2022 IEEE 10th International Conference on Healthcare Informatics (ICHI 2022)

Rochester, Minnesota, USA 11 – 14 June 2022

IEEE Catalog Number: CFP2244U-POD **ISBN:**

978-1-6654-6846-6

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP2244U-POD 978-1-6654-6846-6 978-1-6654-6845-9 2575-2626

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE 10th International Conference on Healthcare Informatics (ICHI) ICHI 2022

Table of Contents

Message from the General Chairs	xxii
Message from the Program Chairs	xxiii
Organizing Committee	xxv
Program Committee	xxvi
Steering Committee	xxviii
Additional Reviewers	xxix
Keynotes	xxi
Sponsors	xxxiii

Analytics 1 - ML Methodology

New Variations of Random Survival Forests and Applications to Age-Related Disease Data
Sharing Time-to-Event Data with Privacy Protection
A Novel Method for Handling Missing Not at Random Data in the Electronic Health Records 21 Xinpeng Shen (University of Minnesota, USA), Sisi Ma (University of Minnesota, USA), Pedro J. Caraballo (Mayo Clinic, USA), Prashanthi Vemuri (Mayo Clinic, USA), and Gyorgy J. Simon (University of Minnesota, USA)
A Transformer-Based Model for Older Adult Behavior Change Detection
Effects of Information Masking in the Task-Specific Finetuning of a Transformers-Based Clinical Question-Answering Framework

Analytics 2 - Imaging

2
8
5
0
7

Analytics 3 - PGHD and Text Analytics

Combining Attention-Based Models with the MeSH Ontology for Semantic Textual Similarity in Clinical Notes
A Comparison of Few-Shot and Traditional Named Entity Recognition Models for Medical Text84 Yao Ge (Emory University, USA), Yuting Guo (Emory University, USA), Yuan-Chi Yang (Emory University, USA), Mohammed Ali Al-Garadi (Emory University, USA), and Abeed Sarker (Emory University, USA)
 Aspect-Based Sentiment Analysis of Radiology Patient Experience Surveys: A Cohort Study
Graph-Augmented Cyclic Learning Framework for Similarity Estimation of Medical Clinical Notes

Pittsburgh, USA), and Xiaowei Jia (University of Pittsburgh, USA)

Mining Social Media Data to Predict COVID-19 Case Counts	104
Maