
Parametric Scattering Networks
Burst Image Restoration and Enhancement

MAXIM: Multi-Axis MLP for Image Processing Zhengzhong Tu (University of Texas at Austin), Hossein Talebi (Google), Han Zhang (Google), Feng Yang (Google Research), Peyman Milanfar (Google), Alan Bovik (University of Texas at Austin), and Yinxiao Li (Google)	5759
Event-Aided Direct Sparse Odometry Javier Hidalgo-Carrió (University of Zurich), Guillermo Gallego (TU Berlin), and Davide Scaramuzza (University of Zurich & ETH Zurich, Switzerland)	5771
CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint Optical Flow and Scene Flow Estimation	5781
 Target-Aware Dual Adversarial Learning and a Multi-Scenario Multi-Modality Benchmark To Fuse Infrared and Visible for Object Detection	5792

Poster 2.1: Low-Level Vision

Image Dehazing Transformer With Transmission-Aware 3D Position Embedding
Unsupervised Deraining: Where Contrastive Learning Meets Self-Similarity
Towards Multi-Domain Single Image Dehazing via Test-Time Training
Physically Disentangled Intra- and Inter-Domain Adaptation for Varicolored Haze Removal 5831 Yi Li (Huazhong University of Science and Technology), Yi Chang (PengCheng Laboratory), Yan Gao (Huazhong University of Science and Technology), Changfeng Yu (Huazhong University of Science and Technology), and Luxin Yan (Huazhong University of Science and Technology)

Incorporating Semi-Supervised and Positive-Unlabeled Learning for Boosting Full Reference Image Quality Assessment
Practical Learned Lossless JPEG Recompression With Multi-Level Cross-Channel Entropy Model in the DCT Domain
Neural Compression-Based Feature Learning for Video Restoration
Bi-Directional Object-Context Prioritization Learning for Saliency Ranking
Pixel Screening Based Intermediate Correction for Blind Deblurring
URetinex-Net: Retinex-Based Deep Unfolding Network for Low-Light Image Enhancement 5891 Wenhui Wu (Shenzhen University), Jian Weng (ShenZhen University), Pingping Zhang (City University of Hong Kong), Xu Wang (Shenzhen University), Wenhan Yang (NTU), and Jianmin Jiang (Shenzhen University)
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-Resolution 5901 Jianqi Ma (the Hong Kong Polytechnic University), Zhetong Liang (Alibaba DAMO Academy), and Lei Zhang (Hong Kong Polytechnic University, Hong Kong, China)
Coarse-To-Fine Deep Video Coding With Hyperprior-Guided Mode Prediction
 Task Decoupled Framework for Reference-Based Super-Resolution

Learning Semantic Associations for Mirror Detection Huankang Guan (City University of Hong Kong), Jiaying Lin (City University of Hong Kong), and Rynson W.H. Lau (City University of Hong Kong)	5931
SketchEdit: Mask-Free Local Image Manipulation With Partial Sketches Yu Zeng (Johns Hopkins University), Zhe Lin (Adobe Research), and Vishal M. Patel (Johns Hopkins University)	5941
Investigating Tradeoffs in Real-World Video Super-Resolution Kelvin C.K. Chan (Nanyang Technological University), Shangchen Zhou (Nanyang Technological University), Xiangyu Xu (Sea AI Lab), and Chen Change Loy (Nanyang Technological University)	5952
BasicVSR++: Improving Video Super-Resolution With Enhanced Propagation and Alignment Kelvin C.K. Chan (Nanyang Technological University), Shangchen Zhou (Nanyang Technological University), Xiangyu Xu (Sea AI Lab), and Chen Change Loy (Nanyang Technological University)	5962
Inertia-Guided Flow Completion and Style Fusion for Video Inpainting Kaidong Zhang (University of Science and Technology of China), Jingjing Fu (Microsoft), and Dong Liu (University of Science and Technology of China)	5972
Joint Global and Local Hierarchical Priors for Learned Image Compression Jun-Hyuk Kim (Yonsei University), Byeongho Heo (NAVER AI LAB), and Jong-Seok Lee (Yonsei University, Korea)	5982
Reflash Dropout in Image Super-Resolution Xiangtao Kong (SIAT), Xina Liu (Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences), Jinjin Gu (The University of Sydney), Yu Qiao (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences), and Chao Dong (SIAT)	5992
Towards Robust Rain Removal Against Adversarial Attacks: A Comprehensive Benchmark Analysis and Beyond Yi Yu (Nanyang Technological University), Wenhan Yang (NTU), Yap-Peng Tan (Nanyang Technological University, Singapore), and Alex C. Kot (Nanyang Technological University)	6003
Dreaming To Prune Image Deraining Networks Weiqi Zou (University of Science and Technology of China), Yang Wang (University of Science and Technology of China), Xueyang Fu (University of Science and Technology of China), and Yang Cao (University of Science and Technology of China)	6013
LC-FDNet: Learned Lossless Image Compression With Frequency Decomposition Network Hochang Rhee (Seoul National University), Yeong Il Jang (Seoul National University), Seyun Kim (Gauss Labs), and Nam Ik Cho (Seoul National University)	6023
 Exposure Normalization and Compensation for Multiple-Exposure Correction	6033

Revisiting Temporal Alignment for Video Restoration
Learning the Degradation Distribution for Blind Image Super-Resolution
LSVC: A Learning-Based Stereo Video Compression Framework
Learning Based Multi-Modality Image and Video Compression
Transformer Based Line Segment Classifier With Image Context for Real-Time Vanishing Point Detection in Manhattan World 6083 Xin Tong (Peking University), Xianghua Ying (Peking University), Yongjie Shi (Peking University), Ruibin Wang (Peking University), and Jinfa Yang (Peking University)
 Deep Vanishing Point Detection: Geometric Priors Make Dataset Variations Vanish
Stereo Depth From Events Cameras: Concentrate and Focus on the Future

Poster 2.1: 3D From Multi-View & Sensors

Volumetric Bundle Adjustment for Online Photorealistic Scene Capture Ronald Clark (Imperial College London)	6114
Neural Volumetric Object Selection Zhongzheng Ren (UIUC), Aseem Agarwala (Google), Bryan Russell (Adobe Research), Alexander G. Schwing (UIUC), and Oliver Wang (Adobe Systems Inc)	6123
HVH: Learning a Hybrid Neural Volumetric Representation for Dynamic Hair Performance Capture	6133
Ziyan Wang (Carnegie Mellon University), Giljoo Nam (Facebook Inc.), Tuur Stuyck (Meta Reality Labs Research), Stephen Lombardi (Facebook), Michael Zollhöfer (Facebook Reality Labs), Jessica Hodgins (Carnegie	0155
Mellon University), and Christoph Lassner (Meta Reality Labs Research)	

NeuralHOFusion: Neural Volumetric Rendering Under Human-Object Interactions
 BNV-Fusion: Dense 3D Reconstruction Using Bi-Level Neural Volume Fusion
Input-Level Inductive Biases for 3D Reconstruction
Multi-View Mesh Reconstruction With Neural Deferred Shading
StyleMesh: Style Transfer for Indoor 3D Scene Reconstructions
RGB-Depth Fusion GAN for Indoor Depth Completion
PlanarRecon: Real-Time 3D Plane Detection and Reconstruction From Posed Monocular Videos 6209 Yiming Xie (Northeastern University), Matheus Gadelha (University of Massachusetts Amherst), Fengting Yang (Pennsylvania State University), Xiaowei Zhou (Zhejiang University), and Huaizu Jiang (Northeastern University)
Scene Representation Transformer: Geometry-Free Novel View Synthesis Through Set-Latent Scene Representations
ShapeFormer: Transformer-Based Shape Completion via Sparse Representation

GuideFormer: Transformers for Image Guided Depth Completion)
 Improving Neural Implicit Surfaces Geometry With Patch Warping)
Critical Regularizations for Neural Surface Reconstruction in the Wild)
Gradient-SDF: A Semi-Implicit Surface Representation for 3D Reconstruction)
Neural RGB-D Surface Reconstruction)
POCO: Point Convolution for Surface Reconstruction	2
Reconstructing Surfaces for Sparse Point Clouds With On-Surface Priors	5
Surface Reconstruction From Point Clouds by Learning Predictive Context Priors	5
IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding Alignment	3
Deterministic Point Cloud Registration via Novel Transformation Decomposition	3
Global-Aware Registration of Less-Overlap RGB-D Scans	7
Finding Good Configurations of Planar Primitives in Unorganized Point Clouds	7

 Self-Supervised Global-Local Structure Modeling for Point Cloud Domain Adaptation With Reliable Voted Pseudo Labels	6367
AziNorm: Exploiting the Radial Symmetry of Point Cloud for Azimuth-Normalized 3D Perception	6377
 WarpingGAN: Warping Multiple Uniform Priors for Adversarial 3D Point Cloud Generation Yingzhi Tang (City University of Hong Kong), Yue Qian (City University of Hong Kong, Hong Kong), Qijian Zhang (City University of Hong Kong), Yiming Zeng (City University of Hong Kong), Junhui Hou (City University of Hong Kong, Hong Kong), and Xuefei Zhe (Tencent AI lab) 	6387

Poster 2.1: Motion & Tracking

Forward Propagation, Backward Regression, and Pose Association for Hand Tracking in the Wild
Neural MoCon: Neural Motion Control for Physically Plausible Human Motion Capture
MotionAug: Augmentation With Physical Correction for Human Motion Prediction
Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction
Spatio-Temporal Gating-Adjacency GCN for Human Motion Prediction

Motron: Multimodal Probabilistic Human Motion Forecasting6447Tim Salzmann (Technical University of Munich), Marco Pavone (Stanford6447University), and Markus Ryll (Technical University of Munich)6447
 Human Trajectory Prediction With Momentary Observation
Non-Probability Sampling Network for Stochastic Human Trajectory Prediction
Remember Intentions: Retrospective-Memory-Based Trajectory Prediction
GroupNet: Multiscale Hypergraph Neural Networks for Trajectory Prediction With Relational Reasoning
Learning Pixel Trajectories With Multiscale Contrastive Random Walks
Adaptive Trajectory Prediction via Transferable GNN
Neural Prior for Trajectory Estimation
M2I: From Factored Marginal Trajectory Prediction to Interactive Prediction
How Many Observations Are Enough? Knowledge Distillation for Trajectory Forecasting
 ATPFL: Automatic Trajectory Prediction Model Design Under Federated Learning Framework 6553 Chunnan Wang (HIT), Xiang Chen (Harbin Institute of Technology), Junzhe Wang (Harbin Institute of Technology), and Hongzhi Wang (Harbin Institute of Technology)

 Whose Track Is It Anyway? Improving Robustness to Tracking Errors With Affinity-Based Trajectory Prediction	63
Convolutions for Spatial Interaction Modeling	73
 Style-ERD: Responsive and Coherent Online Motion Style Transfer	83
Neural Inertial Localization	94
RIO: Rotation-Equivariance Supervised Learning of Robust Inertial Odometry	04
CaDeX: Learning Canonical Deformation Coordinate Space for Dynamic Surface Representation via Neural Homeomorphism	14

Poster 2.1: Pose Estimation & Tracking

ElePose: Unsupervised 3D Human Pose Estimation by Predicting Camera Elevation and Learning Normalizing Flows on 2D Poses	625
Projective Manifold Gradient Layer for Deep Rotation Regression	536
Multimodal Colored Point Cloud to Image Alignment	546
Multi-Instance Point Cloud Registration by Efficient Correspondence Clustering	557
REGTR: End-to-End Point Cloud Correspondences With Transformers	67

Text2Pos: Text-to-Point-Cloud Cross-Modal Localization	677
BCOT: A Markerless High-Precision 3D Object Tracking Benchmark	5687
SAR-Net: Shape Alignment and Recovery Network for Category-Level 6D Object Pose and Size Estimation	6697
Haitao Lin (Fudan University), Zichang Liu (Fudan University), Chilam Cheang (Fudan University), Yanwei Fu (Fudan University), Guodong Guo (Baidu), and Xiangyang Xue (Fudan University)	
ES6D: A Computation Efficient and Symmetry-Aware 6D Pose Regression Framework	5708
Coupled Iterative Refinement for 6D Multi-Object Pose Estimation	5718
ZebraPose: Coarse To Fine Surface Encoding for 6DoF Object Pose Estimation	5728
SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation With Learnt Surface Embeddings	5739
MetaPose: Fast 3D Pose From Multiple Views Without 3D Supervision	5749
Templates for 3D Object Pose Estimation Revisited: Generalization to New Objects and Robustness to Occlusions	5761
 GPV-Pose: Category-Level Object Pose Estimation via Geometry-Guided Point-Wise Voting 6 Yan Di (Technical University of Munich), Ruida Zhang (Tsinghua University), Zhiqiang Lou (Tsinghua University), Fabian Manhardt (Google), Xiangyang Ji (Tsinghua University), Nassir Navab (TU Munich, Germany), and Federico Tombari (Google, TU Munich) 	5771

HSC4D: Human-Centered 4D Scene Capture in Large-Scale Indoor-Outdoor Space Using Wearable IMUs and LiDAR
Yudi Dai (Xiamen University), Yitai Lin (xiamen university), Chenglu Wen (Xiamen University), Siqi Shen (Xiamen University), Lan Xu (ShanghaiTech), Jingyi Yu (Shanghai Tech University), Yuexin Ma (ShanghaiTech University), and Cheng Wang (Xiamen University)
OVE6D: Object Viewpoint Encoding for Depth-Based 6D Object Pose Estimation
FS6D: Few-Shot 6D Pose Estimation of Novel Objects
OnePose: One-Shot Object Pose Estimation Without CAD Models
OSOP: A Multi-Stage One Shot Object Pose Estimation Framework
DiffPoseNet: Direct Differentiable Camera Pose Estimation
Iterative Corresponding Geometry: Fusing Region and Depth for Highly Efficient 3D Tracking of Textureless Objects
CPPF: Towards Robust Category-Level 9D Pose Estimation in the Wild
Leveraging Equivariant Features for Absolute Pose Regression

Poster 2.1: Transfer / Low-Shot / Long-Tail Learning

The Majority Can Help the Minority: Context-Rich Minority Oversampling for Long-Tailed Classification 6877 Seulki Park (Seoul National University), Youngkyu Hong (NAVER AI LAB), 6877 Byeongho Heo (NAVER AI LAB), Sangdoo Yun (NAVER AI LAB), and Jin Young Choi (Seoul National University)
Long-Tailed Recognition via Weight Balancing
Balanced Contrastive Learning for Long-Tailed Visual Recognition
Targeted Supervised Contrastive Learning for Long-Tailed Recognition6908Tianhong Li (MIT), Peng Cao (Massachusetts Institute of Technology),908Yuan Yuan (MIT), Lijie Fan (MIT), Yuzhe Yang (MIT), Rogerio S. Feris908(MIT-IBM Watson AI Lab, IBM Research), Piotr Indyk (MIT), and Dina908Katabi (Massachusetts Institute of Technology)908
Long-Tailed Visual Recognition via Gaussian Clouded Logit Adjustment
 Long-Tail Recognition via Compositional Knowledge Transfer
Nested Collaborative Learning for Long-Tailed Visual Recognition
Retrieval Augmented Classification for Long-Tail Visual Recognition
Trustworthy Long-Tailed Classification6960Bolian Li (Tianjin University), Zongbo Han (Tianjin University),6960Haining Li (Xidian University), Huazhu Fu (IHPC, ASTAR), and Changqing Zhang (Tianjin university)6960
C2AM Loss: Chasing a Better Decision Boundary for Long-Tail Object Detection

Equalized Focal Loss for Dense Long-Tailed Object Detection	6980
Relieving Long-Tailed Instance Segmentation via Pairwise Class Balance	5990
iFS-RCNN: An Incremental Few-Shot Instance Segmenter	7000
Open-Vocabulary Instance Segmentation via Robust Cross-Modal Pseudo-Labeling	7010
SimT: Handling Open-Set Noise for Domain Adaptive Semantic Segmentation	7022
 Undoing the Damage of Label Shift for Cross-Domain Semantic Segmentation	7032
Representation Compensation Networks for Continual Semantic Segmentation	7043
Remember the Difference: Cross-Domain Few-Shot Semantic Segmentation via Meta-Memory Transfer	7055
 Domain-Agnostic Prior for Transfer Semantic Segmentation	7065
Image Segmentation Using Text and Image Prompts 7 Timo Lüddecke (University of Göttingen) and Alexander Ecker 7 (University of Göttingen) 7	7076

 PCL: Proxy-Based Contrastive Learning for Domain Generalization	087
Localized Adversarial Domain Generalization	098
Compound Domain Generalization via Meta-Knowledge Encoding	109
Style Neophile: Constantly Seeking Novel Styles for Domain Generalization	120
 Slimmable Domain Adaptation	131
 Exploring Domain-Invariant Parameters for Source Free Domain Adaptation	141
Cross-Domain Few-Shot Learning With Task-Specific Adapters	151
Task-Adaptive Negative Envision for Few-Shot Open-Set Recognition 7 Shiyuan Huang (Columbia University), Jiawei Ma (Columbia University), 7 Guangxing Han (Columbia University), and Shih-Fu Chang (Columbia 1 University) 1	161
Reusing the Task-Specific Classifier as a Discriminator: Discriminator-Free Adversarial Domain Adaptation	171

Safe Self-Refinement for Transformer-Based Domain Adaptation	L
Continual Test-Time Domain Adaptation	L
Source-Free Domain Adaptation via Distribution Estimation	2
Domain Adaptation on Point Clouds via Geometry-Aware Implicits	3
Deformation and Correspondence Aware Unsupervised Synthetic-to-Real Scene Flow Estimation for Point Clouds	3
Hyperspherical Consistency Regularization	1
BatchFormer: Learning To Explore Sample Relationships for Robust Representation Learning 7240 Zhi Hou (The University of Sydney), Baosheng Yu (The University of Sydney), and Dacheng Tao (JD.com)	5

Poster 2.1: Recognition: Detection, Categorization, Retrieval

Cascade Transformers for End-to-End Person Search
Delving Deep Into the Generalization of Vision Transformers Under Distribution Shifts
MPViT: Multi-Path Vision Transformer for Dense Prediction
NFormer: Robust Person Re-Identification With Neighbor Transformer

Part-Based Pseudo Label Refinement for Unsupervised Person Re-Identification
Temporal Complementarity-Guided Reinforcement Learning for Image-to-Video Person
Re-Identification
Augmented Geometric Distillation for Data-Free Incremental Person ReID
Salient-to-Broad Transition for Video Person Re-Identification
FMCNet: Feature-Level Modality Compensation for Visible-Infrared Person Re-Identification7339 Qiang Zhang (Xidian University), Changzhou Lai (Xidian University), Jianan Liu (XiDian University), Nianchang Huang (Xidian University), and Jungong Han (Aberystwyth University)
Graph Sampling Based Deep Metric Learning for Generalizable Person Re-Identification
 Implicit Sample Extension for Unsupervised Person Re-Identification
Rethinking Reconstruction Autoencoder-Based Out-of-Distribution Detection
Catching Both Gray and Black Swans: Open-Set Supervised Anomaly Detection
 Fine-Grained Object Classification via Self-Supervised Pose Alignment

 Hyperbolic Vision Transformers: Combining Improvements in Metric Learning	. 7399
Non-Isotropy Regularization for Proxy-Based Deep Metric Learning Karsten Roth (University of Tuebingen), Oriol Vinyals (DeepMind), and Zeynep Akata (University of Tübingen)	.7410
Self-Taught Metric Learning Without Labels Sungyeon Kim (POSTECH), Dongwon Kim (POSTECH), Minsu Cho (POSTECH), and Suha Kwak (POSTECH)	.7421
Not Just Selection, but Exploration: Online Class-Incremental Continual Learning via Dual View Consistency	. 7432
Energy-Based Latent Aligner for Incremental Learning K J Joseph (Indian Institute of Technology, Hyderabad), Salman Khan (MBZUAI/ANU), Fahad Shahbaz Khan (MBZUAI), Rao Muhammad Anwer (MBZUAI/AALTO), and Vineeth N Balasubramanian (Indian Institute of Technology, Hyderabad)	. 7442
 Sketch3T: Test-Time Training for Zero-Shot SBIR Aneeshan Sain (University of Surrey), Ayan Kumar Bhunia (University of Surrey), Vaishnav Potlapalli (Independent), Pinaki Nath Chowdhury (University of Surrey), Tao Xiang (University of Surrey), and Yi-Zhe Song (University of Surrey) 	. 7452
The Devil Is in the Pose: Ambiguity-Free 3D Rotation-Invariant Learning via Pose-Aware Convolution	. 7462
Finding Badly Drawn Bunnies Lan Yang (Beijing University of Posts and Telecommunications), Kaiyue Pang (University of Surrey), Honggang Zhang (Beijing University of Posts and Telecommunications), and Yi-Zhe Song (University of Surrey)	7472
Generalized Category Discovery Sagar Vaze (Visual Geometry Group, University of Oxford), Kai Han (The University of Hong Kong), Andrea Vedaldi (Oxford University), and Andrew Zisserman (University of Oxford)	. 7482
Recall@k Surrogate Loss With Large Batches and Similarity Mixup Yash Patel (Czech Technical University in Prague), Giorgos Tolias (Czech Technical University in Prague, Faculty of Electrical Engineering, Visual Recognition Group), and Jiří Matas (Czech Technical University, Prague)	. 7492
Modeling 3D Layout for Group Re-Identification Quan Zhang (Sun Yat-sen University), Kaiheng Dang (Sun Yat-sen University), Jian-Huang Lai (Sun Yat-sen University), Zhanxiang Feng (Sun Yat-sen University), and Xiaohua Xie (Sun Yat-Sen University)	. 7502

Causal Transportability for Visual Recognition	1
Attributable Visual Similarity Learning	2
Bi-Level Alignment for Cross-Domain Crowd Counting	2
Mutual Quantization for Cross-Modal Search With Noisy Labels	1
Task Adaptive Parameter Sharing for Multi-Task Learning 7557 Matthew Wallingford (University of Washington), Hao Li (Amazon Web 7557 Services), Alessandro Achille (Amazon Web Services), Avinash Ravichandran (Amazon), Charless Fowlkes (UC Irvine), Rahul Bhotika (Amazon), and Stefano Soatto (UCLA) 1000	1
Simple Multi-Dataset Detection	1
Cross-Domain Adaptive Teacher for Object Detection	1
 Balanced and Hierarchical Relation Learning for One-Shot Object Detection	1
Semantic-Aligned Fusion Transformer for One-Shot Object Detection	1

MSDN: Mutually Semantic Distillation Network for Zero-Shot Learning	'602
Shiming Chen (Huazhong University of Science and Technology), Ziming	
Hong (Huazhong University of Science and Technology), Guo-Sen Xie	
(Inception Institute of Artificial Intelligence), Wenhan Yang (NTU),	
Qinmu Peng (Huazhong University of Science and Technology), Kai Wang	
(National University of Singapore), Jian Zhao (Institute of North	
Electronic Equipment), and Xinge You (Huazhong University of Science	
and Technology)	
Robust Region Feature Synthesizer for Zero-Shot Object Detection	'612
Peiliang Huang (Northwestern Polytechnical University), Junwei Han	
(NWPU, China), De Cheng (Xidian University), and Dingwen Zhang (NWPU)	

Poster 2.1: Image & Video Synthesis and Generation

Region-Aware Face Swapping	2
 High-Resolution Face Swapping via Latent Semantics Disentanglement	2
Rethinking Deep Face Restoration	2
Blind Face Restoration via Integrating Face Shape and Generative Priors	2
 FENeRF: Face Editing in Neural Radiance Fields	2
 TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing	3
Pastiche Master: Exemplar-Based High-Resolution Portrait Style Transfer	3

Self-Supervised Correlation Mining Network for Person Image Generation
Exploring Dual-Task Correlation for Pose Guided Person Image Generation
InsetGAN for Full-Body Image Generation
 BodyGAN: General-Purpose Controllable Neural Human Body Generation
HumanNeRF: Efficiently Generated Human Radiance Field From Sparse Inputs
Structure-Aware Flow Generation for Human Body Reshaping
Modeling Image Composition for Complex Scene Generation
Local Attention Pyramid for Scene Image Generation
Interactive Image Synthesis With Panoptic Layout Generation
iPLAN: Interactive and Procedural Layout Planning

E-CIR: Event-Enhanced Continuous Intensity Recovery
Learning Robust Image-Based Rendering on Sparse Scene Geometry via Depth Completion7803 Yuqi Sun (Fudan University), Shili Zhou (Fudan University), Ri Cheng (Fudan University), Weimin Tan (Fudan University), Bo Yan (Fudan University), and Lang Fu (Fudan University)
 Neural Rays for Occlusion-Aware Image-Based Rendering
Industrial Style Transfer With Large-Scale Geometric Warping and Content Preservation
 PCA-Based Knowledge Distillation Towards Lightweight and Content-Style Balanced Photorealistic Style Transfer Models
Commonality in Natural Images Rescues GANs: Pretraining GANs With Generic and Privacy-Free Synthetic Data
Think Twice Before Detecting GAN-Generated Fake Images From Their Spectral Domain Imprints 7855
Chengdong Dong (Hongkong Polytechnic University), Ajay Kumar (The Hong Kong Polytechnic University), and Eryun Liu (Zhejiang University)
Robust Invertible Image Steganography7865Youmin Xu (Peking University), Chong Mou (Peking University Shenzhen7865Graduate School), Yujie Hu (Peking University Shenzhen GraduateSchool), Jingfen Xie (Peking University), and Jian Zhang (Peking University Shenzhen Graduate School)
Distinguishing Unseen From Seen for Generalized Zero-Shot Learning
 Few-Shot Font Generation by Learning Fine-Grained Local Styles

XMP-Font: Self-Supervised Cross-Modality Pre-Training for Few-Shot Font Generation	7895
Wei Liu (Bytedance), Fangyue Liu (ByteDance), Fei Ding (Bytedance),	
Qian He (Bytedance), and Zili Yi (ByteDance)	
Learning To Generate Line Drawings That Convey Geometry and Semantics Caroline Chan (MIT), Frédo Durand (MIT), and Phillip Isola (MIT)	7905

Oral 2.2.1: Transfer / Low-Shot / Long-Tail Learning

Balanced MSE for Imbalanced Visual Regression	5
Transferability Metrics for Selecting Source Model Ensembles	5
 OoD-Bench: Quantifying and Understanding Two Dimensions of Out-of-Distribution Generalization	7
Robust Fine-Tuning of Zero-Shot Models7949Mitchell Wortsman (University of Washington), Gabriel Ilharco7949(University of Washington), Jong Wook Kim (OpenAI), Mike Li (Columbia1000000000000000000000000000000000000	€
Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification 7962 Jiangtao Xie (Dalian University of Technology), Fei Long (Dalian University of Technology), Jiaming Lv (Dalian University of Technology), Qilong Wang (Tianjin University), and Peihua Li (Dalian University of Technology)	2
Learning To Learn and Remember Super Long Multi-Domain Task Sequence	2
Learning Distinctive Margin Toward Active Domain Adaptation	3

DINE: Domain Adaptation From Single and Multiple Black-Box Predictors Jian Liang (NUS), Dapeng Hu (National University of Singapore), Jiashi Feng (ByteDance), and Ran He (Institute of Automation, Chinese Academy of Sciences)	7993
Source-Free Object Detection by Learning To Overlook Domain Style Shuaifeng Li (University of Electronic Science and Technology of China), Mao Ye (University of Electronic Science and Technology of China), Xiatian Zhu (Samsung), Lihua Zhou (University of Electronic Science and Technology of China), and Lin Xiong (University of Electronic Science and Technology of China)	8004
Towards Principled Disentanglement for Domain Generalization Hanlin Zhang (Carnegie Mellon University), Yi-Fan Zhang (NLPR, China), Weiyang Liu (University of Cambridge), Adrian Weller (University of Cambridge), Bernhard Schölkopf (MPI for Intelligent Systems, Tübingen), and Eric P. Xing (MBZUAI, CMU, and Petuum Inc.)	8014
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization Yabin Zhang (Hong Kong Polytechnic University), Minghan Li (The Hong Kong Polytechnic University), Ruihuang Li (Hong Kong Polytechnic University), Kui Jia (South China University of Technology), and Lei Zhang (Hong Kong Polytechnic University, Hong Kong, China)	8025
Causality Inspired Representation Learning for Domain Generalization Fangrui Lv (Beijing Institute of Technology), Jian Liang (Alibaba Group), Shuang Li (Beijing Institute of Technology), Bin Zang (Beijing Institute of Technology), Chi Harold Liu (Beijing Institute of Technology), Ziteng Wang (Yizhun-ai), and Di Liu (Alibaba Group)	8036
Learning What Not To Segment: A New Perspective on Few-Shot Segmentation Chunbo Lang (Northwestern Polytechnical University), Gong Cheng (Northwestern Polytechnical University), Binfei Tu (Northwestern Polytechnical University), and Junwei Han (NWPU, China)	8047
Towards Fewer Annotations: Active Learning via Region Impurity and Prediction Uncertainty for Domain Adaptive Semantic Segmentation Binhui Xie (Beijing Institute of Technology), Longhui Yuan (Beijing Institute of Technology), Shuang Li (Beijing Institute of Technology), Chi Harold Liu (Beijing Institute of Technology), and Xinjing Cheng (Inceptio Tech.)	8058
ADeLA: Automatic Dense Labeling With Attention for Viewpoint Shift in Semantic Segmentation	8069

Oral 2.2.2: Motion, Tracking, Registration, Vision & X, and Theory

MeMOT: Multi-Object Tracking With Memory	
Jiarui Cai (University of Washington), Mingze Xu (Amazon), Wei Li	
(Amazon), Yuanjun Xiong (Amazon), Wei Xia (Amazon), Zhuowen Tu (UC San	
Diego), and Stefano Soatto (AWS Amazon ML)	

Unsupervised Learning of Accurate Siamese Tracking	8091
 Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds	8101
GMFlow: Learning Optical Flow via Global Matching	8111
GridShift: A Faster Mode-Seeking Algorithm for Image Segmentation and Object Tracking	8121
SNUG: Self-Supervised Neural Dynamic Garments	8130
Weakly-Supervised Action Transition Learning for Stochastic Human Motion Prediction	8141
Multi-Objective Diverse Human Motion Prediction With Knowledge Distillation	8151
Context-Aware Sequence Alignment Using 4D Skeletal Augmentation	8162
Enabling Equivariance for Arbitrary Lie Groups	8173
RAMA: A Rapid Multicut Algorithm on GPU	8183
Self-Supervised Material and Texture Representation Learning for Remote Sensing Tasks	8193

 RCP: Recurrent Closest Point for Point Cloud	.06
 Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement by Re-Synthesis 822 Karren Yang (MIT), Dejan Marković (Facebook Reality Labs), Steven Krenn (Meta), Vasu Agrawal, and Alexander Richard (Facebook Reality Labs) 	.17
 Balanced Multimodal Learning via On-the-Fly Gradient Modulation	.28

Oral 2.2.3: 3D from Multiview & Sensors, Learning for Vision, Explainable Vision, and Privacy

 Block-NeRF: Scalable Large Scene Neural View Synthesis	238
 SceneSqueezer: Learning To Compress Scene for Camera Relocalization	249
Light Field Neural Rendering	259
 Extracting Triangular 3D Models, Materials, and Lighting From Images	270
Super-Fibonacci Spirals: Fast, Low-Discrepancy Sampling of SO(3)	281
 Stochastic Backpropagation: A Memory Efficient Strategy for Training Video Models	291
It's All in the Teacher: Zero-Shot Quantization Brought Closer to the Teacher	301

Poster 2.2: 3D From Multi-View & Sensors

AirObject: A Temporally Evolving Graph Embedding for Object Identification Nikhil Varma Keetha (Indian Institute of Technology (Indian School of Mines) Dhanbad, ,), Chen Wang (Carnegie Mellon University), Yuheng Qiu (Carnegie Mellon University), Kuan Xu (geekplus), and Sebastian Scherer (Carnegie Mellon University)	8397
 Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds Chenhang He (The Hong Kong Polytechnic University), Ruihuang Li (Hong Kong Polytechnic University), Shuai Li (The Hong Kong Polytechnic University), and Lei Zhang (Hong Kong Polytechnic University, Hong Kong, China) 	8407

 SS3D: Sparsely-Supervised 3D Object Detection From Point Cloud
Back to Reality: Weakly-Supervised 3D Object Detection With Shape-Guided Label Enhancement 8428 Xiuwei Xu (Tsinghua University), Yifan Wang (Tsinghua University), Yu Zheng (Tsinghua University), Yongming Rao (Tsinghua University), Jie Zhou (Tsinghua University), and Jiwen Lu (Tsinghua University)
VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention
Embracing Single Stride 3D Object Detector With Sparse Transformer
Point Density-Aware Voxels for LiDAR 3D Object Detection
Point-to-Voxel Knowledge Distillation for LiDAR Semantic Segmentation
Contrastive Boundary Learning for Point Cloud Segmentation
 Stratified Transformer for 3D Point Cloud Segmentation
No Pain, Big Gain: Classify Dynamic Point Cloud Sequences With Static Models by Fitting Feature-Level Space-Time Surfaces

Point2Seq: Detecting 3D Objects As Sequences
PTTR: Relational 3D Point Cloud Object Tracking With Transformer
A Unified Query-Based Paradigm for Point Cloud Understanding
PointCLIP: Point Cloud Understanding by CLIP
X-Trans2Cap: Cross-Modal Knowledge Transfer Using Transformer for 3D Dense Captioning8553 Zhihao Yuan (The Chinese University of Hong Kong, Shenzhen), Xu Yan (The Chinese University of Hong Kong, Shenzhen), Yinghong Liao (The Chinese University of Hong Kong, Shenzhen), Yao Guo (Shanghai Jiao Tong University), Guanbin Li (Sun Yat-sen University), Shuguang Cui (The Chinese University of Hong Kong, Shenzhen), and Zhen Li (The Chinese University of Hong Kong, Shenzhen)
MVS2D: Efficient Multi-View Stereo via Attention-Driven 2D Convolutions
TransMVSNet: Global Context-Aware Multi-View Stereo Network With Transformers
RayMVSNet: Learning Ray-Based 1D Implicit Fields for Accurate Multi-View Stereo

IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo
PSMNet: Position-Aware Stereo Merging Network for Room Layout Estimation
Non-Parametric Depth Distribution Modelling Based Depth Inference for Multi-View Stereo 8616 Jiayu Yang (The Australian National University), Jose M. Alvarez (NVIDIA), and Miaomiao Liu (The Australian National University)
Differentiable Stereopsis: Meshes From Multiple Views Using Differentiable Rendering
Rethinking Depth Estimation for Multi-View Stereo: A Unified Representation
Efficient Multi-View Stereo by Iterative Dynamic Cost Volume
PlaneMVS: 3D Plane Reconstruction From Multi-View Stereo
Discrete Time Convolution for Fast Event-Based Stereo
Stereo Magnification With Multi-Layer Images

Poster 2.2: Motion & Tracking

Probabilistic Warp Consistency for Weakly-Supervised Semantic Correspondences Prune Truong (ETH Zurich), Martin Danelljan (ETH Zurich), Fisher Yu (ETH Zurich), and Luc Van Gool (ETH Zurich)	8698
Locality-Aware Inter– and Intra-Video Reconstruction for Self-Supervised Correspondence Learning Liulei Li (Beijing Institute of Technology), Tianfei Zhou (ETH Zurich), Wenguan Wang (Eidgenössische Technische Hochschule Zürich), Lu Yang (Beijing University of Posts and Telecommunications), Jianwu Li (Beijing Institute of Technology), and Yi Yang (UTS)	8709
Transforming Model Prediction for Tracking Christoph Mayer (ETH Zurich), Martin Danelljan (ETH Zurich), Goutam Bhat (ETH Zurich), Matthieu Paul (ETH Zurich), Danda Pani Paudel (ETH Zürich), Fisher Yu (ETH Zurich), and Luc Van Gool (ETH Zurich)	8721
Ranking-Based Siamese Visual Tracking Feng Tang (University of Science and Technology of China) and Qiang Ling (University of Science and Technology of China)	8731
Correlation-Aware Deep Tracking Fei Xie (Southeast University), Chunyu Wang (Microsoft Research asia), Guangting Wang (University of Science and Technology of China), Yue Cao (Microsoft Research), Wankou Yang (Southeast University), and Wenjun Zeng (EIT Institute for Advanced Study)	8741
Global Tracking via Ensemble of Local Trackers Zikun Zhou (Harbin Institute of Technology, Shenzhen), Jianqiu Chen (Harbin Institute of Technology, Shenzhen), Wenjie Pei (Harbin Institute of Technology, Shenzhen), Kaige Mao (Harbin Institute of Technology, Shenzhen), Hongpeng Wang (Harbin institute of shenzhen), and Zhenyu He (Harbin Institute of Technology (Shenzhen))	8751
Global Tracking Transformers Xingyi Zhou (The University of Texas at Austin), Tianwei Yin (UT Austin), Vladlen Koltun (Apple), and Philipp Krähenbühl (UT Austin)	8761
Unified Transformer Tracker for Object Tracking Fan Ma (University of Technology Sydney), Mike Zheng Shou (National University of Singapore), Linchao Zhu (University of Technology, Sydney), Haoqi Fan (Facebook AI Research), Yilei Xu (Facebook), Yi Yang (UTS), and Zhicheng Yan (Facebook AI)	8771
Transformer Tracking With Cyclic Shifting Window Attention Zikai Song (Huazhong University of Science and Technology), Junqing Yu (Huazhong University of Science & Technology), Yi-Ping Phoebe Chen (La Trobe University), and Wei Yang (Huazhong University of Science and Technology)	8781
Spiking Transformers for Event-Based Single Object Tracking Jiqing Zhang (Dalian University of Technology), Bo Dong (Princeton University), Haiwei Zhang (Dalian University of Technology), Jianchuan Ding (Dalian University of Technology), Felix Heide (Princeton University), Baocai Yin (Dalian University of Technology), and Xin Yang (Dalian University of Technology)	8791

Adiabatic Quantum Computing for Multi Object Tracking)1
HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction	.3
Towards Discriminative Representation: Multi-View Trajectory Contrastive Learning for Online Multi-Object Tracking En Yu (Huazhong University of Science and Technology), Zhuoling Li (Tsinghua University), and Shoudong Han (Huazhong University of Science and Technology)	24
TrackFormer: Multi-Object Tracking With Transformers	34
Learning of Global Objective for Network Flow in Multi-Object Tracking	15
LMGP: Lifted Multicut Meets Geometry Projections for Multi-Camera Multi-Object Tracking 8850 Duy M. H. Nguyen (German Research Centre for Artificial Intelligence), Roberto Henschel (Leibniz University of Hannover), Bodo Rosenhahn (Leibniz University Hannover), Daniel Sonntag (DFKI), and Paul Swoboda	56
(MPI fuer Informatik, Saarbruecken)	
(MPI fuer Informatik, Saarbruecken) Multi-Object Tracking Meets Moving UAV	56
Multi-Object Tracking Meets Moving UAV	
 Multi-Object Tracking Meets Moving UAV	76
 Multi-Object Tracking Meets Moving UAV	76
 Multi-Object Tracking Meets Moving UAV	76 36

Poster 2.2: Computer Vision Theory

On the Instability of Relative Pose Estimation and RANSAC's Role
Bootstrapping ViTs: Towards Liberating Vision Transformers From Pre-Training
Global Sensing and Measurements Reuse for Image Compressed Sensing
Maximum Consensus by Weighted Influences of Monotone Boolean Functions
MS2DG-Net: Progressive Correspondence Learning via Multiple Sparse Semantics Dynamic Graph 8963
Luanyuan Dai (Digital Fujian Research Institute of Big Data for Agriculture and Forestry, College of Computer and Information Science, Fujian Agriculture and Forestry University), Yizhang Liu (School of Software Engineering, Tongji University, Shanghai 201804), Jiayi Ma (Wuhan University), Lifang Wei (Fujian Agriculture and Forestry University), Taotao Lai (Minjiang University), Changcai Yang (Fujian Agriculture and Forestry University), and Riqing Chen (Fujian Agriculture and Forestry University)
Styleformer: Transformer Based Generative Adversarial Networks With Style Vector
Scanline Homographies for Rolling-Shutter Plane Absolute Pose

Poster 2.2: Transfer / Low-Shot / Long-Tail Learning

Generating Representative Samples for Few-Shot Classification Jingyi Xu (Stony Brook University) and Hieu Le (Amazon Robotics)	8993
Matching Feature Sets for Few-Shot Image Classification	9004
Arman Afrasiyabi (Université Laval), Hugo Larochelle (Google), Jean-François Lalonde (Université Laval), and Christian Gagné	
(Université Laval)	

Improving Adversarially Robust Few-Shot Image Classification With Generalizable Representations 9015 Junhao Dong (Sun Yat-sen University), Yuan Wang (Sun Yat-sen 9015 University), Jian-Huang Lai (Sun Yat-sen University), and Xiaohua Xie (Sun Yat-sen University)
Sylph: A Hypernetwork Framework for Incremental Few-Shot Object Detection
Forward Compatible Few-Shot Class-Incremental Learning
Constrained Few-Shot Class-Incremental Learning
 Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference
EASE: Unsupervised Discriminant Subspace Learning for Transductive Few-Shot Learning 9068 Hao Zhu (Australian National University) and Piotr Koniusz (ANU College of Engineering and Computer Science)
Few-Shot Learning With Noisy Labels
Ranking Distance Calibration for Cross-Domain Few-Shot Learning
Revisiting Learnable Affines for Batch Norm in Few-Shot Transfer Learning
Attribute Surrogates Learning and Spectral Tokens Pooling in Transformers for Few-Shot Learning
Learning To Memorize Feature Hallucination for One-Shot Image Generation

A Closer Look at Few-Shot Image Generation
Motion-Modulated Temporal Fragment Alignment Network for Few-Shot Action Recognition 9141 Jiamin Wu (University of Science and Technology of China), Tianzhu Zhang (University of Science and Technology of China), Zhe Zhang (Lunar Exploration and Space Engineering Center of CNSA), Feng Wu (University of Science and Technology of China), and Yongdong Zhang (University of Science and Technology of China)
 Knowledge Distillation As Efficient Pre-Training: Faster Convergence, Higher Data-Efficiency, and Better Transferability
 Transferability Estimation Using Bhattacharyya Class Separability
Revisiting the Transferability of Supervised Pretraining: An MLP Perspective
 Task2Sim: Towards Effective Pre-Training and Transfer From Synthetic Data
 Which Model To Transfer? Finding the Needle in the Growing Haystack
Does Robustness on ImageNet Transfer to Downstream Tasks?
 What Makes Transfer Learning Work for Medical Images: Feature Reuse & Other Factors
OW-DETR: Open-World Detection Transformer

Unseen Classes at a Later Time? No Problem	9235
Continual Object Detection via Prototypical Task Correlation Guided Gating Mechanism Binbin Yang (Sun Yat-sen University), Xinchi Deng (Sun Yat-sen University), Han Shi (The Hong Kong University of Science and Technology), Changlin Li (Monash University), Gengwei Zhang (Sun Yat-sen University), Hang Xu (Huawei Noah's Ark Lab), Shen Zhao (Sun Yat-Sen University), Liang Lin (Sun Yat-sen University), and Xiaodan Liang (Sun Yat-sen University)	9245
On Generalizing Beyond Domains in Cross-Domain Continual Learning	9255
Online Continual Learning on a Contaminated Data Stream With Blurry Task Boundaries Jihwan Bang (Naver Corp.), Hyunseo Koh (Gwangju Institute of Science and Technology), Seulki Park (Seoul National University), Hwanjun Song (NAVER AI Lab), Jung-Woo Ha (NAVER CLOVA AI Lab), and Jonghyun Choi (Yonsei University)	9265
DyTox: Transformers for Continual Learning With DYnamic TOken eXpansion	9275
 Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning	9286
En-Compactness: Self-Distillation Embedding & Contrastive Generation for Generalized Zero-Shot Learning	9296
 VGSE: Visually-Grounded Semantic Embeddings for Zero-Shot Learning	9306
Siamese Contrastive Embedding Network for Compositional Zero-Shot Learning	9316

KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning 9326

Shyamgopal Karthik (University of Tübingen), Massimiliano Mancini (University of Tübingen), and Zeynep Akata (University of Tübingen)

Non-Generative Generalized Zero-Shot Learning via Task-Correlated Disentanglement and	
Controllable Samples Synthesis	9336
Yaogong Feng (Beijing Jiaotong University), Xiaowen Huang (Beijing	
Jiaotong University), Pengbo Yang (Beijing Jiaotong University), Jian	
Yu (Beijing Jiaotong University), and Jitao Sang (Beijing Jiaotong	
University, China)	
WALT: Watch and Learn 2D Amodal Representation From Time-Lapse Imagery N. Dinesh Reddy (Carnegie mellon University), Robert Tamburo (missing), and Srinivasa G. Narasimhan (Carnegie Mellon University, USA)	9346

Poster 2.2: Recognition: Detection, Categorization, Retrieval

Omni-DETR: Omni-Supervised Object Detection With Transformers	57
DESTR: Object Detection With Split Transformer	57
A Dual Weighting Label Assignment Scheme for Object Detection	7
Entropy-Based Active Learning for Object Detection With Progressive Diversity Constraint 938 Jiaxi Wu (Beihang University), Jiaxin Chen (Beihang University), and Di Huang (Beihang University, China)	\$7
Localization Distillation for Dense Object Detection	17
Group R-CNN for Weakly Semi-Supervised Object Detection With Points	17
Overcoming Catastrophic Forgetting in Incremental Object Detection via Elastic Response Distillation	.7

CREAM: Weakly Supervised Object Localization via Class RE-Activation Mapping
One Loss for Quantization: Deep Hashing With Discrete Wasserstein Distributional Matching 9437 <i>Khoa D. Doan (Virginia Tech), Peng Yang (Baidu), and Ping Li (Baidu</i> <i>Research)</i>
PSTR: End-to-End One-Step Person Search With Transformers
Protecting Celebrities From DeepFake With Identity Consistency Transformer
MDAN: Multi-Level Dependent Attention Network for Visual Emotion Analysis
Contextual Similarity Distillation for Asymmetric Image Retrieval
Improving Visual Grounding With Visual-Linguistic Verification and Iterative Reasoning
MPC: Multi-View Probabilistic Clustering
Text Spotting Transformers

Represent, Compare, and Learn: A Similarity-Aware Framework for Class-Agnostic Counting 9519 Min Shi (Huazhong University of Science and Technology), Hao Lu (Huazhong University of Science and Technology), Chen Feng (Huazhong University of Science and Technology), Chengxin Liu (Huazhong University of Science and Technology), and Zhiguo Cao (Huazhong Univ. of Sci.&Tech.)
Reflection and Rotation Symmetry Detection via Equivariant Learning
Learning To Imagine: Diversify Memory for Incremental Learning Using Unlabeled Data
A Simple Episodic Linear Probe Improves Visual Recognition in the Wild
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
Multi-Granularity Alignment Domain Adaptation for Object Detection
Expanding Low-Density Latent Regions for Open-Set Object Detection
Class-Incremental Learning With Strong Pre-Trained Models
ProposalCLIP: Unsupervised Open-Category Object Proposal Generation via Exploiting CLIP Cues

Poster 2.2: Self-, Semi-, Meta-, & Unsupervised Learning

Self-Supervised Models Are Continual Learners
The Two Dimensions of Worst-Case Training and Their Integrated Effect for Out-of-Domain Generalization
Beyond Supervised vs. Unsupervised: Representative Benchmarking and Analysis of Image Representation Learning
 SimMIM: A Simple Framework for Masked Image Modeling
Semantic-Aware Auto-Encoders for Self-Supervised Representation Learning
UniCon: Combating Label Noise Through Uniform Selection and Contrastive Learning
Contrastive Conditional Neural Processes
One-Bit Active Query With Contrastive Pairs
HCSC: Hierarchical Contrastive Selective Coding

Motion-Aware Contrastive Video Representation Learning via Foreground-Background Merging 9706

Shuangrui Ding (Shanghai Jiao Tong University), Maomao Li (Tencent AIlab), Tianyu Yang (Tencent AI Lab), Rui Qian (The Chinese University of Hong Kong), Haohang Xu (Shanghai Jiao Tong University), Qingyi Chen (University of Michigan), Jue Wang (Tencent AI Lab), and Hongkai Xiong (Shanghai Jiao Tong University)
Hierarchical Self-Supervised Representation Learning for Movie Understanding
Anomaly Detection via Reverse Distillation From One-Class Embedding
Unsupervised Representation Learning for Binary Networks by Joint Classifier Learning
DC-SSL: Addressing Mismatched Class Distribution in Semi-Supervised Learning
Learning To Collaborate in Decentralized Learning of Personalized Models
 Highly-Efficient Incomplete Large-Scale Multi-View Clustering With Consensus Bipartite Graph
DASO: Distribution-Aware Semantics-Oriented Pseudo-Label for Imbalanced Semi-Supervised Learning
Global Convergence of MAML and Theory-Inspired Neural Architecture Search for Few-Shot Learning
Semi-Supervised Object Detection via Multi-Instance Alignment With Global Class Prototypes 9799 Aoxue Li (Noah's Ark Lab), Peng Yuan (Huawei Noah's Ark Lab), and Zhenguo Li (Huawei Noah's Ark Lab)
Unbiased Teacher v2: Semi-Supervised Object Detection for Anchor-Free and Anchor-Based Detectors

Spectral Unsupervised Domain Adaptation for Visual Recognition
DATA: Domain-Aware and Task-Aware Self-Supervised Learning
Dynamic Kernel Selection for Improved Generalization and Memory Efficiency in Meta-Learning
DeepDPM: Deep Clustering With an Unknown Number of Clusters
PLAD: Learning To Infer Shape Programs With Pseudo-Labels and Approximate Distributions 9861 R. Kenny Jones (Brown University), Homer Walke (University of California - Berkeley), and Daniel Ritchie (Brown University)
Robust Outlier Detection by De-Biasing VAE Likelihoods
Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data
CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding
Cross-Domain Correlation Distillation for Unsupervised Domain Adaptation in Nighttime Semantic Segmentation
DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation
WildNet: Learning Domain Generalized Semantic Segmentation From the Wild

 UCC: Uncertainty Guided Cross-Head Co-Training for Semi-Supervised Semantic Segmentation 993', Jiashuo Fan (Tsinghua University), Bin Gao (Huawei Noah's Ark Lab), Huan Jin (Huawei Noah's Ark Lab), and Lihui Jiang (Huawei Technologies Co., Ltd) 	7
Semi-Supervised Semantic Segmentation With Error Localization Network	7
Unbiased Subclass Regularization for Semi-Supervised Semantic Segmentation	8
Integrative Few-Shot Learning for Classification and Segmentation	9
GanOrCon: Are Generative Models Useful for Few-Shot Segmentation?	1
 SphericGAN: Semi-Supervised Hyper-Spherical Generative Adversarial Networks for Fine-Grained Image Synthesis	1
CoordGAN: Self-Supervised Dense Correspondences Emerge From GANs	1

Poster 2.2: Privacy and Federated Learning

GradViT: Gradient Inversion of Vision Transformers	0011
Deep 3D-to-2D Watermarking: Embedding Messages in 3D Meshes and Extracting Them From 2D Renderings	
CD2-pFed: Cyclic Distillation-Guided Channel Decoupling for Model Personalization in Federated Learning	0031

University), and Lequan Yu (The University of Hong Kong)

APRIL: Finding the Achilles' Heel on Privacy for Vision Transformers
Rethinking Architecture Design for Tackling Data Heterogeneity in Federated Learning 10051 Liangqiong Qu (Stanford University), Yuyin Zhou (Johns Hopkins University), Paul Pu Liang (Carnegie Mellon University), Yingda Xia (Alibaba USA Inc.), Feifei Wang (Stanford University), Ehsan Adeli (Stanford University), Li Fei-Fei (Stanford University), and Daniel Rubin
Robust Federated Learning With Noisy and Heterogeneous Clients
 Federated Learning With Position-Aware Neurons
Layer-Wised Model Aggregation for Personalized Federated Learning
FedCor: Correlation-Based Active Client Selection Strategy for Heterogeneous Federated
Learning
 FedDC: Federated Learning With Non-IID Data via Local Drift Decoupling and Correction 10102 Liang Gao (Nathonal University of Defense Technology), Huazhu Fu (IHPC, ASTAR), Li Li (University of Macau), Yingwen Chen (National University of Defense Technology), Ming Xu (National University of Defense Technology), and Cheng-Zhong Xu (University of Macau)
Differentially Private Federated Learning With Local Regularization and Sparsification
Auditing Privacy Defenses in Federated Learning via Generative Gradient Leakage
Learn From Others and Be Yourself in Heterogeneous Federated Learning

RSCFed: Random Sampling Consensus Federated Semi-Supervised Learning	144
 Federated Class-Incremental Learning	154
 Fine-Tuning Global Model via Data-Free Knowledge Distillation for Non-IID Federated Learning	164
 FedCorr: Multi-Stage Federated Learning for Label Noise Correction	174
 ResSFL: A Resistance Transfer Framework for Defending Model Inversion Attack in Split Federated Learning	184

Poster 2.2: Explainable Computer Vision

Cycle-Consistent Counterfactuals by Latent Transformations Saeed Khorram (Oregon State University) and Li Fuxin (Oregon State University)	10193
Consistent Explanations by Contrastive Learning Vipin Pillai (UMBC), Soroush Abbasi Koohpayegani (University of Maryland Baltimore County), Ashley Ouligian (Northrop Grumman), Dennis Fong (Northrop Grumman), and Hamed Pirsiavash (University of California Davis)	10203
Towards Better Understanding Attribution Methods Sukrut Rao (Max Planck Institute for Informatics), Moritz Böhle (Max-Planck-Institute for Informatics), and Bernt Schiele (MPI Informatics)	10213
Proto2Proto: Can You Recognize the Car, the Way I Do? Monish Keswani (Indian institute of Science), Sriranjani Ramakrishnan (NA), Nishant Reddy (IIT Hyderabad), and Vineeth N Balasubramanian (Indian Institute of Technology, Hyderabad)	10223

Do Explanations Explain? Model Knows Best	.34
HINT: Hierarchical Neuron Concept Explainer	.44
Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable Prototypes	55
 What Do Navigation Agents Learn About Their Environment?	.66
A Framework for Learning Ante-Hoc Explainable Models via Concepts	.76
Exploiting Explainable Metrics for Augmented SGD	.86
FAM: Visual Explanations for the Feature Representations From Deep Convolutional Networks 1029 Yuxi Wu (Hikvision Research Institute), Changhuai Chen (Hikvision Research Institute), Jun Che (Hikvision Research Institute), and Shiliang Pu (Hikvision Research Institute)	.97
Interactive Disentanglement: Learning Concepts by Interacting With Their Prototype Representations 1030 Wolfgang Stammer (TU Darmstadt), Marius Memmel (Technical University of Darmstadt), Patrick Schramowski (TU Darmstadt), and Kristian Kersting (TU Darmstadt)	607
B-Cos Networks: Alignment Is All We Need for Interpretability	19
The Flag Median and FlagIRLS	29

Poster 2.2: Transparency, Fairness, Accountability, Privacy & Ethics in Vision

Learning Fair Classifiers With Partially Annotated Group Labels	10338
Sangwon Jung (Seoul National University), Sanghyuk Chun (NAVER AI	
Lab), and Taesup Moon (Seoul National Üniversity)	

Estimating Structural Disparities for Face Models
Estimating Example Difficulty Using Variance of Gradients
 Fairness-Aware Adversarial Perturbation Towards Bias Mitigation for Deployed Deep Models 10369 Zhibo Wang (Zhejiang University), Xiaowei Dong (Wuhan University), Henry Xue (Ant Group), Zhifei Zhang (Adobe Research), Weifeng Chiu (Antgroup), Tao Wei (Ant Group), and Kui Ren (Zhejiang University)
Fair Contrastive Learning for Facial Attribute Classification
Leveraging Adversarial Examples To Quantify Membership Information Leakage
 Leveling Down in Computer Vision: Pareto Inefficiencies in Fair Deep Classifiers
Deep Unlearning via Randomized Conditionally Independent Hessians
Equivariance Allows Handling Multiple Nuisance Variables When Analyzing Pooled Neuroimaging Datasets 10422 Vishnu Suresh Lokhande (University of Wisconsin-Madison), Rudrasis 10422 Chakraborty (Butlr), Sathya N. Ravi (University of Illinois at Chicago), and Vikas Singh (University of Wisconsin Madison)
A Study on the Distribution of Social Biases in Self-Supervised Learning Visual Models 10432 Kirill Sirotkin (Universidad Autónoma de Madrid), Pablo Carballeira (Universidad Autonoma de Madrid), and Marcos Escudero-Viñolo (Universidad Autónoma de Madrid)

Poster 2.2: Vision & X

Learning Hierarchical Cross-Modal Association for Co-Speech Gesture Generation
SEEG: Semantic Energized Co-Speech Gesture Generation
Mix and Localize: Localizing Sound Sources in Mixtures
Reading To Listen at the Cocktail Party: Multi-Modal Speech Separation
IntentVizor: Towards Generic Query Guided Interactive Video Summarization
M3L: Language-Based Video Editing via Multi-Modal Multi-Level Transformers
 Finding Fallen Objects via Asynchronous Audio-Visual Integration
Weakly Paired Associative Learning for Sound and Image Representations via Bimodal Associative Memory
Egocentric Deep Multi-Channel Audio-Visual Active Speaker Localization
 Audio-Visual Generalised Zero-Shot Learning With Cross-Modal Attention and Language 10543 Otniel-Bogdan Mercea (University of Tübingen), Lukas Riesch (University of Tübingen), A. Sophia Koepke (University of Tübingen), and Zeynep Akata (University of Tübingen)
It's Time for Artistic Correspondence in Music and Video
Self-Supervised Object Detection From Audio-Visual Correspondence

More Than Words: In-the-Wild Visually-Driven Prosody for Text-to-Speech)577
ObjectFolder 2.0: A Multisensory Object Dataset for Sim2Real Transfer	0588
 A Probabilistic Graphical Model Based on Neural-Symbolic Reasoning for Visual Relationship Detection	0599

Oral 3.1.1: Image & Video Synthesis and Generation (I)

Diffusion Autoencoders: Toward a Meaningful and Decodable Representation)9
Polymorphic-GAN: Generating Aligned Samples Across Multiple Domains With Learned Morph Maps	20
Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values	31
Ensembling Off-the-Shelf Models for GAN Training	41
Marginal Contrastive Correspondence for Guided Image Generation	53
GRAM: Generative Radiance Manifolds for 3D-Aware Image Generation	53

High-Resolution Image Synthesis With Latent Diffusion Models
 Vector Quantized Diffusion Model for Text-to-Image Synthesis
ManiTrans: Entity-Level Text-Guided Image Manipulation via Token-Wise Semantic Alignment and Generation
Jianan Wang (Fudan University), Guansong Lu (Huawei Noah's Ark Lab), Hang Xu (Huawei Noah's Ark Lab), Zhenguo Li (Huawei Noah's Ark Lab), Chunjing Xu (Huawei Noah's Ark Lab), and Yanwei Fu (Fudan University)
Dataset Distillation by Matching Training Trajectories
Continual Predictive Learning From Videos
Motion-Adjustable Neural Implicit Video Representation
Splicing ViT Features for Semantic Appearance Transfer
MAT: Mask-Aware Transformer for Large Hole Image Inpainting
Day-to-Night Image Synthesis for Training Nighttime Neural ISPs
Smooth-Swap: A Simple Enhancement for Face-Swapping With Smoothness

Few-Shot Head Swapping in the Wild	10779
Changyong Shu (Baidu. inc), Hemao Wu (South China University of	
Technology), Hang Zhou (The Chinese University of Hong Kong), Jiaming	
Liu (Baidu Inc.), Zhibin Hong (Baidu Inc.), Changxing Ding (South	
China University of Technology), Junyu Han (Baidu Inc.), Jingtuo Liu	
(baidu), Errui Ding (Baidu Inc.), and Jingdong Wang (Baidu)	
ClothFormer: Taming Video Virtual Try-On in All Module	10789
Jianbin Jiang (iQIYI, Inc.), Tan Wang (iQIYI, Inc.), He Yan (iQiYi,	
Inc.), and Junhui Liu (iQIYI Inc)	

Oral 3.1.2: Deep Learning Architectures & Techniques

A-ViT: Adaptive Tokens for Efficient Vision Transformer Hongxu Yin (NVIDIA), Arash Vahdat (NVIDIA), Jose M. Alvarez (NVIDIA), Arun Mallya (NVIDIA), Jan Kautz (NVIDIA), and Pavlo Molchanov (NVIDIA)	. 10799
MetaFormer Is Actually What You Need for Vision Weihao Yu (NUS), Mi Luo (SEA AI Lab), Pan Zhou (Sea AI Lab), Chenyang Si (Sea AI Labs), Yichen Zhou (Sea AI Lab), Xinchao Wang (National University of Singapore), Jiashi Feng (ByteDance), and Shuicheng Yan (Sea AI Labs)	. 10809
Reversible Vision Transformers Karttikeya Mangalam (UC Berkeley), Haoqi Fan (Facebook AI Research), Yanghao Li (Facebook AI Research), Chao-Yuan Wu (Facebook), Bo Xiong (Facebook AI Research), Christoph Feichtenhofer (Facebook AI Research), and Jitendra Malik (University of California at Berkeley)	. 10820
Learned Queries for Efficient Local Attention Moab Arar (Tel Aviv University), Ariel Shamir (The Interdisciplinary Center), and Amit H. Bermano (Tel-Aviv University)	. 10831
Shunted Self-Attention via Multi-Scale Token Aggregation Sucheng Ren (South China University of Technology), Daquan Zhou (National University of Singapore), Shengfeng He (South China University of Technology), Jiashi Feng (ByteDance), and Xinchao Wang (National University of Singapore)	. 10843
Automatic Relation-Aware Graph Network Proliferation Shaofei Cai (Institute of Computing Technology, Chinese Academy of Sciences), Liang Li (Institute of Computing Technology, Chinese Academy of Sciences), Xinzhe Han (University of Chinese Academy of Sciences), Jiebo Luo (U. Rochester), Zheng-Jun Zha (University of Science and Technology of China), and Qingming Huang (University of Chinese Academy of Sciences)	. 10853
β-DARTS: Beta-Decay Regularization for Differentiable Architecture Search Peng Ye (fudan university), Baopu Li (BAIDU USA LLC), Yikang Li (Shanghai AI Lab), Tao Chen (Fudan University), Jiayuan Fan (Fudan University), and Wanli Ouyang (The University of Sydney)	. 10864
Distribution Consistent Neural Architecture Search Junyi Pan (Tencent), Chong Sun (Tencent Wechat), Yizhou Zhou (Tencent), Ying Zhang (Tencent), and Chen Li (Tencent)	. 10874

Training-Free Transformer Architecture Search1088Qinqin Zhou (Xiamen University), Kekai Sheng (Youtu Lab, Tencent1088Inc.), Xiawu Zheng (Xiamen University), Ke Li (Tencent), Xing Sun(Tencent), Yonghong Tian (Peking University), Jie Chen (Peking University), and Rongrong Ji (Xiamen University, China)	34
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge) 4
 Knowledge Distillation via the Target-Aware Transformer)5
 Knowledge Distillation: A Good Teacher Is Patient and Consistent	.5
An Image Patch Is a Wave: Phase-Aware Vision MLP	25
Dynamic MLP for Fine-Grained Image Classification by Leveraging Geographical and Temporal Information 1093 Lingfeng Yang (Nanjing University of Science and Technology), Xiang Li 1093 (Nanjing University of Science and Technology), Renjie Song (Megvii 1093 Inc.), Borui Zhao (Megvii Technology), Juntian Tao (Nanjing University of Science and Technology), Shihao Zhou (megvii), Jiajun Liang (Megvii), and Jian Yang (Nanjing University of Science and Technology) Science and Technology)	35
Controllable Dynamic Multi-Task Architectures	15
Grounded Language-Image Pre-Training	55
ZZ-Net: A Universal Rotation Equivariant Architecture for 2D Point Clouds	56

Oral 3.1.3: Human Pose Estimation & Tracking, Localization, and Object Pose Estimation

Adversarial Parametric Pose Prior
Temporal Feature Alignment and Mutual Information Maximization for Video-Based Human Pose Estimation
PoseTriplet: Co-Evolving 3D Human Pose Estimation, Imitation, and Hallucination Under Self-Supervision 11007 Kehong Gong (National University of Singapore), Bingbing Li (Nanyang 1207 Technological University), Jianfeng Zhang (NUS), Tao Wang (national 11007 university of singapore), Jing Huang (Huawei International Pte Ltd), Nichael Bi Mi (Huawei International Pte Ltd), Jiashi Feng (ByteDance), and Xinchao Wang (National University of Singapore) 11007
Generalizable Human Pose Triangulation
GLAMR: Global Occlusion-Aware Human Mesh Recovery With Dynamic Cameras
 Bailando: 3D Dance Generation by Actor-Critic GPT With Choreographic Memory
Contextual Instance Decoupling for Robust Multi-Person Pose Estimation 11050 Dongkai Wang (Peking University) and Shiliang Zhang (Peking University)

End-to-End Multi-Person Pose Estimation With Transformers
Meta Agent Teaming Active Learning for Pose Estimation
 Keypoint Transformer: Solving Joint Identification in Challenging Hands and Object Interactions for Accurate 3D Pose Estimation
Not All Tokens Are Equal: Human-Centric Visual Analysis via Token Clustering Transformer 11091 Wang Zeng (The Chinese University of Hong Kong), Sheng Jin (The University of Hong Kong), Wentao Liu (Sensetime), Chen Qian (SenseTime), Ping Luo (The University of Hong Kong), Wanli Ouyang (The University of Sydney), and Xiaogang Wang (Chinese University of Hong Kong, Hong Kong)
Occlusion-Robust Face Alignment Using a Viewpoint-Invariant Hierarchical Network Architecture
LASER: LAtent SpacE Rendering for 2D Visual Localization
Learning To Detect Scene Landmarks for Camera Localization
Geometric Transformer for Fast and Robust Point Cloud Registration
ARCS: Accurate Rotation and Correspondence Search
FisherMatch: Semi-Supervised Rotation Regression via Entropy-Based Filtering

Uni6D: A Unified CNN Framework Without Projection Breakdown for 6D Pose Estimation 11164 Xiaoke Jiang (Sensetime Group Limited), Donghai Li (SenseTime), Hao Chen (SenseTime Research), Ye Zheng (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Rui Zhao (SenseTime Group Limited), and Liwei Wu (SenseTime Research)

Poster 3.1: Image & Video Synthesis and Generation

OSSGAN: Open-Set Semi-Supervised Image Generation
Attribute Group Editing for Reliable Few-Shot Image Generation
 Few Shot Generative Model Adaption via Relaxed Spatial Structural Alignment
 Semantic-Shape Adaptive Feature Modulation for Semantic Image Synthesis
Retrieval-Based Spatially Adaptive Normalization for Semantic Image Synthesis
Generative Flows With Invertible Attentions
Style-Structure Disentangled Features and Normalizing Flows for Diverse Icon Colorization 11234 Yuan-kui Li (National Yang Ming Chiao Tung University), Yun-Hsuan Lien (National Yang Ming Chiao Tung University), and Yu-Shuen Wang (National Yang Ming Chiao Tung University)
SemanticStyleGAN: Learning Compositional Generative Priors for Controllable Image Synthesis and Editing

Manifold Learning Benefits GANs
DO-GAN: A Double Oracle Framework for Generative Adversarial Networks
 Improving GAN Equilibrium by Raising Spatial Awareness
Feature Statistics Mixing Regularization for Generative Adversarial Networks
 StyleSwin: Transformer-Based GAN for High-Resolution Image Generation
MaskGIT: Masked Generative Image Transformer
StyTr2: Image Style Transfer With Transformers
 Style Transformer for Image Inversion and Editing
Reduce Information Loss in Transformers for Pluralistic Image Inpainting

Incremental Transformer Structure Enhanced Image Inpainting With Masking Positional Encoding
Qiaole Dong (Fudan University), Chenjie Cao (Fudan University), and Yanwei Fu (Fudan University)
UniCoRN: A Unified Conditional Image Repainting Network
High-Fidelity GAN Inversion for Image Attribute Editing
HyperInverter: Improving StyleGAN Inversion via Hypernetwork
Spatially-Adaptive Multilayer Selection for GAN Inversion and Editing
On Aliased Resizing and Surprising Subtleties in GAN Evaluation
Dual-Path Image Inpainting With Auxiliary GAN Inversion
InOut: Diverse Image Outpainting via GAN Inversion
Diverse Plausible 360-Degree Image Outpainting for Efficient 3DCG Background Creation 11431 Naofumi Akimoto (Keio University), Yuhi Matsuo (Keio University), and Yoshimitsu Aoki (Keio University)
Contextual Outpainting With Object-Level Contrastive Learning
RePaint: Inpainting Using Denoising Diffusion Probabilistic Models
Perception Prioritized Training of Diffusion Models

Dynamic Dual-Output Diffusion Models
Generating High Fidelity Data From Low-Density Regions Using Diffusion Models
Global Context With Discrete Diffusion in Vector Quantised Modelling for Image Generation 11492 Minghui Hu (Nanyang Technological University), Yujie Wang (Sensetime Research), Tat-Jen Cham (Nanyang Technological University), Jianfei Yang (Nanyang Technological University), and P.N. Suganthan (Nanyang Technological University)
Bridging Global Context Interactions for High-Fidelity Image Completion
Autoregressive Image Generation Using Residual Quantization
Arbitrary-Scale Image Synthesis
Cluster-Guided Image Synthesis With Unconditional Models

Poster 3.1: Segmentation, Grouping and Shape Analysis

Dynamic Prototype Convolution Network for Few-Shot Semantic Segmentation Jie Liu (University of Amsterdam), Yanqi Bao (Northeastern University), Guo-Sen Xie (Inception Institute of Artificial Intelligence), Huan Xiong (Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), ,), Jan-Jakob Sonke (The Netherlands Cancer Institute), and Efstratios Gavves (University of Amsterdam)	11543
Generalized Few-Shot Semantic Segmentation	11553
Zhuotao Tian (The Chinese University of Hong Kong), Xin Lai (The	
Chinese University of Hong Kong), Li Jiang (The Chinese University of	
Hong Kong), Shu Liu (SmartMore), Michelle Shu (Cornell University),	
Hengshuang Zhao (University of Oxford), and Jiaya Jia (Chinese	
University of Hong Kong)	
Learning Non-Target Knowledge for Few-Shot Semantic Segmentation	11563
Yuanwei Liu (Northwestern Polytechnical University), Nian Liu	
(Inception Institute of Artificial Intelligence), Qinglong Cao	
(Northwestern Polytechnical University), Xiwen Yao (Northwestern	
Polytechnical University), Junwei Han (NWPU, China), and Ling Shao	
(NCAI/IIAI/MBZUAI)	

Decoupling Zero-Shot Semantic Segmentation
Class-Balanced Pixel-Level Self-Labeling for Domain Adaptive Semantic Segmentation
ContrastMask: Contrastive Learning To Segment Every Thing
The Neurally-Guided Shape Parser: Grammar-Based Labeling of 3D Shape Regions With
Approximate Inference
AutoGPart: Intermediate Supervision Search for Generalizable 3D Part Segmentation 11614 Xueyi Liu (Tsinghua University), Xiaomeng Xu (Tsinghua University), Anyi Rao (The Chinese University of Hong Kong), Chuang Gan (MIT-IBM Watson AI Lab), and Li Yi (Tsinghua University)
 APES: Articulated Part Extraction From Sprite Sheets
GASP, a Generalized Framework for Agglomerative Clustering of Signed Graphs and Its Application to Instance Segmentation
CycleMix: A Holistic Strategy for Medical Image Segmentation From Scribble Supervision 11646 Ke Zhang (Fudan University) and Xiahai Zhuang (Fudan University)
Cross-Patch Dense Contrastive Learning for Semi-Supervised Segmentation of Cellular Nuclei in Histopathologic Images
C-CAM: Causal CAM for Weakly Supervised Semantic Segmentation on Medical Image 11666 Zhang Chen (Xi'an Jiaotong University), Zhiqiang Tian (Xi'an Jiaotong University), Jihua Zhu (Xi'an Jiaotong University), Ce Li (Lanzhou University of Technology), and Shaoyi Du (Xi'an Jiaotong Unviersity)

CRIS: CLIP-Driven Referring Image Segmentation
MatteFormer: Transformer-Based Image Matting via Prior-Tokens
Boosting Robustness of Image Matting With Context Assembling and Strong Data Augmentation 11697
Yutong Dai (The University of Adelaide), Brian Price (Adobe), He Zhang (Adobe), and Chunhua Shen (University of Adelaide, Australia)
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection
Multi-Source Uncertainty Mining for Deep Unsupervised Saliency Detection
Modeling Motion With Multi-Modal Features for Text-Based Video Segmentation
GAT-CADNet: Graph Attention Network for Panoptic Symbol Spotting in CAD Drawings 11737 Zhaohua Zheng (Technical University of Munich), Jianfang Li (alibaba), Lingjie Zhu (Alibaba Group), Honghua Li (Alibaba A.I. Labs), Frank Petzold (Technical University of Munich), and Ping Tan (Simon Fraser University)
 Bending Graphs: Hierarchical Shape Matching Using Gated Optimal Transport
CAPRI-Net: Learning Compact CAD Shapes With Adaptive Primitive Assembly

RIM-Net: Recursive Implicit Fields for Unsupervised Learning of Hierarchical Shape Structures
Discovering Objects That Can Move
PatchFormer: An Efficient Point Transformer With Patch Attention
 Panoptic-PHNet: Towards Real-Time and High-Precision LiDAR Panoptic Segmentation via Clustering Pseudo Heatmap
SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation
An MIL-Derived Transformer for Weakly Supervised Point Cloud Segmentation
 Weakly Supervised Segmentation on Outdoor 4D Point Clouds With Temporal Matching and Spatial Graph Propagation
 Point2Cyl: Reverse Engineering 3D Objects From Point Clouds to Extrusion Cylinders

Poster 3.1: Deep Learning Architectures & Techniques

Demystifying the Neural Tangent Kernel From a Practical Perspective: Can It Be Trusted for Neural Architecture Search Without Training?
BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule
Arch-Graph: Acyclic Architecture Relation Predictor for Task-Transferable Neural Architecture Search 11871 Minbin Huang (Sun-Yat-sen University), Zhijian Huang (Sun-Yat-sen 11871 University), Changlin Li (Monash University), Xin Chen (The University) 11871 of Hong Kong), Hang Xu (Huawei Noah's Ark Lab), Zhenguo Li (Huawei Noah's Ark Lab), and Xiaodan Liang (Sun Yat-sen University)
Shapley-NAS: Discovering Operation Contribution for Neural Architecture Search
GreedyNASv2: Greedier Search With a Greedy Path Filter
Neural Architecture Search With Representation Mutual Information
Performance-Aware Mutual Knowledge Distillation for Improving Neural Architecture Search . 11912 Pengtao Xie (UC San Diego) and Xuefeng Du (Unversity of Wisconsin, Madison)
Knowledge Distillation With the Reused Teacher Classifier
Self-Distillation From the Last Mini-Batch for Consistency Regularization

Decoupled Knowledge Distillation
Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs
A ConvNet for the 2020s
Beyond Fixation: Dynamic Window Visual Transformer
Lite Vision Transformer With Enhanced Self-Attention
 Swin Transformer V2: Scaling Up Capacity and Resolution
The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy 12010 Tianlong Chen (Unversity of Texas at Austin), Zhenyu Zhang (University 12010 of Science and Technology of China), Yu Cheng (Microsoft Research), Ahmed Awadallah (Microsoft), and Zhangyang Wang (University of Texas at Austin)
MulT: An End-to-End Multitask Learning Transformer
Towards Robust Vision Transformer12032Xiaofeng Mao (Alibaba Group), Gege Qi (Alibaba), Yuefeng Chen (AlibabaGroup), Xiaodan Li (Alibaba Group), Ranjie Duan (Swinburne Universityof Technology), Shaokai Ye (EPFL), Yuan He (Alibaba Group), and HuiXue (Alibaba)
DearKD: Data-Efficient Early Knowledge Distillation for Vision Transformers

MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens 12053 Jiemin Fang (Huazhong University of Science and Technology), Lingxi Xie (Huawei Inc.), Xinggang Wang (Huazhong University of Science and Technology), Xiaopeng Zhang (Huawei Cloud EI), Wenyu Liu (Huazhong University of Science and Technology), and Qi Tian (Huawei Cloud & AI)
NomMer: Nominate Synergistic Context in Vision Transformer for Visual Recognition
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation12073Wenqiang Zhang (Huazhong University of Science and Technology), Zilong12073Huang (Tencent), Guozhong Luo (Tencent), Tao Chen (Fudan University),12073Xinggang Wang (Huazhong University of Science and Technology), Wenyu12073Liu (Huazhong University of Science and Technology), Gang Yu12073(Tencent), and Chunhua Shen (University of Adelaide, Australia)12073
Multi-Scale High-Resolution Vision Transformer for Semantic Segmentation
Scaling Vision Transformers
Bridged Transformer for Vision and Point Cloud 3D Object Detection
CSWin Transformer: A General Vision Transformer Backbone With Cross-Shaped Windows 12114 Xiaoyi Dong (University of Science and Technology of China), Jianmin Bao (Microsoft Research Asia), Dongdong Chen (Microsoft Cloud AI), Weiming Zhang (University of Science and Technology of China), Nenghai Yu (University of Science and Technology of China), Lu Yuan (Microsoft), Dong Chen (Microsoft Research Asia), and Baining Guo (MSR Asia)
TransMix: Attend To Mix for Vision Transformers
 MiniViT: Compressing Vision Transformers With Weight Multiplexing
Fine-Tuning Image Transformers Using Learnable Memory

Patch Slimming for Efficient Vision Transformers Yehui Tang (Peking University), Kai Han (Noah's Ark Lab, Huawei Technologies), Yunhe Wang (Huawei Technologies), Chang Xu (University of Sydney), Jianyuan Guo (Noah's Ark Lab, Huawei Technologies), Chao Xu (Peking University), and Dacheng Tao (The University of Sydney)	12155
CMT: Convolutional Neural Networks Meet Vision Transformers Jianyuan Guo (Noah's Ark Lab, Huawei Technologies), Kai Han (Huawei Noah's Ark Lab), Han Wu (University of Sydney), Yehui Tang (Peking University), Xinghao Chen (Huawei Noah's Ark Lab), Yunhe Wang (Huawei Technologies), and Chang Xu (University of Sydney)	12165
Multimodal Token Fusion for Vision Transformers Yikai Wang (Tsinghua University), Xinghao Chen (Huawei Noah's Ark Lab), Lele Cao (Tsinghua University), Wenbing Huang (Tsinghua University), Fuchun Sun (Tsinghua University), and Yunhe Wang (Huawei Technologies)	12176

Poster 3.1: Efficient Learning & Inference

 CAFE: Learning To Condense Dataset by Aligning Features	.186
Lite-MDETR: A Lightweight Multi-Modal Detector 12 Qian Lou (Samsung Research America), Yen-Chang Hsu (Samsung Research 12 America), Burak Uzkent (Stanford University), Ting Hua (Samsung Research America), Yilin Shen (Samsung Research America), and Hongxia Jin (Samsung Research America) 12	196
DeeCap: Dynamic Early Exiting for Efficient Image Captioning	206
Searching the Deployable Convolution Neural Networks for GPUs	217
Active Learning by Feature Mixing	227
When To Prune? A Policy Towards Early Structural Pruning	.237

Contrastive Dual Gating: Learning Sparse Features With Contrastive Learning
How Well Do Sparse ImageNet Models Transfer?
Rep-Net: Efficient On-Device Learning via Feature Reprogramming
CHEX: CHannel EXploration for CNN Model Compression
HODEC: Towards Efficient High-Order DEcomposed Convolutional Neural Networks
AdaViT: Adaptive Vision Transformers for Efficient Image Recognition
Cross-Image Relational Knowledge Distillation for Semantic Segmentation
Mr.BiQ: Post-Training Non-Uniform Quantization Based on Minimizing the Reconstruction Error
IntraQ: Learning Synthetic Images With Intra-Class Heterogeneity for Zero-Shot Network 12329 Quantization 12329 Yunshan Zhong (xiamen university), Mingbao Lin (Xiamen University, 1200 China), Gongrui Nan (Xmu), Jianzhuang Liu (Huawei Noah's Ark Lab), Baochang Zhang (Beihang University), Yonghong Tian (Peking University), and Rongrong Ji (Xiamen University, China) 12329
DECORE: Deep Compression With Reinforcement Learning

Towards Efficient and Scalable Sharpness-Aware Minimization Yong Liu (National University of Singapore), Siqi Mai (National University of Singapore), Xiangning Chen (University of California, Los Angeles), Cho-Jui Hsieh (UCLA), and Yang You (National University of Singapore)	12350
AEGNN: Asynchronous Event-Based Graph Neural Networks Simon Schaefer (TUM), Daniel Gehrig (University of Zurich & ETH Zurich), and Davide Scaramuzza (University of Zurich & ETH Zurich, Switzerland)	12361
DiSparse: Disentangled Sparsification for Multitask Model Compression Xinglong Sun (University of Illinois at Urbana-Champaign), Ali Hassani (University of Oregon), Zhangyang Wang (University of Texas at Austin), Gao Huang (Tsinghua), and Humphrey Shi (U of Oregon/UIUC)	12372
Multi-Modal Extreme Classification Anshul Mittal (IIT Delhi), Kunal Dahiya (IIT Delhi), Shreya Malani (Microsoft), Janani Ramaswamy (Microsoft), Seba Kuruvilla (MICROSOFT), Jitendra Ajmera (Microsoft, India), Keng-hao Chang (Microsoft), Sumeet Agarwal (Department of Electrical Engineering, IIT Delhi), Purushottam Kar (IIT Kanpur), and Manik Varma (Microsoft Research)	12383
A Sampling-Based Approach for Efficient Clustering in Large Datasets Georgios Exarchakis (IHU Strasbourg), Omar Oubari (Sorbonne Université), and Gregor Lenz (Institut de la Vision)	.12393
Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems Through Stochastic Contraction <i>Hyungjin Chung (KAIST), Byeongsu Sim (Department of Mathematical</i> <i>Sciences, KAIST), and Jong Chul Ye (Kim Jaechul Graduate School of AI,</i> <i>KAIST, Korea)</i>	12403
Learnable Lookup Table for Neural Network Quantization Longguang Wang (National University of Defense Technology), Xiaoyu Dong (The University of Tokyo / RIKEN AIP), Yingqian Wang (National University of Defense Technology), Li Liu (National University of Defense Technology), Wei An (National University of Defense Technology), and Yulan Guo (National University of Defense Technology)	12413
Instance-Aware Dynamic Neural Network Quantization	12424
 Training High-Performance Low-Latency Spiking Neural Networks by Differentiation on Spike Representation <i>Qingyan Meng (The Chinese University of Hong Kong, Shenzhen and Shenzhen Research Institute of Big Data), Mingqing Xiao (Peking University), Shen Yan (Peking University), Yisen Wang (Peking University), Zhouchen Lin (Peking University), and Zhi-Quan Luo (The Chinese University of Hong Kong, Shenzhen and Shenzhen Research Institute of Big Data)</i> 	. 12434

Fire Together Wire Together: A Dynamic Pruning Approach With Self-Supervised Mask Prediction
 Wavelet Knowledge Distillation: Towards Efficient Image-to-Image Translation
PokeBNN: A Binary Pursuit of Lightweight Accuracy
Automated Progressive Learning for Efficient Training of Vision Transformers
DeltaCNN: End-to-End CNN Inference of Sparse Frame Differences in Videos
Channel Balancing for Accurate Quantization of Winograd Convolutions
ClusterGNN: Cluster-Based Coarse-To-Fine Graph Neural Network for Efficient Feature Matching
Interspace Pruning: Using Adaptive Filter Representations To Improve Training of Sparse CNNs
AlignQ: Alignment Quantization With ADMM-Based Correlation Preservation
TVConv: Efficient Translation Variant Convolution for Layout-Aware Visual Processing

SplitNets: Designing Neural Architectures for Efficient Distributed Computing on
Head-Mounted Systems
Xin Dong (Harvard Univeristy), Barbara De Salvo (Facebook), Meng Li
(Facebook Inc), Chiao Liu (Facebook Reality Lab), Zhongnan Qu (ETH
Zurich), H.T. Kung (Harvard University), and Ziyun Li (Facebook Inc)
TO-FLOW: Efficient Continuous Normalizing Flows With Temporal Optimization Adjoint With
Moving Speed 12560
Shian Du (South China University of Technology), Yihong Luo (The Hong
Kong University of Science and Technology), Wei Chen (South China
University of Technology), Jian Xu (School of Mathematics, South China
University of Technology (SCUT)), and Delu Zeng (South China
University of Technology)

Poster 3.1: Physics-Based Vision and Shape-From-X

DiLiGenT102: A Photometric Stereo Benchmark Dataset With Controlled Shape and Material Variation Jieji Ren (Shanghai Jiao Tong University), Feishi Wang (Peking University), Jiahao Zhang (Peking University), Qian Zheng (Nanyang Technological University), Mingjun Ren (Shanghai Jiao Tong University), and Boxin Shi (Peking University)	. 12571
Universal Photometric Stereo Network Using Global Lighting Contexts Satoshi Ikehata (National Institute of Informatics)	. 12581
Uncertainty-Aware Deep Multi-View Photometric Stereo Berk Kaya (ETH Zurich), Suryansh Kumar (ETH Zurich), Carlos Oliveira (CVL Zurich), Vittorio Ferrari (Google Research), and Luc Van Gool (ETH Zurich)	. 12591
Fast Light-Weight Near-Field Photometric Stereo Daniel Lichy (University of Maryland), Soumyadip Sengupta (University of Washington), and David W. Jacobs (University of Maryland, USA)	. 12602
Glass Segmentation Using Intensity and Spectral Polarization Cues Haiyang Mei (Dalian University of Technology), Bo Dong (Princeton University), Wen Dong (Dalian University of Technology), Jiaxi Yang (Dalian University of Technology), Seung-Hwan Baek (POSTECH), Felix Heide (Princeton University), Pieter Peers (College of William & Mary), Xiaopeng Wei (Dalian University of Technology), and Xin Yang (Dalian University of Technology)	. 12612
Shape From Polarization for Complex Scenes in the Wild Chenyang Lei (HKUST), Chenyang Qi (The Hong Kong University of Science and Technology), Jiaxin Xie (The Hong Kong university of science and technology), Na Fan (HKUST), Vladlen Koltun (Apple), and Qifeng Chen (HKUST)	. 12622
Deep Depth From Focus With Differential Focus Volume Fengting Yang (Pennsylvania State University), Xiaolei Huang (The Pennsylvania State University), and Zihan Zhou (Penn State University)	. 12632

Optimal LED Spectral Multiplexing for NIR2RGB Translation
Shape From Thermal Radiation: Passive Ranging Using Multi-Spectral LWIR Measurements 12651 Yasuto Nagase (Nara Institute of Science and Technology), Takahiro Kushida (Nara Institute of Science and Technology), Kenichiro Tanaka (Ritsumeikan University), Takuya Funatomi (Nara Institute of Science and Technology), and Yasuhiro Mukaigawa (NAIST)
NAN: Noise-Aware NeRFs for Burst-Denoising
Estimating Fine-Grained Noise Model via Contrastive Learning
Real-Time Hyperspectral Imaging in Hardware via Trained Metasurface Encoders
MNSRNet: Multimodal Transformer Network for 3D Surface Super-Resolution
PhyIR: Physics-Based Inverse Rendering for Panoramic Indoor Images

Poster 3.1: Visual Reasoning

Neural Shape Mating: Self-Supervised Object Assembly With Adversarial Shape Priors
Learning To Anticipate Future With Dynamic Context Removal
Self-Supervised Spatial Reasoning on Multi-View Line Drawings
Contextual Debiasing for Visual Recognition With Causal Mechanisms

Poster 3.1: 3D From Multi-View & Sensors

Relative Pose From a Calibrated and an Uncalibrated Smartphone Image	'56
 Exploiting Rigidity Constraints for LiDAR Scene Flow Estimation	'66
 NICE-SLAM: Neural Implicit Scalable Encoding for SLAM	'76
 NinjaDesc: Content-Concealing Visual Descriptors via Adversarial Learning	'87
ScaleNet: A Shallow Architecture for Scale Estimation	'98
Camera Pose Estimation Using Implicit Distortion Models	609
GIFS: Neural Implicit Function for General Shape Representation	19
Learning Deep Implicit Functions for 3D Shapes With Dynamic Code Clouds	30
SPAMs: Structured Implicit Parametric Models	41
Deblur-NeRF: Neural Radiance Fields From Blurry Images	51

Panoptic Neural Fields: A Semantic Object-Aware Neural Scene Representation Abhijit Kundu (Google), Kyle Genova (Google Research), Xiaoqi Yin (Google), Alireza Fathi (Google), Caroline Pantofaru (Google Research), Leonidas J. Guibas (Stanford University), Andrea Tagliasacchi (Google Brain and University of Toronto), Frank Dellaert (Georgia Tech), and Thomas Funkhouser (Google Research)	12861
Depth-Supervised NeRF: Fewer Views and Faster Training for Free Kangle Deng, Andrew Liu (Google), Jun-Yan Zhu (Carnegie Mellon University), and Deva Ramanan (Carnegie Mellon University)	12872
Dense Depth Priors for Neural Radiance Fields From Sparse Input Views Barbara Roessle (Technical University of Munich), Jonathan T. Barron (Google Research), Ben Mildenhall (Google Research), Pratul P. Srinivasan (Google Research), and Matthias Nießner (Technical University of Munich)	12882
EfficientNeRF - Efficient Neural Radiance Fields Tao Hu (Chinese University of Hong Kong), Shu Liu (SmartMore), Yilun Chen (Chinese University of Hong Kong), Tiancheng Shen (The Chinese University of Hong Kong), and Jiaya Jia (Chinese University of Hong Kong)	12892
InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Mijeong Kim (Seoul National Univ), Seonguk Seo (Seoul National University), and Bohyung Han (Seoul National University)	12902
Mega-NERF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs Haithem Turki (Carnegie Mellon University), Deva Ramanan (Carnegie Mellon University), and Mahadev Satyanarayanan (Carnegie Mellon University)	12912
Urban Radiance Fields Konstantinos Rematas (Google), Andrew Liu (Google), Pratul P. Srinivasan (Google Research), Jonathan T. Barron (Google Research), Andrea Tagliasacchi (Google Brain and University of Toronto), Thomas Funkhouser (Google Research), and Vittorio Ferrari (Google Research)	12922
Hallucinated Neural Radiance Fields in the Wild Xingyu Chen (Xi'an Jiaotong University), Qi Zhang (Tencent AI Lab), Xiaoyu Li (Tencent AI Lab), Yue Chen (Xi'an Jiaotong University), Ying Feng (Tencent AI Lab), Xuan Wang (Tencent AI Lab), and Jue Wang (Tencent AI Lab)	12933
Towards Multimodal Depth Estimation From Light Fields <i>Titus Leistner (Universität Heidelberg), Radek Mackowiak (Heidelberg</i> <i>University), Lynton Ardizzone (Heidelberg University), Ullrich Köthe</i> <i>(University of Heidelberg), and Carsten Rother (University of</i> <i>Heidelberg)</i>	12943
Degradation-Agnostic Correspondence From Resolution-Asymmetric Stereo Xihao Chen (University of Science and Technology of China), Zhiwei Xiong (University of Science and Technology of China), Zhen Cheng (University of Science and Technology of China), Jiayong Peng (University of Science and Technology of China), Yueyi Zhang (University of Science and Technology of China), and Zheng-Jun Zha (University of Science and Technology of China)	12952

Uniform Subdivision of Omnidirectional Camera Space for Efficient Spherical Stereo 129 Matching 129 Donghun Kang (KAIST), Hyeonjoong Jang (KAIST), Jungeon Lee (Korea 129 Advanced Institute of Science and Technology), Chong-Min Kyung (Korea 129 Advanced Institute of Science and Technology), and Min H. Kim (KAIST) 129	962
Attention Concatenation Volume for Accurate and Efficient Stereo Matching	971
Generalized Binary Search Network for Highly-Efficient Multi-View Stereo	981
 Revisiting Domain Generalized Stereo Matching Networks From a Feature Consistency Perspective	991
 GraftNet: Towards Domain Generalized Stereo Matching With a Broad-Spectrum and Task-Oriented Feature	002
 ITSA: An Information-Theoretic Approach to Automatic Shortcut Avoidance and Domain Generalization in Stereo Matching Networks	012
ActiveZero: Mixed Domain Learning for Active Stereovision With Zero Annotation	023
FoggyStereo: Stereo Matching With Fog Volume Representation 130 <i>Chengtang Yao (Beijing Institute of Technology) and Lidong Yu (NIO)</i>	033

Poster 3.1: Pose Estimation & Tracking

Multi-Person Extreme Motion Prediction Wen Guo (INRIA), Xiaoyu Bie (INRIA), Xavier Alameda-Pineda (INRIA), and Francesc Moreno-Noguer (IRI)	13043
Learning Local-Global Contextual Adaptation for Multi-Person Pose Estimation Nan Xue (Wuhan University), Tianfu Wu (NC State University), Gui-Song Xia (Wuhan University), and Liangpei Zhang (Wuhan University)	13055

AdaptPose: Cross-Dataset Adaptation for 3D Human Pose Estimation by Learnable Motion Generation	;
Mohsen Gholami (University of British Columbia), Bastian Wandt (University of British Columbia), Helge Rhodin (UBC), Rabab Ward (University of British Columbia), and Z. Jane Wang (University of British Columbia)	
 Single-Stage Is Enough: Multi-Person Absolute 3D Pose Estimation	
Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation	;
Trajectory Optimization for Physics-Based Reconstruction of 3D Human Pose From Monocular Video	;
Ray3D: Ray-Based 3D Human Pose Estimation for Monocular Absolute 3D Localization)
Lite Pose: Efficient Architecture Design for 2D Human Pose Estimation	,
Location-Free Human Pose Estimation	,
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation	,
Estimating Egocentric 3D Human Pose in the Wild With External Weak Supervision	,
 Physical Inertial Poser (PIP): Physics-Aware Real-Time Human Motion Tracking From Sparse Inertial Sensors	7

PoseKernelLifter: Metric Lifting of 3D Human Pose Using Sound
Differentiable Dynamics for Articulated 3D Human Motion Reconstruction
COAP: Compositional Articulated Occupancy of People
Capturing Humans in Motion: Temporal-Attentive 3D Human Pose and Shape Estimation From Monocular Video
 SC2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration
MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose Estimation in Video 13222 Jinlu Zhang (Wuhan University), Zhigang Tu (Wuhan University), Jianyu Yang (Soochow University), Yujin Chen (Technical University of Munich), and Junsong Yuan (State University of New York at Buffalo, USA)
Putting People in Their Place: Monocular Regression of 3D People in Depth
FLAG: Flow-Based 3D Avatar Generation From Sparse Observations
GOAL: Generating 4D Whole-Body Motion for Hand-Object Grasping

Capturing and Inferring Dense Full-Body Human-Scene Contact
Chun-Hao P. Huang (Max Planck Institute for Intelligent Systems),
Hongwei Yi (Max Planck Institute for Intelligent Systems), Markus
Höschle (Max Planck Institute), Matvey Safroshkin (Max Planck
Institute for Intellegent systems), Tsvetelina Alexiadis (Max-Planck
Institute for Intelligent Systems), Senya Polikovsky (Max Planck
Institute for Intelligent Systems), Daniel Scharstein (Middlebury
College), and Michael J. Black (Max Planck Institute for Intelligent
Systems)
BodyMap: Learning Full-Body Dense Correspondence Map
Rocco (Facebook AI Research), and Tony Tung (Facebook Reality Labs)
ICON: Implicit Clothed Humans Obtained From Normals

Oral 3.2.1: Security, Transparency, Fairness, Accountability, Privacy & Ethics in Vision

Adversarial Texture for Fooling Person Detectors in the Physical World Zhanhao Hu (Tsinghua University), Siyuan Huang (Tsinghua University), Xiaopei Zhu (Tsinghua University), Fuchun Sun (Tsinghua), Bo Zhang (Tsinghua University), and Xiaolin Hu (Tsinghua University)	13297
Infrared Invisible Clothing: Hiding From Infrared Detectors at Multiple Angles in Real World	13307
Xiaopei Zhu (Tsinghua University), Zhanhao Hu (Tsinghua University), Siyuan Huang (Tsinghua University), Jianmin Li (Tsinghua University), and Xiaolin Hu (Tsinghua University)	
Enhancing Classifier Conservativeness and Robustness by Polynomiality Ziqi Wang (Delft University of Technology) and Marco Loog (Delft University of Technology & University of Copenhagen)	13317
Backdoor Attacks on Self-Supervised Learning Aniruddha Saha (University of Maryland Baltimore County), Ajinkya Tejankar (UMBC), Soroush Abbasi Koohpayegani (University of Maryland Baltimore County), and Hamed Pirsiavash (University of California Davis)	13327
Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Xiangyu Qi (Princeton University), Tinghao Xie (Zhejiang University), Ruizhe Pan (Zhejiang University), Jifeng Zhu (Tencent), Yong Yang (Tencent), and Kai Bu (Zhejiang University)	13337
Few-Shot Backdoor Defense Using Shapley Estimation Jiyang Guan (Institute of Automation, Chinese Academy of Sciences), Zhuozhuo Tu (The University of Sydney), Ran He (Institute of Automation, Chinese Academy of Sciences), and Dacheng Tao (JD.com)	13348

Better Trigger Inversion Optimization in Backdoor Scanning	3358
Bandits for Structure Perturbation-Based Black-Box Attacks To Graph Neural Networks With Theoretical Guarantees	3369
Improving Robustness Against Stealthy Weight Bit-Flip Attacks by Output Code Matching 13 Ozan Özdenizci (Graz University of Technology) and Robert Legenstein (Graz University of Technology)	3378
 LAS-AT: Adversarial Training With Learnable Attack Strategy	3388
Subspace Adversarial Training	3399
Pyramid Adversarial Training Improves ViT Performance	3409
 Fingerprinting Deep Neural Networks Globally via Universal Adversarial Perturbations	3420
Robust Image Forgery Detection Over Online Social Network Shared Images	3430
Quantifying Societal Bias Amplification in Image Captioning	3440

Oral 3.2.2: Image & Video Synthesis and Generation (II); Video Analysis & Understanding

Drop the GAN: In Defense of Patches Nearest Neighbors As Single Image Generative Models ... 13450 Niv Granot (Weizmann Institute of Science), Ben Feinstein (Weizmann Institute of Science), Assaf Shocher (Weizmann Institute of Science), Shai Bagon (Weizmann Institute of Science), and Michal Irani (Weizmann Institute, Israel)

GAN-Supervised Dense Visual Alignment	160
 Look Closer To Supervise Better: One-Shot Font Generation via Component-Based Discriminator	172
Text2Mesh: Text-Driven Neural Stylization for Meshes1343Oscar Michel (University of Chicago), Roi Bar-On (University of Chicago), Richard Liu (University of Chicago), Sagie Benaim (University of Copenhagen), and Rana Hanocka (University of Chicago)	182
 StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation	193
Physical Simulation Layer for Accurate 3D Modeling	504
 Fourier PlenOctrees for Dynamic Radiance Field Rendering in Real-Time	514
Neural Texture Extraction and Distribution for Controllable Person Image Synthesis	525
I M Avatar: Implicit Morphable Head Avatars From Videos	535

E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations
RCL: Recurrent Continuous Localization for Temporal Action Detection
 Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection
MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Long-Term Video
Recognition
Berkeley), and Christoph Feichtenhofer (Facebook AI Research)

Oral 3.2.3: Recognition, Learning for Vision, and Robot Vision

DN-DETR: Accelerate DETR Training by Introducing Query DeNoising Feng Li (Hong Kong Univerity of Science and Technology), Hao Zhang (hkust), Shilong Liu (Tsinghua University), Jian Guo (IDEA Research), Lionel M. Ni (The Hong Kong University of Science and Technology (Guangzhou), ,), and Lei Zhang (International Digital Economy Academy (IDEA), ,)	13609
Proper Reuse of Image Classification Features Improves Object Detection <i>Cristina Vasconcelos (Google), Vighnesh Birodkar (Google), and Vincent Dumoulin (Google)</i>	13618
Boosting 3D Object Detection by Simulating Multimodality on Point Clouds Wu Zheng (The Chinese University of Hong Kong), Mingxuan Hong (The Chinese University of Hong Kong), Li Jiang (Max Planck Institute for Informatics), and Chi-Wing Fu (The Chinese University of Hong Kong)	13628

TransVPR: Transformer-Based Place Recognition With Multi-Level Attention Aggregation 13638 Ruotong Wang (Xi'an Jiaotong University), Yanqing Shen (Xi'an Jiaotong University), Weiliang Zuo (Xi'an Jiaotong University), Sanping Zhou (Xi'an Jiaotong University), and Nanning Zheng (Xi'an Jiaotong University)
Disentangling Visual Embeddings for Attributes and Objects
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small Object Detection 13658 Chenhongyi Yang (University of Edinburgh), Zehao Huang (TuSimple), and Naiyan Wang (TuSimple)
Unknown-Aware Object Detection: Learning What You Don't Know From Videos in the Wild 13668 Xuefeng Du (Unversity of Wisconsin, Madison), Xin Wang (Microsoft Research), Gabriel Gozum (University of Wisconsin - Madison), and Yixuan Li (University of Wisconsin-Madison)
Interpretable Part-Whole Hierarchies and Conceptual-Semantic Relationships in Neural Networks
Can Neural Nets Learn the Same Model Twice? Investigating Reproducibility and Double Descent From the Decision Boundary Perspective
Calibrating Deep Neural Networks by Pairwise Constraints
Lifelong Graph Learning
OrphicX: A Causality-Inspired Latent Variable Model for Interpreting Graph Neural Networks 13719 Wanyu Lin (The Hong Kong Polytechnic University), Hao Lan (University of Toronto), Hao Wang (Rutgers University), and Baochun Li (University of Toronto)
Coarse-To-Fine Q-Attention: Efficient Learning for Visual Robotic Manipulation via Discretisation
Dual Task Learning by Leveraging Both Dense Correspondence and Mis-Correspondence for Robust Change Detection With Imperfect Matches

Cross-View Transformers for Real-Time Map-View Semantic Segmentation	13750
Brady Zhou (UT Austin) and Philipp Krähenbühl (UT Austin)	

Poster 3.2: Video Analysis & Understanding

UnweaveNet: Unweaving Activity Stories	3760
 Weakly-Supervised Online Action Segmentation in Multi-View Instructional Videos	3770
Audio-Adaptive Activity Recognition Across Video Domains	3781
Frame-Wise Action Representations for Long Videos via Sequence Contrastive Learning	3791
Image Based Reconstruction of Liquids From 2D Surface Detections 13 Florian Richter (UCSD), Ryan K. Orosco (University of California San 13 Diego), and Michael C. Yip (UC San Diego)	3801
Learning From Untrimmed Videos: Self-Supervised Video Representation Learning With 13 Hierarchical Consistency 13 Zhiwu Qing (Huazhong University of Science and Technology), Shiwei 14 Zhang (DAMO Academy, Alibaba Group), Ziyuan Huang (National University 15 of Singapore), Yi Xu (Alibaba Group), Xiang Wang (Huazhong University 16 of Science and Technology), Mingqian Tang (Alibaba Group), Changxin 17 Gao (Huazhong University of Science and Technology), Rong Jin (alibaba 17 group), and Nong Sang (Huazhong University of Science and Technology) 17	3811
How Do You Do It? Fine-Grained Action Understanding With Pseudo-Adverbs	3822
Programmatic Concept Learning for Human Motion Description and Synthesis	3833
Learning To Recognize Procedural Activities With Distant Supervision	3843

 Implicit Motion Handling for Video Camouflaged Object Detection	1
Dynamic Scene Graph Generation via Anticipatory Pre-Training	1
Learning To Refactor Action and Co-Occurrence Features for Temporal Action Localization 13874 Kun Xia (Xi'an Jiaotong University), Le Wang (Xi'an Jiaotong University), Sanping Zhou (Xi'an Jiaotong University), Nanning Zheng (Xi'an Jiaotong University), and Wei Tang (University of Illinois at Chicago)	1
OCSampler: Compressing Videos to One Clip With Single-Step Sampling	1
A Hybrid Egocentric Activity Anticipation Framework via Memory-Augmented Recurrent and One-Shot Representation Forecasting	1
TubeFormer-DeepLab: Video Mask Transformer13904Dahun Kim (KAIST), Jun Xie (Google), Huiyu Wang (JHU), Siyuan Qiao(Google), Qihang Yu (Johns Hopkins University), Hong-Seok Kim(Google), Hartwig Adam (Google), In So Kweon (KAIST), and Liang-ChiehChen (Google Inc.)	1
ASM-Loc: Action-Aware Segment Modeling for Weakly-Supervised Temporal Action Localization 13915	•
Bo He (University of Maryland), Xitong Yang (University of Maryland), Le Kang (Baidu), Zhiyu Cheng (BAIDU USA LLC), Xin Zhou (Baidu USA), and Abhinav Shrivastava (University of Maryland)	
STRPM: A Spatiotemporal Residual Predictive Model for High-Resolution Video Prediction13926 Zheng Chang (University of Chinese Academy of Sciences), Xinfeng Zhang (University of Chinese Academy of Sciences), Shanshe Wang (Peking University), Siwei Ma (Peking University, China), and Wen Gao (PKU)	5
Look for the Change: Learning Object States and State-Modifying Actions From Untrimmed Web Videos	5
End-to-End Compressed Video Representation Learning for Generic Event Boundary Detection 13947 Congcong Li (UCAS), Xinyao Wang (Bytedance), Longyin Wen (Bytedance Inc.), Dexiang Hong (University of Chinese Academy of Sciences), Tiejian Luo (University of Chinese Academy of Sciences), and Libo Zhang (Institute of Software Chinese Academy of Sciences)	7

Contextualized Spatio-Temporal Contrastive Learning With Self-Supervision Liangzhe Yuan (Google Research), Rui Qian (Cornell University), Yin Cui (Google), Boqing Gong (Google), Florian Schroff (Google Inc.), Ming-Hsuan Yang (Google Research), Hartwig Adam (Google), and Ting Liu (Google Research)	13957
 Deep Anomaly Discovery From Unlabeled Videos via Normality Advantage and Self-Paced Refinement <i>Guang Yu (National University of Defense Technology), Siqi Wang</i> (National University of Defense Technology), Zhiping Cai (NUDT), Xinwang Liu (National University of Defense Technology), Chuanfu Xu (National University of Defense Technology), and Chengkun Wu (National University of Defense Technology) 	13967
A Deeper Dive Into What Deep Spatiotemporal Networks Encode: Quantifying Static vs. Dynamic Information Matthew Kowal (York University), Mennatullah Siam (York University), Md Amirul Islam (Ryerson University), Neil D. B. Bruce (University of Guelph), Richard P. Wildes (York University), and Konstantinos G. Derpanis (York University)	13979
Long-Short Temporal Contrastive Learning of Video Transformers Jue Wang (Facebook AI), Gedas Bertasius (UNC Chapel Hill), Du Tran (Facebook AI), and Lorenzo Torresani (Facebook AI Research)	13990
Scene Consistency Representation Learning for Video Scene Segmentation Haoqian Wu (Shenzhen University), Keyu Chen (tencent), Yanan Luo (tencent), Ruizhi Qiao (Tencent Youtu Lab), Bo Ren (Tencent), Haozhe Liu (King Abdullah University of Science and Technology), Weicheng Xie (Shenzhen University), and Linlin Shen (Shenzhen University)	14001
Unsupervised Pre-Training for Temporal Action Localization Tasks Can Zhang (Peking University), Tianyu Yang (Tencent AI Lab), Junwu Weng (Tencent AI Lab), Meng Cao (Peking University), Jue Wang (Tencent AI Lab), and Yuexian Zou (Peking University)	14011
Contrastive Learning for Unsupervised Video Highlight Detection Taivanbat Badamdorj (University of Alberta), Mrigank Rochan (Huawei Noah's Ark Lab), Yang Wang (University of Manitoba; Huawei Technologies Canada), and Li Cheng (ECE dept., University of Alberta)	14022
Deformable Video Transformer Jue Wang (Facebook AI) and Lorenzo Torresani (Facebook AI Research)	14033
Recurring the Transformer for Video Action Recognition Jiewen Yang (TCL Corporate Research (HK) Co., Ltd, ,), Xingbo Dong (Yonsei University; TCL Research AI Lab; Monash University), Liujun Liu (Fudan University), Chao Zhang (TCL Corporate Research), Jiajun Shen (TCL Research), and Dahai Yu (TCL Corporate Research (HK) Co., Ltd, ,)	14043

Poster 3.2: Recognition: Detection, Categorization, Retrieval

Open-Vocabulary One-Stage Detection With Hierarchical Visual-Language Knowledge Distillation
Learning To Prompt for Open-Vocabulary Object Detection With Vision-Language Model 14064 Yu Du (Tsinghua University), Fangyun Wei (Microsoft Research Asia), Zihe Zhang (Tsinghua University), Miaojing Shi (King's College London), Yue Gao (Microsoft Research Asia), and Guoqi Li (Tsinghua University)
Sign Language Video Retrieval With Free-Form Textual Queries
 FashionVLP: Vision Language Transformer for Fashion Retrieval With Feedback
Pushing the Performance Limit of Scene Text Recognizer Without Human Annotation
ESCNet: Gaze Target Detection With the Understanding of 3D Scenes
Interactive Multi-Class Tiny-Object Detection14116Chunggi Lee (Lunit), Seonwook Park (Lunit Inc.), Heon Song (Lunit14116Inc.), Jeongun Ryu (Lunit), Sanghoon Kim (Lunit Inc.), Haejoon Kim(Lunit), Sérgio Pereira (Lunit Inc.), and Donggeun Yoo (Lunit)
 Weakly Supervised Rotation-Invariant Aerial Object Detection Network
Large Loss Matters in Weakly Supervised Multi-Label Classification

MetaFSCIL: A Meta-Learning Approach for Few-Shot Class Incremental Learning
 FreeSOLO: Learning To Segment Objects Without Annotations
Revisiting AP Loss for Dense Object Detection: Adaptive Ranking Pair Selection
SIOD: Single Instance Annotated per Category per Image for Object Detection
Towards Robust Adaptive Object Detection Under Noisy Annotations
Task-Specific Inconsistency Alignment for Domain Adaptive Object Detection
Salvage of Supervision in Weakly Supervised Object Detection
Label, Verify, Correct: A Simple Few Shot Object Detection Method
Background Activation Suppression for Weakly Supervised Object Localization
Bridging the Gap Between Classification and Localization for Weakly Supervised Object Localization
Divide and Conquer: Compositional Experts for Generalized Novel Class Discovery

Cloth-Changing Person Re-Identification From a Single Image With Gait Prediction and Regularization	8
Xin Jin (University of Science and Technology of China), Tianyu He (Alibaba Group), Kecheng Zheng (University of Science and Technology of China), Zhiheng Yin (University of Michigan), Xu Shen (Alibaba Group), Zhen Huang (University of Science and Technology of China), Ruoyu Feng (University of Science and Technology of China), Jianqiang Huang (Damo Academy, Alibaba Group), Zhibo Chen (University of Science and Technology of China), and Xian-Sheng Hua (Damo Academy, Alibaba Group)	-
Lifelong Unsupervised Domain Adaptive Person Re-Identification With Coordinated Anti-Forgetting and Adaptation	3
Unleashing Potential of Unsupervised Pre-Training With Intra-Identity Regularization for Person Re-Identification	3
Learning With Twin Noisy Labels for Visible-Infrared Person Re-Identification	3
Towards Total Recall in Industrial Anomaly Detection	3
H2FA R-CNN: Holistic and Hierarchical Feature Alignment for Cross-Domain Weakly Supervised Object Detection	Э
Geometric and Textural Augmentation for Domain Gap Reduction)
General Incremental Learning With Domain-Aware Categorical Representations	1
DST: Dynamic Substitute Training for Data-Free Black-Box Attack	1

ART-Point: Improving Rotation Robustness of Point Cloud Classifiers via Adversarial	
Rotation	. 14351
Ruibin Wang (Peking University), Yibo Yang (Peking University), and	
Dacheng Tao (JD.com)	

Poster 3.2: Self-, Semi-, Meta-, & Unsupervised Learning

Label Matching Semi-Supervised Object Detection	1
Multidimensional Belief Quantification for Label-Efficient Meta-Learning	1
Propagation Regularizer for Semi-Supervised Learning With Extremely Scarce Labeled Samples 14381 Noo-ri Kim (Sungkyunkwan University) and Jee-Hyong Lee (Sungkyunkwan University)	1
Learning To Affiliate: Mutual Centralized Learning for Few-Shot Classification	1
Class-Aware Contrastive Semi-Supervised Learning	1
 Exploring the Equivalence of Siamese Self-Supervised Learning via a Unified Gradient Framework	1
Dual Temperature Helps Contrastive Learning Without Many Negative Samples: Towards Understanding and Simplifying MoCo	1
Learning Where To Learn in Cross-View Self-Supervised Learning	1

Dist-PU: Positive-Unlabeled Learning From a Label Distribution Perspective	14441
SimMatch: Semi-Supervised Learning With Similarity Matching	14451
Active Teacher for Semi-Supervised Object Detection	14462
Not All Labels Are Equal: Rationalizing the Labeling Costs for Training Object Detection	14472
Self-Supervised Learning of Object Parts for Semantic Segmentation	14482
MUM: Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object Detection	14492
Scale-Equivalent Distillation for Semi-Supervised Object Detection	14502
A Self-Supervised Descriptor for Image Copy Detection	14512
 Self-Supervised Transformers for Unsupervised Object Discovery Using Normalized Cut	14523

CAD: Co-Adapting Discriminative Features for Improved Few-Shot Classification
Semi-Supervised Few-Shot Learning via Multi-Factor Clustering
CoSSL: Co-Learning of Representation and Classifier for Imbalanced Semi-Supervised Learning
Safe-Student for Safe Deep Semi-Supervised Learning With Unseen-Class Unlabeled Data 14565 Rundong He (Shandong University), Zhongyi Han (Shandong University), Xiankai Lu (Shandong University), and Yilong Yin (Shandong University)
A Simple Data Mixing Prior for Improving Self-Supervised Learning
DETReg: Unsupervised Pretraining With Region Priors for Object Detection
Sound and Visual Representation Learning With Multiple Pretraining Tasks
 UniVIP: A Unified Framework for Self-Supervised Visual Pre-Training
 Weakly Supervised Object Localization As Domain Adaption

Debiased Learning From Naturally Imbalanced Pseudo-Labels	4627
Towards Discovering the Effectiveness of Moderately Confident Samples for Semi-Supervised Learning 1 Hui Tang (South China University of Technology) and Kui Jia (South China University of Technology)	4638
Masked Feature Prediction for Self-Supervised Visual Pre-Training	.4648
Contrastive Learning for Space-Time Correspondence via Self-Cycle Consistency	4659
Id-Free Person Similarity Learning	4669
End-to-End Semi-Supervised Learning for Video Action Detection	4680
Probabilistic Representations for Video Contrastive Learning	4691
Interact Before Align: Leveraging Cross-Modal Knowledge for Domain Adaptive Action 1 Recognition 1 Lijin Yang (The University of Tokyo), Yifei Huang (The University of Tokyo), Yusuke Sugano (The University of Tokyo), and Yoichi Sato (University of Tokyo) 1	4702
 BEVT: BERT Pretraining of Video Transformers	4713
Generative Cooperative Learning for Unsupervised Video Anomaly Detection	.4724
 When Does Contrastive Visual Representation Learning Work?	4735
The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by Normalization	4745

What Matters for Meta-Learning Vision Regression Tasks?	4756
Ning Gao (Bosch Center for Artificial Intelligence (BCAI), ,), Hanna	
Ziesche (Bosch Center for AI), Ngo Anh Vien (Bosch Center for	
Artificial Intelligence), Michael Volpp (Karlsruhe Institute for	
Technology), and Gerhard Neumann (Karlsruhe Institute of Technology	
(KIT), Karlsruhe, Germany, ,)	

Poster 3.2: Robot Vision

IFOR: Iterative Flow Minimization for Robotic Object Rearrangement Ankit Goyal (Princeton University), Arsalan Mousavian (NVIDIA), Chris Paxton (NVIDIA), Yu-Wei Chao (NVIDIA), Brian Okorn (Carnegie Mellon University), Jia Deng (Princeton University), and Dieter Fox (NVIDIA)	14767
TCTrack: Temporal Contexts for Aerial Tracking Ziang Cao (Tongji University), Ziyuan Huang (National University of Singapore), Liang Pan (Nanyang Technological University), Shiwei Zhang (DAMO Academy, Alibaba Group), Ziwei Liu (Nanyang Technological University), and Changhong Fu (Tongji University)	14778
 AKB-48: A Real-World Articulated Object Knowledge Base Liu Liu (Shanghai JiaoTong University), Wenqiang Xu (Shanghai Jiao Tong University), Haoyuan Fu (Shanghai Jiao Tong University), Sucheng Qian (Shanghai Jiao Tong University), Qiaojun Yu (Shanghai Jiaotong University), Yang Han (Shanghai Jiao Tong University), and Cewu Lu (Shanghai Jiao Tong University) 	14789
3DAC: Learning Attribute Compression for Point Clouds Guangchi Fang (Sun Yat-sen University), Qingyong Hu (University of Oxford), Hanyun Wang (Information Engineering University), Yiling Xu (Shanghai Jiao Tong University), and Yulan Guo (Sun Yat-sen University)	14799
Simple but Effective: CLIP Embeddings for Embodied AI Apoorv Khandelwal (Allen Institute for AI), Luca Weihs (Allen Institute for Artificial Intelligence), Roozbeh Mottaghi (Allen Institute for AI), and Aniruddha Kembhavi (Allen Institute for Artificial Intelligence)	14809
Multi-Robot Active Mapping via Neural Bipartite Graph Matching Kai Ye (Peking University), Siyan Dong (Shandong University), Qingnan Fan (Tencent AI Lab), He Wang (Peking University), Li Yi (Tsinghua University), Fei Xia (Google Inc), Jue Wang (Tencent AI Lab), and Baoquan Chen (Peking University)	14819
Continuous Scene Representations for Embodied AI Samir Yitzhak Gadre (Columbia University), Kiana Ehsani (Allen Institute for Artificial Intelligence), Shuran Song (Columbia University), and Roozbeh Mottaghi (Allen Institute for AI)	14829
Interactron: Embodied Adaptive Object Detection Klemen Kotar (Allen Institute for AI) and Roozbeh Mottaghi (Allen Institute for AI)	14840

Online Learning of Reusable Abstract Models for Object Goal Navigation)
RNNPose: Recurrent 6-DoF Object Pose Refinement With Robust Correspondence Field Estimation and Pose Optimization)
UDA-COPE: Unsupervised Domain Adaptation for Category-Level Object Pose Estimation 1487 Taeyeop Lee (KAIST), Byeong-Uk Lee (KAIST), Inkyu Shin (KAIST), Jaesung Choe (KAIST), Ukcheol Shin (KAIST), In So Kweon (KAIST), and Kuk-Jin Yoon (KAIST)	1
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation	L
Upright-Net: Learning Upright Orientation for 3D Point Cloud	L

Poster 3.2: Computer Vision for Social Good

0
0
0

Poster 3.2: Adversarial Attack & Defense

Transferable Sparse Adversarial Attack14943Ziwen He (Institute of Automation), Wei Wang (Center for Research on14943Intelligent Perception and Computing, National Laboratory of PatternRecognition, Institute of Automation, Chinese Academy of Sciences),Jing Dong (Chinese Academy of Sciences), and Tieniu Tan (NLPR, China)
Segment and Complete: Defending Object Detectors Against Adversarial Patch Attacks With Robust Patch Detection
Jiang Liu (Johns Hopkins University), Alexander Levine (University of Maryland), Chun Pong Lau (Johns Hopkins University), Rama Chellappa (Johns Hopkins University), and Soheil Feizi (University of Maryland)
Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the Adversarial Transferability
Yifeng Xiong (Huazhong University of Science and Technology), Jiadong Lin (Huazhong University of Science and Technology), Min Zhang (Huazhong University of Science and Technology), John E. Hopcroft (Cornell University), and Kun He (Huazhong University of Science and Technology)
 Improving Adversarial Transferability via Neuron Attribution-Based Attacks
Complex Backdoor Detection by Symmetric Feature Differencing
Protecting Facial Privacy: Generating Adversarial Identity Masks via Style-Robust Makeup Transfer
Zero-Query Transfer Attacks on Context-Aware Object Detectors

 360-Attack: Distortion-Aware Perturbations From Perspective-Views	5
Label-Only Model Inversion Attacks via Boundary Repulsion	5
Merry Go Round: Rotate a Frame and Fool a DNN	4
Cross-Modal Transferable Adversarial Attacks From Images to Videos	4
BppAttack: Stealthy and Efficient Trojan Attacks Against Deep Neural Networks via Image Quantization and Contrastive Adversarial Learning	4
Investigating Top-k White-Box and Transferable Black-Box Attack	4
Boosting Black-Box Attack With Partially Transferred Conditional Adversarial Distribution 15074 Yan Feng (Tsinghua University), Baoyuan Wu (The Chinese University of Hong Kong, Shenzhen; Shenzhen Research Institute of Big Data), Yanbo Fan (Tencent AI Lab), Li Liu (Shenzhen Research Institute of Big Data, the chinese university of hong kong shenzhen), Zhifeng Li (Tencent AI Lab), and Shu-Tao Xia (Tsinghua University)	4
Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack	4
Towards Efficient Data Free Black-Box Adversarial Attack	4
Masking Adversarial Damage: Finding Adversarial Saliency for Robust and Sparse Network 15105 Byung-Kwan Lee (KAIST), Junho Kim (KAIST), and Yong Man Ro (KAIST)	5
Certified Patch Robustness via Smoothed Vision Transformers	6

Towards Practical Certifiable Patch Defense With Vision Transformer Zhaoyu Chen (Fudan University), Bo Li (Nanjing University), Jianghe Xu (Tencent Youtu Lab), Shuang Wu (Tencent), Shouhong Ding (Tencent), and Wenqiang Zhang (Fudan University)	15127
On Adversarial Robustness of Trajectory Prediction for Autonomous Vehicles Qingzhao Zhang (University of Michigan, Ann Arbor), Shengtuo Hu (University of Michigan), Jiachen Sun (University of Michigan), Qi Alfred Chen (UC Irvine), and Z. Morley Mao (University of Michigan)	15138
3DeformRS: Certifying Spatial Deformations on Point Clouds Gabriel Pérez S. (Universidad Nacional De Colombia), Juan C. Pérez (KAUST), Motasem Alfarra (KAUST), Silvio Giancola (KAUST), and Bernard Ghanem (KAUST)	15148
Stereoscopic Universal Perturbations Across Different Architectures and Datasets Zachary Berger (UCLA), Parth Agrawal (UCLA), Tian Yu Liu (UCLA), Stefano Soatto (UCLA), and Alex Wong (University of California, Los Angeles)	15159
Aug-NeRF: Training Stronger Neural Radiance Fields With Triple-Level Physically-Grounded Augmentations Tianlong Chen (Unversity of Texas at Austin), Peihao Wang (University of Texas at Austin), Zhiwen Fan (University of Texas at Austin), and Zhangyang Wang (University of Texas at Austin)	15170
Bounded Adversarial Attack on Deep Content Features Qiuling Xu (Purdue University), Guanhong Tao (Purdue University), and Xiangyu Zhang (Purdue University)	15182
DEFEAT: Deep Hidden Feature Backdoor Attacks by Imperceptible Perturbation and Latent Representation Constraints	15192
Two Coupled Rejection Metrics Can Tell Adversarial Examples Apart <i>Tianyu Pang (Tsinghua University), Huishuai Zhang (Microsoft), Di He</i> <i>(Microsoft Research), Yinpeng Dong (Tsinghua University), Hang Su</i> <i>(Tsinghua Univiersity), Wei Chen (Chinese Academy of Sciences), Jun</i> <i>Zhu (Tsinghua University), and Tie-Yan Liu (Microsoft Research)</i>	15202
Give Me Your Attention: Dot-Product Attention Considered Harmful for Adversarial Patch Robustness <i>Giulio Lovisotto (University of Oxford), Nicole Finnie (Bosch Center</i> <i>for Artificial Intelligence), Mauricio Munoz (Bosch Center for</i> <i>Artificial Intelligence), Chaithanya Kumar Mummadi (Bosch Center for</i> <i>Artificial Intelligence), and Jan Hendrik Metzen (Bosch Center for</i> <i>Artificial Intelligence)</i>	15213
Improving the Transferability of Targeted Adversarial Examples Through Object-Based Diverse Input Junyoung Byun (KAIST), Seungju Cho (KAIST), Myung-Joon Kwon (KAIST), Hee-Seon Kim (KAIST), and Changick Kim (KAIST)	15223

Adversarial Eigen Attack on Black-Box Models Linjun Zhou (Tsinghua University), Peng Cui (Tsinghua University), Xingxuan Zhang (Tsinghua University), Yinan Jiang (China Academy of Electronics and Information Technology), and Shiqiang Yang (Tsinghua University)	15233
Appearance and Structure Aware Robust Deep Visual Graph Matching: Attack, Defense and Beyond	15242
Qibing Ren (Shanghai Jiao Tong University), Qingquan Bao (Shanghai Jiao Tong University), Runzhong Wang (Shanghai Jiao Tong University), and Junchi Yan (Shanghai Jiao Tong University)	
Enhancing Adversarial Training With Second-Order Statistics of Weights Gaojie Jin (University of Liverpool), Xinping Yi (University of Liverpool), Wei Huang (University of Liverpool), Sven Schewe (University of Liverpool), and Xiaowei Huang (Liverpool University)	15252
Towards Data-Free Model Stealing in a Hard Label Setting Sunandini Sanyal (Indian Institute of Science, Bengaluru), Sravanti Addepalli (Indian Institute of Science), and R. Venkatesh Babu (Indian Institute of Science)	15263
Robust Structured Declarative Classifiers for 3D Point Clouds: Defending Adversarial Attacks With Implicit Gradients <i>Kaidong Li (University of Kansas), Ziming Zhang (Worcester Polytechnic</i> <i>Institute), Cuncong Zhong (University of Kansas), and Guanghui Wang</i> <i>(Ryerson University)</i>	15273
DTA: Physical Camouflage Attacks Using Differentiable Transformation Network Naufal Suryanto (Pusan National University), Yongsu Kim (SmartM2M), Hyoeun Kang (Pusan National University), Harashta Tatimma Larasati (Pusan National University, Institut Teknologi Bandung), Youngyeo Yun (Pusan National University), Thi-Thu-Huong Le (Pusan National University), Hunmin Yang (Agency for Defense Development), Se-Yoon Oh (Agency for Defense Development), and Howon Kim (Pusan National University)	15284
Frequency-Driven Imperceptible Adversarial Attack on Semantic Similarity Cheng Luo (Shenzhen University), Qinliang Lin (Shenzhen University), Weicheng Xie (Shenzhen University), Bizhu Wu (Shenzhen University), Jinheng Xie (Shenzhen University), and Linlin Shen (Shenzhen University)	. 15294
Enhancing Adversarial Robustness for Deep Metric Learning Mo Zhou (Johns Hopkins University) and Vishal M. Patel (Johns Hopkins University)	15304
 Shape-Invariant 3D Adversarial Point Clouds Qidong Huang (University of Science and Technology of China), Xiaoyi Dong (University of Science and Technology of China), Dongdong Chen (Microsoft Cloud AI), Hang Zhou (Simon Fraser University), Weiming Zhang (University of Science and Technology of China), and Nenghai Yu (University of Science and Technology of China) 	15314

Shadows Can Be Dangerous: Stealthy and Effective Physical-World Adversarial Attack by Natural Phenomenon	15324
Yiqi Zhong (Harbin Institute of Technology), Xianming Liu (Harbin Institute of Technology), Deming Zhai (Harbin Institute of Technolgy), Junjun Jiang (Harbin Institute of Technology), and Xiangyang Ji (Tsinghua University)	
Exploring Effective Data for Surrogate Training Towards Black-Box Attack	15334
NICGSlowDown: Evaluating the Efficiency Robustness of Neural Image Caption Generation	
	15344
Simin Chen (UTD), Zihe Song (University of Texas at Dallas), Mirazul Haque (University of Texas at Dallas), Cong Liu (University of Texas at Dallas), and Wei Yang (University of Texas at Dallas)	
Dual-Key Multimodal Backdoors for Visual Question Answering Matthew Walmer (University of Maryland), Karan Sikka (SRI International), Indranil Sur (SRI International), Abhinav Shrivastava (University of Maryland), and Susmit Jha (SRI International)	15354
Proactive Image Manipulation Detection Vishal Asnani (Michigan State University), Xi Yin (Facebook AI), Tal Hassner (Facebook AI), Sijia Liu (Michigan State University), and Xiaoming Liu (Michigan State University)	15365

Poster 3.2: Vision & Language

ADAPT: Vision-Language Navigation With Modality-Aligned Action Prompts Bingqian Lin (Sun Yat-sen University), Yi Zhu (Huawei Noah's Ark Lab), Zicong Chen (Sun Yat-sen University), Xiwen Liang (Sun Yat-sen University), Jianzhuang Liu (Huawei Noah's Ark Lab), and Xiaodan Liang (Sun Yat-sen University)	15375
EnvEdit: Environment Editing for Vision-and-Language Navigation Jialu Li (University of North Carolina at Chapel Hill), Hao Tan (UNC, Chapel Hill), and Mohit Bansal (University of North Carolina at Chapel Hill)	15386
HOP: History-and-Order Aware Pre-Training for Vision-and-Language Navigation Yanyuan Qiao (University of Adelaide), Yuankai Qi (The University of Adelaide), Yicong Hong (Australian National University), Zheng Yu (University of Adelaide), Peng Wang (Northwestern Polytechnical University), and Qi Wu (University of Adelaide)	15397
Less Is More: Generating Grounded Navigation Instructions From Landmarks Su Wang (Google AI Language), Ceslee Montgomery (Google), Jordi Orbay (Google), Vighnesh Birodkar (Google), Aleksandra Faust (Google Brain), Izzeddin Gur (Google), Natasha Jaques (UC Berkeley), Austin Waters (Google), Jason Baldridge (Google Inc.), and Peter Anderson (Google)	15407

Bridging the Gap Between Learning in Discrete and Continuous Environments for Vision-and-Language Navigation 15418 Yicong Hong (Australian National University), Zun Wang (Australia National University), Qi Wu (University of Adelaide), and Stephen Gould (Australian National University, Australia)
Reinforced Structured State-Evolution for Vision-Language Navigation
Cross-Modal Map Learning for Vision and Language Navigation
Counterfactual Cycle-Consistent Learning for Instruction Following and Generation in Vision-Language Navigation
One Step at a Time: Long-Horizon Vision-and-Language Navigation With Milestones
 Expanding Large Pre-Trained Unimodal Models With Multimodal Information Injection for Image-Text Multimodal Classification
 Shifting More Attention to Visual Backbone: Query-Modulated Refinement Networks for End-to-End Visual Grounding
Pseudo-Q: Generating Pseudo Language Queries for Visual Grounding
Multi-View Transformer for 3D Visual Grounding

Multi-Modal Dynamic Graph Transformer for Visual Grounding Sijia Chen (University of Toronto) and Baochun Li (University of Toronto)	15513
 Weakly-Supervised Generation and Grounding of Visual Descriptions With Conditional Generative Models <i>Effrosyni Mavroudi (Johns Hopkins University) and René Vidal (Johns Hopkins University, USA)</i> 	15523
 Weakly Supervised Temporal Sentence Grounding With Gaussian-Based Contrastive Proposal Learning Minghang Zheng (Peking University), Yanjie Huang (Beijing Institute of Technology), Qingchao Chen (Peking University), Yuxin Peng (Peking University), and Yang Liu (Peking University) 	15534
Visual Abductive Reasoning Chen Liang (Zhejiang University), Wenguan Wang (Eidgenössische Technische Hochschule Zürich), Tianfei Zhou (ETH Zurich), and Yi Yang (Zhejiang University)	15544
Query and Attention Augmentation for Knowledge-Based Explainable Reasoning Yifeng Zhang (University of Minnesota, Twin Cities), Ming Jiang (University of Minnesota), and Qi Zhao (University of Minnesota)	15555
REX: Reasoning-Aware and Grounded Explanation Shi Chen (University of Minnesota) and Qi Zhao (University of Minnesota)	15565
Not All Relations Are Equal: Mining Informative Labels for Scene Graph Generation Arushi Goel (University of Edinburgh), Basura Fernando (Agency for Science, Technology and Research, A*STAR, Singapore), Frank Keller (University of Edinburgh), and Hakan Bilen (University of Edinburgh)	15575
Unsupervised Vision-Language Parsing: Seamlessly Bridging Visual Scene Graphs With Language Structures via Dependency Relationships <i>Chao Lou (ShanghaiTech University), Wenjuan Han (Beijing Institute for</i> <i>General Artificial Intelligence), Yuhuan Lin (Tsinghua University),</i> <i>and Zilong Zheng (UCLA)</i>	15586
Scene Graph Expansion for Semantics-Guided Image Outpainting Chiao-An Yang (National Taiwan University), Cheng-Yo Tan (Rice University), Wan-Cyuan Fan (National Taiwan University), Cheng-Fu Yang (National Taiwan University), Meng-Lin Wu (Qualcomm Technologies, Inc.), and Yu-Chiang Frank Wang (National Taiwan University)	15596
VisualHow: Multimodal Problem Solving Jinhui Yang (University of Minnesota), Xianyu Chen (University of Minnesota, Twin Cities), Ming Jiang (University of Minnesota), Shi Chen (University of Minnesota), Louis Wang (University of Minnesota, Twin Cities), and Qi Zhao (University of Minnesota)	15606
FLAVA: A Foundational Language and Vision Alignment Model Amanpreet Singh (Facebook), Ronghang Hu (Facebook), Vedanuj Goswami (Facebook AI Research), Guillaume Couairon (Facebook AI Research), Wojciech Galuba (Facebook), Marcus Rohrbach (Facebook AI Research), and Douwe Kiela (Facebook AI Research)	15617

Multi-Modal Alignment Using Representation Codebook
Negative-Aware Attention Framework for Image-Text Matching
 Vision-Language Pre-Training With Triple Contrastive Learning
 Vision-Language Pre-Training for Boosting Scene Text Detectors
COTS: Collaborative Two-Stream Vision-Language Pre-Training Model for Cross-Modal Retrieval

Poster 3.2: 3D From Multi-View & Sensors

NeurMiPs: Neural Mixture of Planar Experts for View Synthesis	81
FWD: Real-Time Novel View Synthesis With Forward Warping and Depth	92
 SOMSI: Spherical Novel View Synthesis With Soft Occlusion Multi-Sphere Images	04
Fast, Accurate and Memory-Efficient Partial Permutation Synchronization	14
Learning To Find Good Models in RANSAC	23

Optimizing Elimination Templates by Greedy Parameter Search Evgeniy Martyushev (South Ural State University), Jana Vráblíková (Charles University), and Tomas Pajdla (Czech Technical University in Prague)	15733
GPU-Based Homotopy Continuation for Minimal Problems in Computer Vision Chiang-Heng Chien (Brown University), Hongyi Fan (Brown University), Ahmad Abdelfattah (UTK), Elias Tsigaridas (INRIA Paris), Stanimire Tomov (University of Tennessee), and Benjamin Kimia (Brown University)	15744
HARA: A Hierarchical Approach for Robust Rotation Averaging Seong Hun Lee (University of Zaragoza) and Javier Civera (Universidad de Zaragoza)	15756
RAGO: Recurrent Graph Optimizer for Multiple Rotation Averaging Heng Li (Simon Fraser University), Zhaopeng Cui (Zhejiang University), Shuaicheng Liu (UESTC; Megvii), and Ping Tan (Simon Fraser University)	15766
A Unified Model for Line Projections in Catadioptric Cameras With Rotationally Symmetric Mirrors Pedro Miraldo (MERL Mitsubishi Electric Research Laboratories) and José Pedro Iglesias (Chalmers)	15776
ELSR: Efficient Line Segment Reconstruction With Planes and Points Guidance Dong Wei (Wuhan University), Yi Wan (Wuhan University), Yongjun Zhang (Wuhan University), Xinyi Liu (Wuhan University), Bin Zhang (Wuhan University), and Xiqi Wang (wuhan university)	15786
Self-Supervised Neural Articulated Shape and Appearance Models	15795
Virtual Elastic Objects Hsiao-yu Chen (University of Texas at Austin), Edith Tretschk (Max-Planck-Institut für Informatik), Tuur Stuyck (Meta Reality Labs Research), Petr Kadlecek (Meta Reality Labs Research), Ladislav Kavan (Reality Labs Research), Etienne Vouga (The University of Texas at Austin), and Christoph Lassner (Meta Reality Labs Research)	15806
Decoupling Makes Weakly Supervised Local Feature Better	15817

JoinABLe: Learning Bottom-Up Assembly of Parametric CAD Joints Karl D.D. Willis (Autodesk Research), Pradeep Kumar Jayaraman (Autodesk Research), Hang Chu (Autodesk AI Lab), Yunsheng Tian (Massachusetts Institute of Technology), Yifei Li (MIT CSAIL), Daniele Grandi (Autodesk Research), Aditya Sanghi (Autodesk; Autodesk AI Lab), Linh Tran (Imperial College London / Autodesk AI Lab), Joseph G. Lambourne (Autodesk AI Lab), Armando Solar-Lezama (MIT), and Wojciech Matusik (MIT)	15828
ImplicitAtlas: Learning Deformable Shape Templates in Medical Imaging Jiancheng Yang (Shanghai Jiao Tong University), Udaranga Wickramasinghe (EPFL, Switzerland), Bingbing Ni (Shanghai Jiao Tong University), and Pascal Fua (EPFL, Switzerland)	.15840
DoubleField: Bridging the Neural Surface and Radiance Fields for High-Fidelity Human Reconstruction and Rendering Ruizhi Shao (Tsinghua University), Hongwen Zhang (Tsinghua University), He Zhang (Beihang university), Mingjia Chen (East China Normal University), Yan-Pei Cao (Y-tech, Kuaishou Technology), Tao Yu (Tsinghua University), and Yebin Liu (Tsinghua University)	. 15851
Surface-Aligned Neural Radiance Fields for Controllable 3D Human Synthesis Tianhan Xu (The University of Tokyo), Yasuhiro Fujita (Preferred Networks, Inc.), and Eiichi Matsumoto (Preferred Networks, Inc.)	15862
Structured Local Radiance Fields for Human Avatar Modeling	15872
High-Fidelity Human Avatars From a Single RGB Camera Hao Zhao (Tianjin university), Jinsong Zhang (Tianjin University), Yu-Kun Lai (Cardiff University), Zerong Zheng (Tsinghua University), Yingdi Xie (VRC Inc.), Yebin Liu (Tsinghua University), and Kun Li (Tianjin University)	15883
Forecasting Characteristic 3D Poses of Human Actions Christian Diller (Technical University of Munich), Thomas Funkhouser (Google Research), and Angela Dai (Technical University of Munich)	15893
Virtual Correspondence: Humans as a Cue for Extreme-View Geometry Wei-Chiu Ma (MIT), Anqi Joyce Yang (University of Toronto), Shenlong Wang (UIUC), Raquel Urtasun (Uber ATG), and Antonio Torralba (MIT)	15903
BEHAVE: Dataset and Method for Tracking Human Object Interactions Bharat Lal Bhatnagar (University of Tübingen, MPI informatik), Xianghui Xie (Saarland University), Ilya A. Petrov (University of Tübingen), Cristian Sminchisescu (Google), Christian Theobalt (MPI Informatik), and Gerard Pons-Moll (University of Tübingen)	15914
Primitive3D: 3D Object Dataset Synthesis From Randomly Assembled Primitives Xinke Li (National University of Singapore), Henghui Ding (ETH Zurich), Zekun Tong (National University of Singapore), Yuwei Wu (National University of Singapore), and Yeow Meng Chee (National University of Singapore)	15926

RGB-Multispectral Matching: Dataset, Learning Methodology, Evaluation Fabio Tosi (University of Bologna), Pierluigi Zama Ramirez (University of Bologna), Matteo Poggi (University of Bologna), Samuele Salti (University of Bologna), Stefano Mattoccia (University of Bologna), and Luigi Di Stefano (University of Bologna)	15937
NPBG++: Accelerating Neural Point-Based Graphics Ruslan Rakhimov (Skoltech), Andrei-Timotei Ardelean (Skoltech), Victor Lempitsky (Yandex), and Evgeny Burnaev (Skoltech)	15948
Depth-Guided Sparse Structure-From-Motion for Movies and TV Shows Sheng Liu (University at Buffalo), Xiaohan Nie (Amazon), and Raffay Hamid (Amazon)	15959
Motion-From-Blur: 3D Shape and Motion Estimation of Motion-Blurred Objects in Videos Denys Rozumnyi (ETH Zurich / CTU in Prague), Martin R. Oswald (ETH Zurich), Vittorio Ferrari (Google Research), and Marc Pollefeys (ETH Zurich / Microsoft)	15969

Oral 4.1.1: Representation Learning

Masked Autoencoders Are Scalable Vision Learners Kaiming He (Facebook AI Research), Xinlei Chen (FAIR), Saining Xie (Facebook AI Research), Yanghao Li (Facebook AI Research), Piotr Dollár (FAIR), and Ross Girshick (FAIR)	15979
Learning ABCs: Approximate Bijective Correspondence for Isolating Factors of Variation With Weak Supervision <i>Kieran A. Murphy (University of Pennsylvania), Varun Jampani (Google),</i> <i>Srikumar Ramalingam (Google), and Ameesh Makadia (Google Research)</i>	15989
Bayesian Invariant Risk Minimization Yong Lin (HKUST), Hanze Dong (HKUST), Hao Wang (Rutgers University), and Tong Zhang (The Hong Kong University of Science and Technology)	16000
Crafting Better Contrastive Views for Siamese Representation Learning Xiangyu Peng (National University of Singapore), Kai Wang (National University of Singapore), Zheng Zhu (Tsinghua University), Mang Wang (Alibaba Group), and Yang You (National University of Singapore)	16010
Rethinking Minimal Sufficient Representation in Contrastive Learning Haoqing Wang (Peking University), Xun Guo (Microsoft Research Asia), Zhi-Hong Deng (Peking University), and Yan Lu (Microsoft Research Asia)	16020
Multi-Level Feature Learning for Contrastive Multi-View Clustering Jie Xu (University of Electronic Science and Technology of China), Huayi Tang (University of Electronic Science and Technology of China), Yazhou Ren (University of Electronic Science and Technology of China), Liang Peng (University of Electronic Science and Technology of China), Xiaofeng Zhu (University of Electronic Science and Technology of China), and Lifang He (Lehigh University)	16030

Point-Level Region Contrast for Object Detection Pre-Training
Class-Incremental Learning by Knowledge Distillation With Adaptive Feature Consolidation 16050 Minsoo Kang (Seoul National University), Jaeyoo Park (Seoul National University), and Bohyung Han (Seoul National University)
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration
SLIC: Self-Supervised Learning With Iterative Clustering for Human Action Videos
Omnivore: A Single Model for Many Visual Modalities
DPICT: Deep Progressive Image Compression Using Trit-Planes
 Efficient Geometry-Aware 3D Generative Adversarial Networks
Geometric Anchor Correspondence Mining With Uncertainty Modeling for Universal Domain Adaptation
 Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning 16123 Richard J. Chen (Harvard Medical School), Chengkuan Chen (Columbia University), Yicong Li (Tsinghua-Berkeley Shenzhen Institute, Tsinghua University.), Tiffany Y. Chen (Pathology, Brigham and Women's Hospital, Harvard Medical School), Andrew D. Trister (Bill & Melinda Gates Foundation), Rahul G. Krishnan (University of Toronto), and Faisal Mahmood (Pathology, Brigham and Women's Hospital, Harvard Medical School)
Versatile Multi-Modal Pre-Training for Human-Centric Perception

Bridging Video-Text Retrieval With Multiple Choice Questions	16146
Yuying Ge (The University of Hong Kong), Yixiao Ge (Tencent), Xihui	
Liu (UC Berkeley), Dian Li (Tencent.com), Ying Shan (Tencent), Xiaohu	
Qie (Tencent), and Ping Luo (The University of Hong Kong)	
Integrating Language Guidance Into Vision-Based Deep Metric Learning	16156
Karsten Roth (University of Tuebingen), Oriol Vinyals (DeepMind), and	
Zeynep Akata (University of Tübingen)	

Oral 4.1.2: Computational Photography

NeRF in the Dark: High Dynamic Range View Synthesis From Noisy Raw Images
DIVeR: Real-Time and Accurate Neural Radiance Fields With Deterministic Integration for Volume Rendering
HumanNeRF: Free-Viewpoint Rendering of Moving People From Monocular Video
Neural Reflectance for Shape Recovery With Shadow Handling
 Visual Vibration Tomography: Estimating Interior Material Properties From Monocular Video 16210 Berthy T. Feng (California Institute of Technology), Alexander C. Ogren (Caltech), Chiara Daraio (California Institute of Technology), and Katherine L. Bouman (Caltech)
Dancing Under the Stars: Video Denoising in Starlight
BACON: Band-Limited Coordinate Networks for Multiscale Scene Representation
Practical Stereo Matching via Cascaded Recurrent Network With Adaptive Correlation
3D Photo Stylization: Learning To Generate Stylized Novel Views From a Single Image

BokehMe: When Neural Rendering Meets Classical Rendering	2
Deblurring via Stochastic Refinement	2
Learning to Deblur Using Light Field Generated and Real Defocus Images	3
Towards Layer-Wise Image Vectorization1629Xu Ma (Northeastern University), Yuqian Zhou (Adobe), Xingqian Xu(UIUC), Bin Sun (Northeastern University), Valerii Filev (Picsart),Nikita Orlov (PicsArt), Yun Fu (Northeastern University), and HumphreyShi (U of Oregon/UIUC)	3
Dual-Shutter Optical Vibration Sensing	13
Fisher Information Guidance for Learned Time-of-Flight Imaging	.3
Autofocus for Event Cameras	:3
Adaptive Gating for Single-Photon 3D Imaging	63
LiDAR Snowfall Simulation for Robust 3D Object Detection	:3

Oral 4.1.3: Vision & Language

MERLOT Reserve: Neural Script Knowledge Through Vision and Language and Sound
Joint Video Summarization and Moment Localization by Cross-Task Sample Transfer
Towards General Purpose Vision Systems: An End-to-End Task-Agnostic Vision-Language Architecture 16378 Tanmay Gupta (Allen Institute for Artificial Intelligence), Amita Kamath (Allen Institute for Artificial Intelligence), Aniruddha Kembhavi (Allen Institute for Artificial Intelligence), and Derek Hoiem (University of Illinois at Urbana-Champaign)
Disentangling Visual and Written Concepts in CLIP
CLIP-Event: Connecting Text and Images With Event Structures
Robust Cross-Modal Representation Learning With Progressive Self-Distillation
TubeDETR: Spatio-Temporal Video Grounding With Transformers
3D-SPS: Single-Stage 3D Visual Grounding via Referred Point Progressive Selection 16433 Junyu Luo (Beihang University), Jiahui Fu (Beihang University), Xianghao Kong (Beihang University), Chen Gao (Beihang University), Haibing Ren (Meituan), Hao Shen (Meituan), Huaxia Xia (Meituan), and Si Liu (Beihang University)
 3DJCG: A Unified Framework for Joint Dense Captioning and Visual Grounding on 3D Point Clouds
Globetrotter: Connecting Languages by Connecting Images

Unsupervised Vision-and-Language Pre-Training via Retrieval-Based Multi-Granular Alignment 16464
Mingyang Zhou (University of California, Davis), Licheng Yu (Facebook), Amanpreet Singh (Facebook), Mengjiao Wang (Facebook), Zhou Yu (Columbia), and Ning Zhang (Facebook)
 WebQA: Multihop and Multimodal QA
PartGlot: Learning Shape Part Segmentation From Language Reference Games
DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis
L-Verse: Bidirectional Generation Between Image and Text
Think Global, Act Local: Dual-Scale Graph Transformer for Vision-and-Language Navigation 16516 Shizhe Chen (INRIA), Pierre-Louis Guhur (Inria), Makarand Tapaswi (Wadhwani AI, IIIT Hyderbad), Cordelia Schmid (Inria/Google), and Ivan Laptev (INRIA Paris)
LaTr: Layout-Aware Transformer for Scene-Text VQA
Learning Program Representations for Food Images and Cooking Recipes

Poster 4.1: Representation Learning

On the Importance of Asymmetry for Siamese Representation Learning	16549
Xiao Wang (Purdue University), Haoqi Fan (Facebook AI Research),	
Yuandong Tian (Facebook), Daisuke Kihara (Purdue University), and	
Xinlei Chen (FAIR)	

Leverage Your Local and Global Representations: A New Self-Supervised Learning Strategy 16559 Tong Zhang (EPFL), Congpei Qiu (Xi'an Jiaotong University), Wei Ke (Xi'an Jiaotong University), Sabine Süsstrunk (EPFL), and Mathieu Salzmann (EPFL)
Exploring Set Similarity for Dense Self-Supervised Representation Learning
Align Representations With Base: A New Approach to Self-Supervised Learning
Identifying Ambiguous Similarity Conditions via Semantic Matching
Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximization 16599 Wei Dong (School of Computer Science and Engineering, Northwestern Polytechnical University), Junsheng Wu (School of Software and Microelectronics, Northwestern Polytechnical University), Yi Luo (Northwest Polytechnical University), Zongyuan Ge (Monash), and Peng Wang (University of Wollongong)
Instance-Dependent Label-Noise Learning With Manifold-Regularized Transition Matrix Estimation
Unsupervised Visual Representation Learning by Online Constrained K-Means
Rethinking the Augmentation Module in Contrastive Learning: Learning Hierarchical Augmentation Invariance With Expanded Views
Use All the Labels: A Hierarchical Multi-Label Contrastive Learning Framework

Robust Contrastive Learning Against Noisy Views
On Learning Contrastive Representations for Learning With Noisy Labels
Directional Self-Supervised Learning for Heavy Image Augmentations
Continual Learning for Visual Search With Backward Consistent Feature Embedding 16681 <i>Timmy S. T. Wan (National Taiwan University), Jun-Cheng Chen (Academia</i> <i>Sinica), Tzer-Yi Wu (ucfunnel Co. Ltd.), and Chu-Song Chen (National</i> <i>Taiwan University)</i>
Probing Representation Forgetting in Supervised and Unsupervised Continual Learning 16691 MohammadReza Davari (Mila and Concordia University), Nader Asadi (Mila and Concordia University), Sudhir Mudur (Concordia University), Rahaf Aljundi (Toyota Motor Europe), and Eugene Belilovsky (Mila)
 Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning
Bring Evanescent Representations to Life in Lifelong Class Incremental Learning
Unsupervised Learning of Debiased Representations With Pseudo-Attributes
A Conservative Approach for Unbiased Learning on Unknown Biases
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers Solutions With Superior OOD Generalization
Co-Advise: Cross Inductive Bias Distillation

PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures
RegionCLIP: Region-Based Language-Image Pretraining
 Uni-Perceiver: Pre-Training Unified Architecture for Generic Perception for Zero-Shot and Few-Shot Tasks
Conditional Prompt Learning for Vision-Language Models

Poster 4.1: Scene Analysis & Understanding

Noisy Boundaries: Lemon or Lemonade for Semi-Supervised Instance Segmentation?
 Partial Class Activation Attention for Semantic Segmentation
Learning Affinity From Attention: End-to-End Weakly-Supervised Semantic Segmentation With Transformers
Towards Noiseless Object Contours for Weakly Supervised Semantic Segmentation 16835 Jing Li (Chinese Academy of Sciences, China), Junsong Fan (Chinese Academy of Sciences, China), and Zhaoxiang Zhang (Chinese Academy of Sciences, China)
Class Similarity Weighted Knowledge Distillation for Continual Semantic Segmentation

 Structural and Statistical Texture Knowledge Distillation for Semantic Segmentation	.6855
L2G: A Simple Local-to-Global Knowledge Transfer Framework for Weakly Supervised Semantic Segmentation	
 Weakly Supervised Semantic Segmentation Using Out-of-Distribution Data	.6876
Tree Energy Loss: Towards Sparsely Annotated Semantic Segmentation	.6886
 Bending Reality: Distortion-Aware Transformers for Adapting to Panoramic Semantic Segmentation	16896
 MM-TTA: Multi-Modal Test-Time Adaptation for 3D Semantic Segmentation	.6907
NightLab: A Dual-Level Architecture With Hardness Detection for Segmentation at Night 1 Xueqing Deng (University of California, Merced), Peng Wang (Bytedance USA LLC.), Xiaochen Lian (ByteDance), and Shawn Newsam (UC Merced)	.6917
Fast Point Transformer	.6928
RigidFlow: Self-Supervised Scene Flow Learning on Point Clouds by Local Rigidity Prior 1 Ruibo Li (Nanyang Technological University), Chi Zhang (Nanyang Technological University), Guosheng Lin (Nanyang Technological University), Zhe Wang (SenseTime Research), and Chunhua Shen (University of Adelaide, Australia)	.6938
ConDor: Self-Supervised Canonicalization of 3D Pose for Partial Shapes	6948

DisARM: Displacement Aware Relation Module for 3D Detection	59
Learning Object Context for Novel-View Scene Layout Generation	69
Weakly but Deeply Supervised Occlusion-Reasoned Parametric Road Layouts	79
Beyond Cross-View Image Retrieval: Highly Accurate Vehicle Localization Using Satellite Image	89
Raw High-Definition Radar for Multi-Task Learning	00
Zero Experience Required: Plug & Play Modular Transfer Learning for Semantic Visual Navigation	10
 UKPGAN: A General Self-Supervised Keypoint Detector	21
Cannot See the Forest for the Trees: Aggregating Multiple Viewpoints To Better Classify Objects in Videos	31

Poster 4.1: Navigation & Autonomous Driving

Rethinking Efficient Lane Detection via Curve Modeling	7041
 Exploiting Temporal Relations on Radar Perception for Autonomous Driving	7050
Towards Robust and Adaptive Motion Forecasting: A Causal Representation Perspective 12 Yuejiang Liu (EPFL), Riccardo Cadei (EPFL), Jonas Schweizer (EPFL), Sherwin Bahmani (TU Darmstadt), and Alexandre Alahi (EPFL)	7060

 BE-STI: Spatial-Temporal Integrated Network for Class-Agnostic Motion Prediction With Bidirectional Enhancement
ScePT: Scene-Consistent, Policy-Based Trajectory Predictions for Planning
Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion
Vehicle Trajectory Prediction Works, but Not Everywhere
LTP: Lane-Based Trajectory Prediction for Autonomous Driving
ONCE-3DLanes: Building Monocular 3D Lane Detection
Towards Driving-Oriented Metric for Lane Detection Models
Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes
LIFT: Learning 4D LiDAR Image Fusion Transformer for 3D Object Detection

 DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection
A Versatile Multi-View Framework for LiDAR-Based 3D Object Detection With Guidance From Panoptic Segmentation
Forecasting From LiDAR via Future Object Detection17181Neehar Peri (Carnegie Mellon University), Jonathon Luiten (RWTH Aachen17181University), Mengtian Li (Carnegie Mellon University), Aljoša Ošep(TUM Munich), Laura Leal-Taixé (TUM), and Deva Ramanan (CarnegieMellon University)
RIDDLE: Lidar Data Compression With Range Image Deep Delta Encoding
Learning From All Vehicles
Is Mapping Necessary for Realistic PointGoal Navigation?
Symmetry-Aware Neural Architecture for Embodied Visual Exploration
Coopernaut: End-to-End Driving With Cooperative Perception for Networked Vehicles
Topology Preserving Local Road Network Estimation From Single Onboard Camera Image 17242 Yigit Baran Can (ETH Zurich), Alexander Liniger (ETH Zurich), Danda Pani Paudel (ETH Zürich), and Luc Van Gool (ETH Zurich)
Coupling Vision and Proprioception for Navigation of Legged Robots
Pyramid Architecture for Multi-Scale Processing in Point Cloud Segmentation

3D-VField: Adversarial Augmentation of Point Clouds for Domain Generalization in 3D Object Detection
Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic Prior
SelfD: Self-Learning Large-Scale Driving Policies From the Web
Towards Real-World Navigation With Deep Differentiable Planners
Privacy Preserving Partial Localization
Efficient Large-Scale Localization by Global Instance Recognition
CrossLoc: Scalable Aerial Localization Assisted by Multimodal Synthetic Data

Poster 4.1: Low-Level Vision

Bilateral Video Magnification Filter	17348
Neural Data-Dependent Transform for Learned Image Compression Dezhao Wang (Peking University), Wenhan Yang (City University of Hong Kong), Yueyu Hu (Peking University), and Jiaying Liu (Peking University)	17358
Towards Bidirectional Arbitrary Image Rescaling: Joint Optimization and Cycle Idempotence Zhihong Pan (Baidu USA LLC), Baopu Li (BAIDU USA LLC), Dongliang He (Baidu), Mingde Yao (University of Science and Technology of China), Wenhao Wu (Baidu), Tianwei Lin (Baidu Inc), Xin Li (Baidu), and Errui Ding (Baidu Inc.)	17368

Deep Generalized Unfolding Networks for Image Restoration Chong Mou (Peking University Shenzhen Graduate School), Qian Wang (Peking University Shenzhen Graduate School), and Jian Zhang (Peking University Shenzhen Graduate School)	17378
Look Back and Forth: Video Super-Resolution With Explicit Temporal Difference Modeling Takashi Isobe (Tsinghua University), Xu Jia (Dalian University of Technology), Xin Tao (Kuaishou), Changlin Li (Kuaishou), Ruihuang Li (Hong Kong Polytechnic University), Yongjie Shi (Peking University), Jing Mu (Kuaishou Technology), Huchuan Lu (Dalian University of Technology), and Yu-Wing Tai (Kuaishou Technology / HKUST)	17390
XYDeblur: Divide and Conquer for Single Image Deblurring Seo-Won Ji (Korea University), Jeongmin Lee (Korea University), Seung-Wook Kim (Korea University), Jun-Pyo Hong (Korea University), Seung-Jin Baek (Korea University), Seung-Won Jung (Korea University), and Sung-Jea Ko (Korea University)	17400
Abandoning the Bayer-Filter To See in the Dark Xingbo Dong (Yonsei University; TCL Research AI Lab; Monash University), Wanyan Xu (Fuzhou University), Zhihui Miao (Fuzhou University), Lan Ma (TCL Corporate Research), Chao Zhang (Anhui University), Jiewen Yang (Yonsei University), Zhe Jin (TCL Corporate Research (HK) Co., Ltd, ,), Andrew Beng Jin Teoh (TCL Corporate Research), and Jiajun Shen (TCL Research)	17410
RSTT: Real-Time Spatial Temporal Transformer for Space-Time Video Super-Resolution Zhicheng Geng (The University of Texas at Austin), Luming Liang (Microsoft), Tianyu Ding (Microsoft), and Ilya Zharkov (Microsoft)	17420
 All-in-One Image Restoration for Unknown Corruption Boyun Li (College of Computer Science, Sichuan University), Xiao Liu (Tomorrow Advancing Life Education Group), Peng Hu (College of Computer Science, Sichuan University), Zhongqin Wu (Tomorrow Advancing Life Education Group), Jiancheng Lv (Sichuan University), and Xi Peng (College of Computer Science, Sichuan University) 	17431
Modeling sRGB Camera Noise With Normalizing Flows Shayan Kousha (York University), Ali Maleky (York University), Michael S. Brown (York University), and Marcus A. Brubaker (York University)	17442
A Differentiable Two-Stage Alignment Scheme for Burst Image Reconstruction With Large Shift	17451
Video Frame Interpolation Transformer Zhihao Shi (McMaster University), Xiangyu Xu (Sea AI Lab), Xiaohong Liu (Shanghai Jiao Tong University), Jun Chen (McMaster University), and Ming-Hsuan Yang (University of California at Merced)	17461
The Devil Is in the Details: Window-Based Attention for Image Compression Renjie Zou (Institute of AutomationChinese Academy of Sciences), Chunfeng Song (CASIA, UCAS, CRIPAC), and Zhaoxiang Zhang (Chinese Academy of Sciences, China)	17471

Mask-Guided Spectral-Wise Transformer for Efficient Hyperspectral Image Reconstruction 17481 Yuanhao Cai (Tsinghua Univisity, Tsinghua Shenzhen International Graduate School), Jing Lin (Tsinghua Univisity, Tsinghua Shenzhen International Graduate School), Xiaowan Hu (Tsinghua Univisity, Tsinghua Shenzhen International Graduate School), Haoqian Wang (Tsinghua Shenzhen International Graduate School, Tsinghua University), Xin Yuan (Westlake University), Yulun Zhang (ETH Zurich), Radu Timofte (ETH Zurich), and Luc Van Gool (ETH Zurich)	
RestoreFormer: High-Quality Blind Face Restoration From Undegraded Key-Value Pairs 17491 Zhouxia Wang (The University of Hong Kong), Jiawei Zhang (Sensetime Research), Runjian Chen (The University of Hong Kong), Wenping Wang (The University of Hong Kong), and Ping Luo (The University of Hong Kong)	
AdaInt: Learning Adaptive Intervals for 3D Lookup Tables on Real-Time Image Enhancement 17501 Canqian Yang (Shanghai Jiao Tong University), Meiguang Jin (Alibaba Group), Xu Jia (Dalian University of Technology), Yi Xu (Shanghai Jiao Tong University), and Ying Chen (Alibaba Group)	
 HerosNet: Hyperspectral Explicable Reconstruction and Optimal Sampling Deep Network for Snapshot Compressive Imaging	
HDNet: High-Resolution Dual-Domain Learning for Spectral Compressive Imaging	
Learning To Zoom Inside Camera Imaging Pipeline	
Towards an End-to-End Framework for Flow-Guided Video Inpainting	
Context-Aware Video Reconstruction for Rolling Shutter Cameras	

CVF-SID: Cyclic Multi-Variate Function for Self-Supervised Image Denoising by Disentangling Noise From Image
Global Matching With Overlapping Attention for Optical Flow Estimation
CRAFT: Cross-Attentional Flow Transformer for Robust Optical Flow
Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression
 Video Demoiréing With Relation-Based Temporal Consistency
Noise2NoiseFlow: Realistic Camera Noise Modeling Without Clean Images
Deep Constrained Least Squares for Blind Image Super-Resolution
Learning Multiple Adverse Weather Removal via Two-Stage Knowledge Learning and Multi-Contrastive Regularization: Toward a Unified Model
Unsupervised Homography Estimation With Coplanarity-Aware GAN

Poster 4.1: Computational Photography

Attentive Fine-Grained Structured Sparsity for Image Restoration Junghun Oh (Seoul National University), Heewon Kim (Seoul National University), Seungjun Nah (NVIDIA), Cheeun Hong (Seoul National University), Jonghyun Choi (Yonsei University), and Kyoung Mu Lee (Seoul National University)	17652
Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang (University of Science and Technology of China), Xiaodong Cun (Tencent AI Lab), Jianmin Bao (University of Science and Technology of China), Wengang Zhou (University of Science and Technology of China), Jianzhuang Liu (Huawei Noah's Ark Lab), and Houqiang Li (University of Science and Technology of China)	17662
Bringing Old Films Back to Life Ziyu Wan (City University of Hong Kong), Bo Zhang (hkust), Dongdong Chen (Microsoft Cloud AI), and Jing Liao (City University of Hong Kong)	17673
Learning sRGB-to-Raw-RGB De-Rendering With Content-Aware Metadata Seonghyeon Nam (York University), Abhijith Punnappurath (Samsung AI Center Toronto), Marcus A. Brubaker (York University), and Michael S. Brown (York University)	17683
SNR-Aware Low-Light Image Enhancement Xiaogang Xu (The Chinese University of Hong Kong), Ruixing Wang (The Chinese University of Hong Kong), Chi-Wing Fu (The Chinese University of Hong Kong), and Jiaya Jia (Chinese University of Hong Kong)	17693
AP-BSN: Self-Supervised Denoising for Real-World Images via Asymmetric PD and Blind-Spot Network Wooseok Lee (Seoul National University), Sanghyun Son (Seoul National University), and Kyoung Mu Lee (Seoul National University)	17704
Synthetic Aperture Imaging With Events and Frames Wei Liao (WuHan University), Xiang Zhang (Wuhan University), Lei Yu (Wuhan University), Shijie Lin (The University of Hong Kong), Wen Yang (Wuhan University), and Ning Qiao (Chengdu SynSense Tech. Co. Ltd.)	17714
Ev-TTA: Test-Time Adaptation for Event-Based Object Recognition Junho Kim (Seoul National University), Inwoo Hwang (Seoul National University), and Young Min Kim (Seoul National University)	17724
Time Lens++: Event-Based Frame Interpolation With Parametric Non-Linear Flow and Multi-Scale Fusion	17734
Unifying Motion Deblurring and Frame Interpolation With Events Xiang Zhang (Wuhan University) and Lei Yu (Wuhan University)	17744
EvUnroll: Neuromorphic Events Based Rolling Shutter Image Correction Xinyu Zhou (Peking University), Peiqi Duan (Peking University), Yi Ma (Peking University), and Boxin Shi (Peking University)	17754

Learning Adaptive Warping for Real-World Rolling Shutter Correction
Neural Global Shutter: Learn To Restore Video From a Rolling Shutter Camera With Global Reset Feature
TimeReplayer: Unlocking the Potential of Event Cameras for Video Interpolation
Optimizing Video Prediction via Video Frame Interpolation
Reference-Based Video Super-Resolution Using Multi-Camera Video Triplets
Memory-Augmented Non-Local Attention for Video Super-Resolution
Optical Flow Estimation for Spiking Camera
Compressive Single-Photon 3D Cameras
Single-Photon Structured Light
All-Photon Polarimetric Time-of-Flight Imaging
 Holocurtains: Programming Light Curtains via Binary Holography

Poster 4.1: Vision & Language

Towards Implicit Text-Guided 3D Shape Generation	7875
 Towards Language-Free Training for Text-to-Image Generation	7886
ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic	7897
EMScore: Evaluating Video Captioning via Coarse-Grained and Fine-Grained Embedding	7009
Matching	7908
 Hierarchical Modular Network for Video Captioning	7918
 SwinBERT: End-to-End Transformers With Sparse Attention for Video Captioning	7928
End-to-End Generative Pretraining for Multimodal Video Captioning	7938
Beyond a Pre-Trained Object Detector: Cross-Modal Textual and Visual Context for Image Captioning	7948
 Scaling Up Vision-Language Pre-Training for Image Captioning	7959
Comprehending and Ordering Semantics for Image Captioning	7969

NOC-REK: Novel Object Captioning With Retrieved Vocabulary From External Knowledge 17979 Duc Minh Vo (The University of Tokyo), Hong Chen (The University of Tokyo), Akihiro Sugimoto (NII), and Hideki Nakayama (The University of Tokyo)
Injecting Semantic Concepts Into End-to-End Image Captioning17988Zhiyuan Fang (Arizona State University), Jianfeng Wang (Microsoft),17988Xiaowei Hu (Microsoft), Lin Liang (Microsoft), Zhe Gan (Microsoft),17988Lijuan Wang (Microsoft), Yezhou Yang (Arizona State University), and2icheng Liu (Microsoft)
DIFNet: Boosting Visual Information Flow for Image Captioning
 VisualGPT: Data-Efficient Adaptation of Pretrained Language Models for Image Captioning 18009 Jun Chen (King Abdullah University of Science and Technology), Han Guo (CMU), Kai Yi (King Abdullah University of Science and Technology), Boyang Li (Nanyang Technological University), and Mohamed Elhoseiny (KAUST)
 Show, Deconfound and Tell: Image Captioning With Causal Inference
EI-CLIP: Entity-Aware Interventional Contrastive Learning for E-Commerce Cross-Modal
Retrieval
CLIPstyler: Image Style Transfer With a Single Text Condition
 HairCLIP: Design Your Hair by Text and Reference Image
 DenseCLIP: Language-Guided Dense Prediction With Context-Aware Prompting

On Guiding Visual Attention With Language Specification
UTC: A Unified Transformer With Inter-Task Contrastive Learning for Visual Dialog 18082 Cheng Chen (Fudan university), Zhenshan Tan (Fudan University), Qingrong Cheng (Fudan University), Xin Jiang (Huawei Noah's Ark Lab), Qun Liu (Huawei Noah's Ark Lab), Yudong Zhu (Huawei Noah's Ark Lab), and Xiaodong Gu (Fudan University)
Text-to-Image Synthesis Based on Object-Guided Joint-Decoding Transformer
LiT: Zero-Shot Transfer With Locked-Image Text Tuning
GroupViT: Semantic Segmentation Emerges From Text Supervision
ReSTR: Convolution-Free Referring Image Segmentation Using Transformers
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation
 An Empirical Study of Training End-to-End Vision-and-Language Transformers
Are Multimodal Transformers Robust to Missing Modality?

Poster 4.1: Image & Video Synthesis and Generation

Text to Image Generation With Semantic-Spatial Aware GAN Wentong Liao (Leibniz University Hannover), Kai Hu (Leibniz University Hannover), Michael Ying Yang (University of Twente), and Bodo Rosenhahn (Leibniz University Hannover)	18166
StyleT2I: Toward Compositional and High-Fidelity Text-to-Image Synthesis Zhiheng Li (University of Rochester), Martin Renqiang Min (NEC Labs America-Princeton), Kai Li (NEC LABORATORIES AMERICA, INC), and Chenliang Xu (University of Rochester)	18176
Blended Diffusion for Text-Driven Editing of Natural Images Omri Avrahami (The Hebrew University of Jerusalem), Dani Lischinski (The Hebrew University of Jerusalem), and Ohad Fried (IDC Herzliya)	18187
Make It Move: Controllable Image-to-Video Generation With Text Descriptions Yaosi Hu (Wuhan University), Chong Luo (MSRA), and Zhenzhong Chen (Wuhan University)	18198
Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-Language Model Zipeng Xu (University of Trento), Tianwei Lin (Baidu Inc), Hao Tang (ETH Zurich), Fu Li (Baidu), Dongliang He (Baidu), Nicu Sebe (University of Trento), Radu Timofte (ETH Zurich), Luc Van Gool (ETH Zurich), and Errui Ding (Baidu Inc.)	18208
A Style-Aware Discriminator for Controllable Image Translation Kunhee Kim (Pohang University of Science and Technology), Sanghun Park (Pohang University of Science and Technology), Eunyeong Jeon (Pohang University of Science and Technology), Taehun Kim (Pohang University of Science and Technology), and Daijin Kim (Pohang University of Science and Technology)	18218
 Alleviating Semantics Distortion in Unsupervised Low-Level Image-to-Image Translation via Structure Consistency Constraint	18228
Exploring Patch-Wise Semantic Relation for Contrastive Learning in Image-to-Image Translation Tasks <i>Chanyong Jung (KAIST), Gihyun Kwon (KAIST), and Jong Chul Ye (Kim</i> <i>Jaechul Graduate School of AI, KAIST, Korea)</i>	18239
FlexIT: Towards Flexible Semantic Image Translation Guillaume Couairon (Facebook AI Research), Asya Grechka (meero), Jakob Verbeek (Facebook), Holger Schwenk (Facebook AI Research), and Matthieu Cord (Sorbonne University)	18249
Modulated Contrast for Versatile Image Synthesis Fangneng Zhan (Nanyang Technological University), Jiahui Zhang (Nanyang Technological University), Yingchen Yu (Nanyang Technological University), Rongliang Wu (Nanyang Technological University), and Shijian Lu (Nanyang Technological University)	18259

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation
Self-Supervised Dense Consistency Regularization for Image-to-Image Translation
Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image Translation
InstaFormer: Instance-Aware Image-to-Image Translation With Transformer
Unsupervised Image-to-Image Translation With Generative Prior
StylizedNeRF: Consistent 3D Scene Stylization As Stylized NeRF via 2D-3D Mutual Learning 18321 Yi-Hua Huang (Institute of Computing Technology, Chinese Academy of Sciences), Yue He (Institute of Computing Technology, Chinese Academy of Sciences), Yu-Jie Yuan (Institute of Computing Technology, Chinese Academy of Sciences), Yu-Kun Lai (Cardiff University), and Lin Gao (Institute of Computing Technology, Chinese Academy of Sciences)
NeRF-Editing: Geometry Editing of Neural Radiance Fields
GeoNeRF: Generalizing NeRF With Geometry Priors
Ray Priors Through Reprojection: Improving Neural Radiance Fields for Novel View Extrapolation 18355 Jian Zhang (Alibaba Group), Yuanqing Zhang (Zhejiang University), Huan 18355 Fu (Alibaba Group), Xiaowei Zhou (Zhejiang University), Bowen Cai (Alibaba Group), Jinchi Huang (Alibaba Group), Rongfei Jia (Alibaba Group), Binqiang Zhao (Alibaba), and Xing Tang (Alibaba Group) 18355

AR-NeRF: Unsupervised Learning of Depth and Defocus Effects From Natural Images With Aperture Rendering Neural Radiance Fields
HDR-NeRF: High Dynamic Range Neural Radiance Fields
NeRFReN: Neural Radiance Fields With Reflections
Neural Point Light Fields
3D-Aware Image Synthesis via Learning Structural and Textural Representations
GIRAFFE HD: A High-Resolution 3D-Aware Generative Model
Multi-View Consistent Generative Adversarial Networks for 3D-Aware Image Synthesis
Bi-Level Doubly Variational Learning for Energy-Based Latent Variable Models
 High-Resolution Image Harmonization via Collaborative Dual Transformations
Brain-Supervised Image Editing

Poster 4.1: Vision & Graphics

De-Rendering 3D Objects in the Wild	9
 Neural Fields As Learnable Kernels for 3D Reconstruction)
 HyperStyle: StyleGAN Inversion With HyperNetworks for Real Image Editing	Э
3PSDF: Three-Pole Signed Distance Function for Learning Surfaces With Arbitrary Topologies 18501 Weikai Chen (Tencent America), Cheng Lin (Tencent), Weiyang Li (Tencent), and Bo Yang (Tencent America)	1
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian	1
Deep Image-Based Illumination Harmonization	1
Glass: Geometric Latent Augmentation for Shape Spaces	1
 PhotoScene: Photorealistic Material and Lighting Transfer for Indoor Scenes	1
Neural Template: Topology-Aware Reconstruction and Disentangled Generation of 3D Meshes . 18551 Ka-Hei Hui (The Chinese University of Hong Kong), Ruihui Li (Hunan University), Jingyu Hu (The Chinese University of Hong Kong), and Chi-Wing Fu (The Chinese University of Hong Kong)	1
Neural Mesh Simplification	2
SkinningNet: Two-Stream Graph Convolutional Neural Network for Skinning Prediction of Synthetic Characters	2

CLIP-Forge: Towards Zero-Shot Text-To-Shape Generation	2
UNIST: Unpaired Neural Implicit Shape Translation Network	3
CoNeRF: Controllable Neural Radiance Fields	2
Neural Points: Point Cloud Representation With Neural Fields for Arbitrary Upsampling 1861 Wanquan Feng (University of Science and Technology of China), Jin Li (Guilin University Of Electronic Technology), Hongrui Cai (University of Science and Technology of China), Xiaonan Luo (Guilin University of Electronic Technology), and Juyong Zhang (University of Science and Technology of China)	2
Modeling Indirect Illumination for Inverse Rendering	2
Neural Head Avatars From Monocular RGB Videos	2
DeepCurrents: Learning Implicit Representations of Shapes With Boundaries	4

Oral 4.2.1: Biometrics, Face & Gestures, and Medical Image Analysis

 AnyFace: Free-Style Text-To-Face Synthesis and Manipulation	18666
 General Facial Representation Learning in a Visual-Linguistic Manner	18676
 Self-Supervised Learning of Adversarial Example: Towards Good Generalizations for Deepfake Detection	18689
Detecting Deepfakes With Self-Blended Images	18699
 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces	18709
Evaluation-Oriented Knowledge Distillation for Deep Face Recognition	18719
AdaFace: Quality Adaptive Margin for Face Recognition	18729
Moving Window Regression: A Novel Approach to Ordinal Regression	18739
 FaceFormer: Speech-Driven 3D Facial Animation With Transformers	18749

Neural Emotion Director: Speech-Preserving Semantic Control of Facial Expressions in "In-the-Wild" Videos
Deep Decomposition for Stochastic Normal-Abnormal Transport
 DTFD-MIL: Double-Tier Feature Distillation Multiple Instance Learning for Histopathology Whole Slide Image Classification
Node-Aligned Graph Convolutional Network for Whole-Slide Image Representation and Classification
 Temporal Context Matters: Enhancing Single Image Prediction With Disease Progression Representations

Oral 4.2.2: Scene & Shape Analysis and Understanding

VRDFormer: End-to-End Video Visual Relation Detection With Transformers Sipeng Zheng (Renmin University of China), Shizhe Chen (INRIA), and Qin Jin (Renmin University of China)	18814
Video K-Net: A Simple, Strong, and Unified Baseline for Video Segmentation Xiangtai Li (Peking University), Wenwei Zhang (NTU), Jiangmiao Pang (CUHK), Kai Chen (SenseTime Research), Guangliang Cheng (Sensetime Group Limited), Yunhai Tong (Peking University), and Chen Change Loy (Nanyang Technological University)	18825
Visual Acoustic Matching Changan Chen (University of Texas at Austin), Ruohan Gao (Stanford University), Paul Calamia (Facebook Reality Labs Research), and Kristen Grauman (Facebook AI Research & UT Austin)	18836

The Devil Is in the Labels: Noisy Label Correction for Robust Scene Graph Generation	
Learning Multiple Dense Prediction Tasks From Partially Annotated Data	
PONI: Potential Functions for ObjectGoal Navigation With Interaction-Free Learning	
Continual Stereo Matching of Continuous Driving Scenes With Growing Architecture	
FIFO: Learning Fog-Invariant Features for Foggy Scene Segmentation	,
Both Style and Fog Matter: Cumulative Domain Adaptation for Semantic Foggy Scene Understanding 18900 Xianzheng Ma (Wuhan university), Zhixiang Wang (The University of 18900 Tokyo), Yacheng Zhan (Wuhan University), Yinqiang Zheng (The 18900 University of Tokyo), Zheng Wang (Wuhan University), Dengxin Dai (MPI 18900 for Informatics), and Chia-Wen Lin (National Tsing Hua University) 18900	ł
Equivariant Point Cloud Analysis via Learning Orientations for Message Passing	
Surface Representation for Point Clouds)
Not All Points Are Equal: Learning Highly Efficient Point-Based Detectors for 3D LiDAR Point Clouds 18931 Yifan Zhang (National University of Defense Technology), Qingyong Hu 18931 (University of Oxford), Guoquan Xu (National University of Defense 18931 Technology), Yanxin Ma (National University of Defense Technology), Jianwei Wan (NUDT), and Yulan Guo (Sun Yat-sen University)	
3D Common Corruptions and Data Augmentation	

INS-Conv: Incremental Sparse Convolution for Online 3D Segmentation	18953
Leyao Liu (Tsinghua University), Tian Zheng (Tsinghua University),	
Yun-Jou Lin (Oppo), Kai Ni (HoloMatic TechnologyBeijingCo., Ltd.),	
and Lu Fang (Tsinghua University)	
How Much Does Input Data Type Impact Final Face Model Accuracy?	18963
Jiahao Luo (UCSC), Fahim Hasan Khan (University of California, Santa	
Cruz), Issei Mori (University of California Santa Cruz), Akila de	
Silva (University of California, Santa Cruz), Eric Sandoval Ruezga	
(AVIS), Minghao Liu (UCSC), Alex Pang (ucsc), and James Davis (UC	
Santa Cruz)	

Oral 4.2.3: Datasets & Evaluation, Action & Event Recognition, and Visual Question Answering

(University of Minnesota), Antonino Furnari (University of Catania), Rohit Girdhar (Facebook AI Research), Jackson Hamburger (Sensorum Health), Hao Jiang (Facebook), Miao Liu (Georgia Institute of Technology), Xingyu Liu (Carnegie Mellon University), Miguel Martin (Facebook), Tushar Nagarajan (UT Austin & Facebook AI Research), Ilija (Fucebook), Fushar Nagarajan (UT Austin & Fucebook AT Research), Itija Radosavovic (UC Berkeley), Santhosh Kumar Ramakrishnan (University of Texas at Austin), Fiona Ryan (Georgia Institute of Technology), Jayant Sharma (University of Minnesota), Michael Wray (University of Bristol), Mengmeng Xu (KAUST), Eric Zhongcong Xu (National University of Singapore), Chen Zhao (KAUST), Siddhant Bansal (IIIT, Hyderabad), Dhrus Detra (Coursic Tech, S. Tecehol, AL Becardo), Vincent Certilian Dhruv Batra (Georgia Tech & Facebook AI Research), Vincent Cartillier (Georgia Tech), Sean Crane (Carnegie Mellon University), Tien Do (University of Minnesota), Morrie Doulaty (Facebook), Akshay Erapalli (Facebook (Meta), ,), Christoph Feichtenhöfer (Facebook AI Research), Adriano Fragomeni (University of Bristol), Qichen Fu (Carnegie Mellon University), Abrham Gebreselasie (Carnegie Mellon University), Cristina González (Universidad de los Andes), James Hillis (Facebook Reality Labs), Xuhua Huang (Carnegie Mellon University), Yifei Huang (The University of Tokyo), Wenqi Jia (Georgia Institute of Technology), Weslie Khoo (Indiana University), Jáchym Kolář (Meta), Satwik Kottur (Facebook AI), Anurag Kumar (Facebook Research), Federico Landini (Brno University of Technology), Chao Li (Facebook Reality Labs), Yanghao Li (Facebook AI Research), Zhenqiang Li (The University of Tokyo), Karttikeya Mangalam (UC Berkeley), Raghava Modhugu (International Institute of Information Techonology), Jonathan Munro (University of Bristol), Tullie Murrell (Facebook AI Research), Takumi Nishiyasu (The University of Tokyo), Will Price (University of Bristol), Paola Ruiz (Universidad de los Andes), Merey Ramazanova (KAUST), Leda Sari (Facebook), Kiran Somasundaram (Facebook Reality Labs), Audrey Southerland (Georgia Institute of Technology), Yusuke Sugano (The University of Tokyo), Ruijie Tao (National University of Singapore), Minh Vo (Facebook Reality Labs), Yuchen Wang (Indiana University), Xindi Wu (Carnegie Mellon University), Takuma Yagi (The University of Tokyo), Ziwei Zhao (Indiana University), Yunyi Zhu (National University of Singapore), Pablo Arbeláez (Universidad de los Andes), David Crandall (Indiana University), Dima Damen (University of Bristol), Giovanni Maria Farinella (University of Catania, Italy), Christian Fuegen (Facebook), Bernard Ghanem (KAUST), Vamsi Krishna Ithapu (Facebook Reality Labs), C. V. Jawahar (IIIT-Hyderabad), Hanbyul Joo (Facebook AI Research), Kris Kitani (Carnegie Mellon University), Haizhou Li (The Chinese University of Hong Kong (Shenzheň), ,), Richard Newcombe (Facebook), Ăude Oliva (MĬT), Hyun Soo Park (The University of Minnesota), James M. Rehg (Georgia Institute of Technology), Yoichi Sato (University of Tokyo), Jianbo Shi (University of Pennsylvania), Mike Zheng Shou (National University of Singapore), Antonio Torralba (MIT), Lorenzo Torresani (Facebook AI Research), Mingfei Yan (Meta), and Jitendra Malik (University of *California at Berkeley*) TransRAC: Encoding Multi-Scale Temporal Correlation With Transformers for Repetitive

Huazhang Hu (Shanghaitech University), Sixun Dong (Shanghaitech Univercity), Yiqun Zhao (ShanghaiTech University), Dongze Lian (ShanghaiTech University), Zhengxin Li (ShanghaiTech University), and Shenghua Gao (Shanghaitech University)

 Animal Kingdom: A Large and Diverse Dataset for Animal Behavior Understanding	1
vCLIMB: A Novel Video Class Incremental Learning Benchmark	3
Opening Up Open World Tracking	3
Bongard-HOI: Benchmarking Few-Shot Visual Reasoning for Human-Object Interactions	4
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters	4
 Failure Modes of Domain Generalization Algorithms	5
A Comprehensive Study of Image Classification Model Sensitivity to Foregrounds, Backgrounds, and Visual Attributes	5
Grounding Answers for Visual Questions Asked by Visually Impaired People	6
Learning To Answer Questions in Dynamic Audio-Visual Scenarios	6
Episodic Memory Question Answering	7

ScanQA: 3D Question Answering for Spatial Scene Understanding
 Learning Part Segmentation Through Unsupervised Domain Adaptation From Synthetic Vehicles 19118 <i>Qing Liu (Johns Hopkins University), Adam Kortylewski (Max Planck</i>
Institute for Informatics), Zhishuai Zhang (Waymo), Zizhang Li
(Zhejiang University), Mengqi Guo (National University of Singapore), Qihao Liu (Johns Hopkins University), Xiaoding Yuan (Johns Hopkins
University), Jiteng Mu (University of California, San Diego), Weichao
Qiu (Johns Hopkins University), and Alan Yuille (Johns Hopkins
University)
BTS: A Bi-Lingual Benchmark for Text Segmentation in the Wild
Kong Polytechnic University), Honglun Zhang (Applied Research Center, Tencent PCG), Ying Shan (Tencent), and Xiaohu Qie (Tencent)

Poster 4.2: Representation Learning

Unified Contrastive Learning in Image-Text-Label Space
AlignMixup: Improving Representations by Interpolating Aligned Features
On the Road to Online Adaptation for Semantic Image Segmentation
ADAS: A Direct Adaptation Strategy for Multi-Target Domain Adaptive Semantic Segmentation 19174 Seunghun Lee (DGIST), Wonhyeok Choi (DGIST), Changjae Kim (DGIST), Minwoo Choi (DGIST), and Sunghoon Im (DGIST)
Kernelized Few-Shot Object Detection With Efficient Integral Aggregation
Neural Mean Discrepancy for Efficient Out-of-Distribution Detection
A Structured Dictionary Perspective on Implicit Neural Representations

LARGE: Latent-Based Regression Through GAN Semantics	17
Rethinking Controllable Variational Autoencoders	28
Learning Canonical F-Correlation Projection for Compact Multiview Representation	:38
Cross-Architecture Self-Supervised Video Representation Learning	:48
Improving Video Model Transfer With Dynamic Representation Learning	258
 Self-Supervised Image Representation Learning With Geometric Set Consistency	:70
HLRTF: Hierarchical Low-Rank Tensor Factorization for Inverse Problems in 1928 Multi-Dimensional Imaging 1928 Yisi Luo (School of Mathematical Sciences, University of Electronic 1928 Science and Technology of China), Xi-Le Zhao (School of Mathematical 1928 Sciences, University of Electronic Science and Technology of China), Xi-Le Zhao (School of Mathematical 1929 Deyu Meng (Xi'an Jiaotong University), and Tai-Xiang Jiang (School of 1920 Economic Information Engineering, Southwestern University of Finance and Economics)	:81
Point-BERT: Pre-Training 3D Point Cloud Transformers With Masked Point Modeling	:91
DiGS: Divergence Guided Shape Implicit Neural Representation for Unoriented Point Clouds 1930 Yizhak Ben-Shabat (Technion), Chamin Hewa Koneputugodage (Australian National University), and Stephen Gould (Australian National University, Australia)	601
Neural Convolutional Surfaces	511

Representing 3D Shapes With Probabilistic Directed Distance Fields	\$21
H4D: Human 4D Modeling by Learning Neural Compositional Representation	333
 Learning Memory-Augmented Unidirectional Metrics for Cross-Modality Person Re-Identification	344
 Contrastive Regression for Domain Adaptation on Gaze Estimation	\$54
Forward Compatible Training for Large-Scale Embedding Retrieval Systems	364
Improving Subgraph Recognition With Variational Graph Information Bottleneck	374
Learning Soft Estimator of Keypoint Scale and Orientation With Probabilistic Covariant Loss	384
Few-Shot Keypoint Detection With Uncertainty Learning for Unseen Species	394

Poster 4.2: Scene Analysis and Understanding

Stacked Hybrid-Attention and Group Collaborative Learning for Unbiased Scene Graph Generation	19405
Xingning Dong (Shandong University), Tian Gan (Shandong University), Xuemeng Song (Shandong University), Jianlong Wu (Shandong University), Yuan Cheng (Ant Group), and Liqiang Nie (Shandong University)	17100
Structured Sparse R-CNN for Direct Scene Graph Generation Yao Teng (Nanjing University) and Limin Wang (Nanjing University)	19415

PPDL: Predicate Probability Distribution Based Loss for Unbiased Scene Graph Generation 19425 Wei Li (Nankai University), Haiwei Zhang (Nankai University), Qijie Bai (Nankai University), Guoqing Zhao (Mashang Consumer Finance Co., Ltd), Ning Jiang (Mashang Consumer Finance Co., Ltd.), and Xiaojie Yuan (Nankai University)
RU-Net: Regularized Unrolling Network for Scene Graph Generation
Fine-Grained Predicates Learning for Scene Graph Generation
HL-Net: Heterophily Learning Network for Scene Graph Generation
SGTR: End-to-End Scene Graph Generation With Transformer
Classification-Then-Grounding: Reformulating Video Scene Graphs As Temporal Bipartite Graphs
RelTransformer: A Transformer-Based Long-Tail Visual Relationship Recognition
Spatial Commonsense Graph for Object Localisation in Partial Scenes
"The Pedestrian Next to the Lamppost" Adaptive Object Graphs for Better Instantaneous Mapping

Category-Aware Transformer Network for Better Human-Object Interaction Detection
 Exploring Structure-Aware Transformer Over Interaction Proposals for Human-Object Interaction Detection
Distillation Using Oracle Queries for Transformer-Based Human-Object Interaction Detection 19536 Xian Qu (South China University of Technology), Changxing Ding (South China University of Technology), Xingao Li (South China University of Technology), Xubin Zhong (South China University of Technology), and Dacheng Tao (JD.com)
Human-Object Interaction Detection via Disentangled Transformer
MSTR: Multi-Scale Transformer for End-to-End Human-Object Interaction Detection
GaTector: A Unified Framework for Gaze Object Prediction
 STCrowd: A Multimodal Dataset for Pedestrian Perception in Crowded Scenes
Crowd Counting in the Frequency Domain

Boosting Crowd Counting via Multifaceted Attention Hui Lin (Xi'an Jiaotong University), Zhiheng Ma (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Rongrong Ji (Xiamen University, China), Yaowei Wang (PengCheng Laboratory), and Xiaopeng Hong (Harbin Institute of Technology)	19596
Rethinking Spatial Invariance of Convolutional Networks for Object Counting Zhi-Qi Cheng (Carnegie Mellon University), Qi Dai (Microsoft Research), Hong Li (Carnegie Mellon University), Jingkuan Song (UESTC), Xiao Wu (Southwest Jiaotong University), and Alexander G. Hauptmann (Carnegie Mellon University)	19606
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Xiaoxue Chen (Tsinghua University), Tianyu Liu (The Hong Kong University of Science and Technology), Hao Zhao (Intel Labs China), Guyue Zhou (Tsinghua University), and Ya-Qin Zhang (Tsinghua University)	19617
Collaborative Transformers for Grounded Situation Recognition	19627

Poster 4.2: Computational Photography

Deep Stereo Image Compression via Bi-Directional Coding	9637
RFNet: Unsupervised Network for Mutually Reinforcing Multi-Modal Image Registration and Fusion	9647
 Semi-Supervised Wide-Angle Portraits Correction by Multi-Scale Transformer	9657
 Semi-Supervised Learning of Semantic Correspondence With Pseudo-Labels	9667
 SCS-Co: Self-Consistent Style Contrastive Learning for Image Harmonization	<i>€</i> 78
Automatic Color Image Stitching Using Quaternion Rank-1 Alignment	9688

SpaceEdit: Learning a Unified Editing Space for Open-Domain Image Color Editing	.9698
Degree-of-Linear-Polarization-Based Color Constancy	.9708
Point Cloud Color Constancy	.9718
Boosting View Synthesis With Residual Transfer	.9728
Deep Hyperspectral-Depth Reconstruction Using Single Color-Dot Projection	.9738
Quantization-Aware Deep Optics for Diffractive Snapshot Hyperspectral Imaging	9748
PIE-Net: Photometric Invariant Edge Guided Network for Intrinsic Image Decomposition1 Partha Das (University of Amsterdam), Sezer Karaoglu (University of Amsterdam), and Theo Gevers (University of Amsterdam)	.9758
Multimodal Material Segmentation	.9768
Occlusion-Aware Cost Constructor for Light Field Depth Estimation	9777
Learning Neural Light Fields With Ray-Space Embedding	.9787
Acquiring a Dynamic Light Field Through a Single-Shot Coded Image	.9798

Gravitationally Lensed Black Hole Emission Tomography
Deep Saliency Prior for Reducing Visual Distraction
Personalized Image Aesthetics Assessment With Rich Attributes
 Artistic Style Discovery With Independent Components

Poster 4.2: Action and Event Recognition

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos
SVIP: Sequence VerIfication for Procedures in Videos19858Yicheng Qian (ShanghaiTech University), Weixin Luo (Meituan), Dongze19858Lian (ShanghaiTech University), Xu Tang (Xiaohongshu Inc.), Peilin2hao (Tencent AI Lab), and Shenghua Gao (Shanghaitech University)
Set-Supervised Action Learning in Procedural Task Videos via Pairwise Order Consistency 19871 Zijia Lu (Northeastern University) and Ehsan Elhamifar (Northeastern University)
 Exploring Denoised Cross-Video Contrast for Weakly-Supervised Temporal Action Localization 19882 Jingjing Li (University of Alberta), Tianyu Yang (Tencent AI Lab), Wei Ji (University of Alberta), Jue Wang (Tencent AI Lab), and Li Cheng (ECE dept., University of Alberta)
GateHUB: Gated History Unit With Background Suppression for Online Action Detection 19893 Junwen Chen (Rochester Institute of Technology), Gaurav Mittal (Microsoft), Ye Yu (Microsoft), Yu Kong (Rochester Institute of Technology), and Mei Chen (Microsoft)

E2(GO)MOTION: Motion Augmented Event Stream for Egocentric Action Recognition
Hybrid Relation Guided Set Matching for Few-Shot Action Recognition19916Xiang Wang (Huazhong University of Science and Technology), Shiwei2Zhang (DAMO Academy, Alibaba Group), Zhiwu Qing (Huazhong Universityof Science and Technology), Mingqian Tang (Alibaba Group), ZhengrongZuo (Huazhong University of Science and Technology), Changxin Gao(Huazhong University of Science and Technology), Rong Jin (alibabagroup), and Nong Sang (Huazhong University of Science and Technology)Science and Technology)
Spatio-Temporal Relation Modeling for Few-Shot Action Recognition
Alignment-Uniformity Aware Representation Learning for Zero-Shot Video Classification 19936 Shi Pu (Tencent), Kaili Zhao (Beijing University of Posts and Telecommunications), and Mao Zheng (Tencent)
Cross-Modal Representation Learning for Zero-Shot Action Recognition
Cross-Modal Background Suppression for Audio-Visual Event Localization
Fine-Grained Temporal Contrastive Learning for Weakly-Supervised Temporal Action Localization 19967 Junyu Gao (CASIA), Mengyuan Chen (Institute of Automation, Chinese Academy of Sciences), and Changsheng Xu (CASIA)
An Empirical Study of End-to-End Temporal Action Detection
Everything at Once – Multi-Modal Fusion Transformer for Video Retrieval
DirecFormer: A Directed Attention in Transformer Approach to Robust Action Recognition 19998 Thanh-Dat Truong (University of Arkansas), Quoc-Huy Bui (University of Science, VNU-HCM), Chi Nhan Duong (Concordia University), Han-Seok Seo (University of Arkansas), Son Lam Phung (University of Wollongong, VinAI), Xin Li (West Virginia University), and Khoa Luu (University of Arkansas)

MS-TCT: Multi-Scale Temporal ConvTransformer for Action Detection
Uncertainty-Guided Probabilistic Transformer for Complex Action Recognition
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition
UBoCo: Unsupervised Boundary Contrastive Learning for Generic Event Boundary Detection 20041 Hyolim Kang (Yonsei University), Jinwoo Kim (Yonsei University), Taehyun Kim (Yonsei Univ.), and Seon Joo Kim (Yonsei University)
Detector-Free Weakly Supervised Group Activity Recognition
Multi-Grained Spatio-Temporal Features Perceived Network for Event-Based Lip-Reading 20062 Ganchao Tan (University of Science and Technology of China), Yang Wang (University of Science and Technology of China), Han Han (University of Science and Technology of China), Yang Cao (University of Science and Technology of China), Feng Wu (University of Science and Technology of China), and Zheng-Jun Zha (University of Science and Technology of China)
Efficient Two-Stage Detection of Human-Object Interactions With a Novel Unary-Pairwise Transformer 20072 Frederic Z. Zhang (Australian National University), Dylan Campbell (University of Oxford), and Stephen Gould (Australian National University, Australia) University, Australia)
Interactiveness Field in Human-Object Interactions
GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection 20091 Yue Liao (Beihang University), Aixi Zhang (Alibaba Group), Miao Lu (Alibaba), Yongliang Wang (Alibaba.inc), Xiaobo Li (Alibaba), and Si Liu (Beihang University)
Object-Relation Reasoning Graph for Action Recognition

UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection
 Decoupling and Recoupling Spatiotemporal Representation for RGB-D-Based Motion Recognition 20122 Benjia Zhou (Macau University of Science and Technology), Pichao Wang (Alibaba Group), Jun Wan (NLPR, CASIA), Yanyan Liang (Macau University of Science and Technology, Macao SAR, China), Fan Wang (Alibaba Group), Du Zhang (Macau University of Science and Technology), Zhen Lei (NLPR, CASIA, China), Hao Li (Alibaba Group), and Rong Jin (alibaba group)
SPAct: Self-Supervised Privacy Preservation for Action Recognition
Unsupervised Action Segmentation by Joint Representation Learning and Online Clustering 20142 Sateesh Kumar (Retrocausal), Sanjay Haresh (Retrocausal, Inc), Awais Ahmed (Retrocausal), Andrey Konin (Retrocausal), M. Zeeshan Zia (Retrocausal, Inc.), and Quoc-Huy Tran (Retrocausal, Inc.)
InfoGCN: Representation Learning for Human Skeleton-Based Action Recognition
Learning Video Representations of Human Motion From Synthetic Data
Learnable Irrelevant Modality Dropout for Multimodal Action Recognition on Modality-Specific Annotated Videos

Poster 4.2: Biometrics

EyePAD++: A Distillation-Based Approach for Joint Eye Authentication and Presentation	
Attack Detection Using Periocular Images	20186
Prithviraj Dhar (Johns Hopkins University), Amit Kumar (Facebook),	
Kirsten Kaplan (Meta), Khushi Gupta (Facebook Inc), Rakesh Ranjan	
(Facebook), and Rama Chellappa (Johns Hopkins University)	

Gait Recognition in the Wild With Dense 3D Representations and a Benchmark
Camera-Conditioned Stable Feature Generation for Isolated Camera Supervised Person Re-IDentification
Lagrange Motion Analysis and View Embeddings for Improved Gait Recognition
DeepFace-EMD: Re-Ranking Using Patch-Wise Earth Mover's Distance Improves Out-of-Distribution Face Identification
Learning Second Order Local Anomaly for General Face Forgery Detection
PatchNet: A Simple Face Anti-Spoofing Framework via Fine-Grained Patch Recognition
 Face2Exp: Combating Data Biases for Facial Expression Recognition
Local-Adaptive Face Recognition via Graph-Based Meta-Clustering and Regularized Adaptation 20269 Wenbin Zhu (Microsoft), Chien-Yi Wang (Microsoft), Kuan-Lun Tseng (Microsoft), Shang-Hong Lai (Microsoft), and Baoyuan Wang (Xiaobing.AI)

Poster 4.2: Face and Gestures

Robust Egocentric Photo-Realistic Facial Expression Transfer for Virtual Reality Amin Jourabloo, Fernando De la Torre (Carnegie Mellon), Jason Saragih (Facebook), Shih-En Wei (Facebook), Stephen Lombardi (Facebook), Te-Li Wang, Danielle Belko (Facebook), Autumn Trimble (Facebook Reality Labs Pittsburgh), and Hernan Badino (Facebook)	20291
 FaceVerse: A Fine-Grained and Detail-Controllable 3D Face Morphable Model From a Hybrid Dataset Lizhen Wang (Tsinghua University), Zhiyuan Chen (Ant Financial Services Group), Tao Yu (Tsinghua University), Chenguang Ma (Ant Financial Services Group), Liang Li (Ant Financial Service Group), and Yebin Liu (Tsinghua University) 	20301
ImFace: A Nonlinear 3D Morphable Face Model With Implicit Neural Representations Mingwu Zheng (Beihang University), Hongyu Yang (Beihang University), Di Huang (Beihang University, China), and Liming Chen (Ecole Centrale de Lyon)	20311
Physically-Guided Disentangled Implicit Rendering for 3D Face Modeling Zhenyu Zhang (Tencent), Yanhao Ge (Tencent YouTu), Ying Tai (Tencent YouTu), Weijian Cao (Tencent Youtu Lab), Renwang Chen (Tencent), Kunlin Liu (University of Science and Technology of China), Hao Tang (ETH Zurich), Xiaoming Huang (Tencent Youtu), Chengjie Wang (Tencent), Zhifeng Xie (Shanghai University), and Dongjin Huang (Shanghai University)	20321
RigNeRF: Fully Controllable Neural 3D Portraits ShahRukh Athar (Stony Brook University), Zexiang Xu (Adobe Research), Kalyan Sunkavalli (Adobe Research), Eli Shechtman (Adobe Research, US), and Zhixin Shu (Adobe Research)	20332
 HeadNeRF: A Real-Time NeRF-Based Parametric Head Model	20342
Sparse to Dense Dynamic 3D Facial Expression Generation Naima Otberdout (University of Lille, CRIStAL), Claudio Ferrari (University of Parma), Mohamed Daoudi (IMT Lille Douai), Stefano Berretti (University of Florence, Italy), and Alberto Del Bimbo (University of Florence)	20353
Learning To Listen: Modeling Non-Deterministic Dyadic Facial Motion Evonne Ng (UC Berkeley), Hanbyul Joo (Facebook AI Research), Liwen Hu (Pinscreen), Hao Li (Pinscreen), Trevor Darrell (UC Berkeley), Angjoo Kanazawa (University of California Berkeley), and Shiry Ginosar (UC Berkeley)	20363
Speech Driven Tongue Animation Salvador Medina (Carnegie Mellon University), Denis Tome (EpicGames), Carsten Stoll (Epic Games), Mark Tiede (Haskins Laboratories), Kevin Munhall (Queen's University), Alexander G. Hauptmann (Carnegie Mellon University), and Iain Matthews (Carnegie Mellon University)	20374

Knowledge-Driven Self-Supervised Representation Learning for Facial Action Unit Recognition	35
gDNA: Towards Generative Detailed Neural Avatars	€
GraFormer: Graph-Oriented Transformer for 3D Pose Estimation)6
Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose Estimation	16
Towards Diverse and Natural Scene-Aware 3D Human Motion Synthesis	28
PINA: Learning a Personalized Implicit Neural Avatar From a Single RGB-D Video Sequence 2043 Zijian Dong (ETH Zurich), Chen Guo (ETH Zurich), Jie Song (ETH Zurich), Xu Chen (ETH Zürich), Andreas Geiger (University of Tuebingen), and Otmar Hilliges (ETH Zurich)	38
The Wanderings of Odysseus in 3D Scenes 2044 Yan Zhang (ETH Zurich) and Siyu Tang (ETH Zurich) 2044	1 9
OSSO: Obtaining Skeletal Shape From Outside	50
LiDARCap: Long-Range Marker-Less 3D Human Motion Capture With LiDAR Point Clouds 2047 Jialian Li (Xiamen University), Jingyi Zhang (Xiamen University), Zhiyong Wang (Xiamen University), Siqi Shen (Xiamen University), Chenglu Wen (Xiamen University), Yuexin Ma (ShanghaiTech University), Lan Xu (ShanghaiTech), Jingyi Yu (Shanghai Tech University), and Cheng Wang (Xiamen University)	70

Unimodal-Concentrated Loss: Fully Adaptive Label Distribution Learning for Ordinal Regression
Qiang Li (Hikvision Research Institute), Jingjing Wang (Hikvision Research Institute), Zhaoliang Yao (Hikvision Research Institute), Yachun Li (Hikvision Research Institute), Pengju Yang (Hikvision Research Institute), Jingwei Yan (Hikvision Research Institute), Chunmao Wang (Hikvision Research Institute), and Shiliang Pu (Hikvision Research Institute)
Spatial-Temporal Parallel Transformer for Arm-Hand Dynamic Estimation
LISA: Learning Implicit Shape and Appearance of Hands
 MobRecon: Mobile-Friendly Hand Mesh Reconstruction From Monocular Image
 Mining Multi-View Information: A Strong Self-Supervised Framework for Depth-Based 3D Hand Pose and Mesh Estimation
Low-Resource Adaptation for Personalized Co-Speech Gesture Generation
D-Grasp: Physically Plausible Dynamic Grasp Synthesis for Hand-Object Interactions

Poster 4.2: Medical, Biological and Cell Microscopy

Contour-Hugging Heatmaps for Landmark Detection	565
 Which Images To Label for Few-Shot Medical Landmark Detection?	574
 Self-Supervised Bulk Motion Artifact Removal in Optical Coherence Tomography Angiography 20585 Jiaxiang Ren (Stony Brook University), Kicheon Park (Stony Brook Univ), Yingtian Pan (Stony Brook University), and Haibin Ling (Stony Brook University) 	
Multi-Marginal Contrastive Learning for Multi-Label Subcellular Protein Localization	594
Transformer-Empowered Multi-Scale Contextual Matching and Aggregation for Multi-Contrast 206 MRI Super-Resolution 206 Guangyuan Li (Yantai University), Jun Lv (Yantai University), Yapeng 206 Tian (University of Rochester), Qi Dou (The Chinese University of Hong 206 Kong), Chengyan Wang (Fudan University), Chenliang Xu (University of 206 Rochester), and Jing Qin (The Hong Kong Polytechnic University) 206	504
 Harmony: A Generic Unsupervised Approach for Disentangling Semantic Content From Parameterized Transformations	614
Cross-Modal Clinical Graph Transformer for Ophthalmic Report Generation	524
BoostMIS: Boosting Medical Image Semi-Supervised Learning With Adaptive Pseudo Labeling and Informative Active Annotation	534
Incremental Cross-View Mutual Distillation for Self-Supervised Medical CT Synthesis	545

Towards Low-Cost and Efficient Malaria Detection20655Waqas Sultani (Information Technology University), Wajahat Nawaz20655(Information Technology University), Syed Javed (Information20655Technology University.), Muhammad Sohail Danish (Information20655Technology University.), Muhammad Sohail Danish (Information20655Technology University, Lahore), Asma Saadia (Central Park Medical20655College), and Mohsen Ali (Information Technology University. Lahore)20655
ACPL: Anti-Curriculum Pseudo-Labelling for Semi-Supervised Medical Image Classification 20665 Fengbei Liu (University of Adelaide), Yu Tian (Australian Institute for Machine Learning, University of Adelaide), Yuanhong Chen (Australian Institute for Machine Learning, University of Adelaide), Yuyuan Liu (University of Adelaide), Vasileios Belagiannis (Otto von Guericke University Magdeburg), and Gustavo Carneiro (University of Adelaide)
Multimodal Dynamics: Dynamical Fusion for Trustworthy Multimodal Classification
M3T: Three-Dimensional Medical Image Classifier Using Multi-Plane and Multi-Slice Transformer
Jinseong Jang (Yonsei University) and Dosik Hwang (Yonsei University)
Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis
HyperSegNAS: Bridging One-Shot Neural Architecture Search With 3D Medical ImageSegmentation Using HyperNet20709Cheng Peng (Johns Hopkins University), Andriy Myronenko (NVIDIA), AliHatamizadeh (NVIDIA Corporation), Vishwesh Nath (NVIDIA), Md MahfuzurRahman Siddiquee (Arizona State University), Yufan He (NVidiaCorporation), Daguang Xu (NVIDIA Corporation), Rama Chellappa (JohnsHopkins University), and Dong Yang (NVIDIA Corporation)
 DArch: Dental Arch Prior-Assisted 3D Tooth Instance Segmentation With Weak Annotations 20720 Liangdong Qiu (Shenzhen Research Institute of Big Data, the Chinese University of Hong Kong (Shenzhen)), Chongjie Ye (The Chinese University of Hong Kong, Shenzhen), Pei Chen (the Chinese University of Hong Kong (Shenzhen)), Yunbi Liu (School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen), Xiaoguang Han (Shenzhen Research Institute of Big Data, the Chinese University of Hong Kong (Shenzhen)), and Shuguang Cui (The Chinese University of Hong Kong, Shenzhen)
Clean Implicit 3D Structure From Noisy 2D STEM Images

Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces From 3D MRI Scans With Geometric Deep Neural Networks
Aladdin: Joint Atlas Building and Diffeomorphic Registration Learning With Pairwise Alignment
Learning Optimal K-Space Acquisition and Reconstruction Using Physics-Informed Neural Networks
NODEO: A Neural Ordinary Differential Equation Based Optimization Framework for Deformable Image Registration 20772 Yifan Wu (University of Pennsylvania), Tom Z. Jiahao (University of Pennsylvania), Jiancong Wang (University of Pennsylvania), Paul A. Yushkevich (University of Pennsylvania), M. Ani Hsieh (University of Pennsylvania), and James C. Gee (University of Pennsylvania)
 SMPL-A: Modeling Person-Specific Deformable Anatomy
DiRA: Discriminative, Restorative, and Adversarial Learning for Self-Supervised Medical Image Analysis
Affine Medical Image Registration With Coarse-To-Fine Vision Transformer
 Topology-Preserving Shape Reconstruction and Registration via Neural Diffeomorphic Flow 20813 Shanlin Sun (University of California, Irvine), Kun Han (University of California Irvine), Deying Kong (university of california, irvine), Hao Tang (University of California Irvine), Xiangyi Yan (University of California, Irvine), and Xiaohui Xie (University of California, Irvine)
Generalizable Cross-Modality Medical Image Segmentation via Style Augmentation and Dual Normalization

Closing the Generalization Gap of Cross-Silo Federated Medical Image Segmentation
 FIBA: Frequency-Injection Based Backdoor Attack in Medical Image Analysis
Surpassing the Human Accuracy: Detecting Gallbladder Cancer From USG Images With Curriculum Learning
CellTypeGraph: A New Geometric Computer Vision Benchmark
ContIG: Self-Supervised Multimodal Contrastive Learning for Medical Imaging With Genetics 20876 Aiham Taleb (Hasso-plattner-institute), Matthias Kirchler (Hasso Plattner Institute), Remo Monti (Hasso Plattner Institute), and Christoph Lippert (Hasso Plattner Insitute for Digital Engineering, Universität Potsdam)

Poster 4.2: Datasets and Evaluation

London)

OakInk: A Large-Scale Knowledge Repository for Understanding Hand-Object Interaction20921 Lixin Yang (Shanghai Jiao Tong University), Kailin Li (Shanghai Jiao Tong University), Xinyu Zhan (Shanghai Jiao Tong University), Fei Wu (Shanghai Jiao Tong University), Anran Xu (Shanghai Jiao Tong University), Liu Liu (Shanghai JiaoTong University), and Cewu Lu (Shanghai Jiao Tong University)
PoseTrack21: A Dataset for Person Search, Multi-Object Tracking and Multi-Person Pose Tracking 20931 Andreas Döring (University of Bonn), Di Chen, Shanshan Zhang (Nanjing University of Science and Technology), Bernt Schiele (MPI Informatics), and Jürgen Gall (University of Bonn)
Learning Modal-Invariant and Temporal-Memory for Video-Based Visible-Infrared Person Re-Identification
JRDB-Act: A Large-Scale Dataset for Spatio-Temporal Action, Social Group and Activity Detection 20951 Mahsa Ehsanpour (The University of Adelaide), Fatemeh Saleh (Samsung AI Center), Silvio Savarese (Stanford University), Ian Reid (University of Adelaide, Australia), and Hamid Rezatofighi (Monash University)
DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion
Egocentric Prediction of Action Target in 3D
 HOI4D: A 4D Egocentric Dataset for Category-Level Human-Object Interaction
Amodal Panoptic Segmentation20991Rohit Mohan (University of Freiburg) and Abhinav Valada (University of Freiburg)
 Large-Scale Video Panoptic Segmentation in the Wild: A Benchmark

 YouMVOS: An Actor-Centric Multi-Shot Video Object Segmentation Dataset
The DEVIL Is in the Details: A Diagnostic Evaluation Benchmark for Video Inpainting
3MASSIV: Multilingual, Multimodal and Multi-Aspect Dataset of Social Media Short Videos 21032 Vikram Gupta (ShareChat), Trisha Mittal (University of Maryland), Puneet Mathur (University of Maryland), Vaibhav Mishra (ShareChat, India), Mayank Maheshwari (ShareChat Labs), Aniket Bera (University of Maryland, College Park), Debdoot Mukherjee (Sharechat), and Dinesh Manocha (University of Maryland at College Park)
AxIoU: An Axiomatically Justified Measure for Video Moment Retrieval
A Large-Scale Comprehensive Dataset and Copy-Overlap Aware Evaluation Protocol for Segment-Level Video Copy Detection
Assembly101: A Large-Scale Multi-View Video Dataset for Understanding Procedural Activities
Optimal Correction Cost for Object Detection Evaluation

GrainSpace: A Large-Scale Dataset for Fine-Grained and Domain-Adaptive Recognition of Cereal Grains
ABO: Dataset and Benchmarks for Real-World 3D Object Understanding
Improving Segmentation of the Inferior Alveolar Nerve Through Deep Label Propagation 21105Marco Cipriano (Università degli Studi di Modena e Reggio Emilia),Stefano Allegretti (Università degli Studi di Modena e Reggio Emilia),Federico Bolelli (Università degli Studi di Modena e Reggio Emilia),Federico Pollastri (Università degli Studi di Modena e Reggio Emilia),and Costantino Grana (University of Modena and Reggio Emilia)
ZeroWaste Dataset: Towards Deformable Object Segmentation in Cluttered Scenes
DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation 21126 Aysim Toker (TUM), Lukas Kondmann (German Aerospace Center), Mark Weber (Technical University Munich), Marvin Eisenberger (TU Munich), Andrés Camero (German Aerospace Center), Jingliang Hu (German Aerospace Center), Ariadna Pregel Hoderlein (TUM), Çağlar Şenaras (Planet Labs), Timothy Davis (Planet Labs), Daniel Cremers (TU Munich), Giovanni Marchisio (Planet), Xiao Xiang Zhu (Technical University of Munich (TUM); German Aerospace Center, (DLR),), and Laura Leal-Taixé (TUM)
Open Challenges in Deep Stereo: The Booster Dataset
No-Reference Point Cloud Quality Assessment via Domain Adaptation

 Exploring Endogenous Shift for Cross-Domain Detection: A Large-Scale Benchmark and Perturbation Suppression Network
How Good Is Aesthetic Ability of a Fashion Model?
Instance-Wise Occlusion and Depth Orders in Natural Scenes
PhoCaL: A Multi-Modal Dataset for Category-Level Object Pose Estimation WithPhotometrically Challenging ObjectsPengyuan Wang (TUM), HyunJun Jung (Technical University of Munich),Yitong Li (Technical University of Munich), Siyuan Shen (TUM), RahulParthasarathy Srikanth (Technical University of Munich), LorenzoGarattoni (Toyota-Europe), Sven Meier (Toyota Motor Europe), NassirNavab (TU Munich, Germany), and Benjamin Busam (Technical Universityof Munich)
Replacing Labeled Real-Image Datasets With Auto-Generated Contours
V2C: Visual Voice Cloning
M5Product: Self-Harmonized Contrastive Learning for E-Commercial Multi-Modal Pretraining .21220 Xiao Dong (Sun Yat-sen University), Xunlin Zhan (Sun Yat-Sen University), Yangxin Wu (Sun Yat-sen University), Yunchao Wei (UTS), Michael C. Kampffmeyer (UiT The Arctic University of Norway), Xiaoyong Wei (Sichuan University), Minlong Lu (Alibaba Group), Yaowei Wang (PengCheng Laboratory), and Xiaodan Liang (Sun Yat-sen University)

It Is Okay To Not Be Okay: Overcoming Emotional Bias in Affective Image Captioning by Contrastive Data Collection
From Representation to Reasoning: Towards Both Evidence and Commonsense Reasoning for Video Question-Answering
Point Cloud Pre-Training With Natural 3D Structures
The Auto Arborist Dataset: A Large-Scale Benchmark for Multiview Urban Forest Monitoring 21262 Under Domain Shift 21262 Sara Beery (Caltech), Guanhang Wu (Google), Trevor Edwards (Google), 21262 Filip Pavetic (Google), Bo Majewski (Google), Shreyasee Mukherjee (Google), Stanley Chan (Google LLC), John Morgan (ManageXR), Vivek Rathod (Google), and Jonathan Huang (Google) 21262
AutoMine: An Unmanned Mine Dataset
 SmartPortraits: Depth Powered Handheld Smartphone Dataset of Human Portraits for State Estimation, Reconstruction and Synthesis
BigDatasetGAN: Synthesizing ImageNet With Pixel-Wise Annotations

Rope3D: The Roadside Perception Dataset for Autonomous Driving and Monocular 3D Object Detection Task
(baidu), Yingying Li (Baidu), Guangjie Wang (Baidu), Xiao Tan (Baidu Inc.), and Errui Ding (Baidu Inc.)
Unifying Panoptic Segmentation for Autonomous Driving
 DAIR-V2X: A Large-Scale Dataset for Vehicle-Infrastructure Cooperative 3D Object Detection 21329 Haibao Yu (Tsinghua University), Yizhen Luo (Tsinghua University), Mao Shu (Baidu Inc), Yiyi Huo (University of Chinese Academy of Sciences), Zebang Yang (Tsinghua University), Yifeng Shi (Baidu Inc), Zhenglong Guo (baidu.inc), Hanyu Li (Baidu), Xing Hu (Baidu Inc), Jirui Yuan (Tsinghua University), and Zaiqing Nie (Tsinghua University)
 SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation
Ithaca365: Dataset and Driving Perception Under Repeated and Challenging Weather Conditions

Demos: CVPR Demos

Scenic: A JAX Library for Computer Vision Research and Beyond Mostafa Dehghani (Google Brain), Alexey Gritsenko (Google Brain), Anurag Arnab (Google), Matthias Minderer (Google Research), and Yi Tay (Google)	21361
DeepLIIF: An Online Platform for Quantification of Clinical Pathology Slides Parmida Ghahremani (Stony Brook University), Joseph Marino (Memorial Sloan Kettering Cancer Center), Ricardo Dodds (MSKCC), and Saad Nadeem (Memorial Sloan Kettering Cancer Center)	21367
VL-InterpreT: An Interactive Visualization Tool for Interpreting Vision-Language Transformers Estelle Aflalo (Intel Corp), Meng Du (UCLA/Intel Labs), Shao-Yen Tseng (Intel), Yongfei Liu (ShanghaiTech), Chenfei Wu (Microsoft), Nan Duan (Microsoft Research), and Vasudev Lal (Intel Corp)	. 21374

GeoEngine: A Platform for Production-Ready Geospatial Research
Talking Face Generation With Multilingual TTS 21393 Hyoung-Kyu Song (MINDsLab Inc.), Sang Hoon Woo (MINDsLab Inc.), Junhyeok Lee (MINDsLab Inc.), Seungmin Yang (MINDsLab Inc.), Hyunjae Cho (MINDsLab Inc.), Youseong Lee (Seoul National University), Dongho Choi (Supertone Inc.), and Kang-wook Kim (MINDsLab Inc.)
 Real-Time, Accurate, and Consistent Video Semantic Segmentation via Unsupervised Adaptation and Cross-Unit Deployment on Mobile Device
 BigDL 2.0: Seamless Scaling of AI Pipelines From Laptops to Distributed Cluster
Interactive Segmentation and Visualization for Tiny Objects in Multi-Megapixel Images
A Low-Cost & Real-Time Motion Capture System
PyMiceTracking: An Open-Source Toolbox for Real-Time Behavioral Neuroscience Experiments 21427 Richardson Menezes (UFRN), Aron de Miranda (UFRN), and Helton Maia
 (Brain Institute, Federal University of Rio Grande do Norte, Natal) Effective Conditioned and Composed Image Retrieval Combining CLIP-Based Features
VisCUIT: Visual Auditor for Bias in CNN Image Classifier
 DetectorDetective: Investigating the Effects of Adversarial Examples on Object Detectors
V-Doc: Visual Questions Answers With Documents
Clustering Plotted Data by Image Segmentation
Author Index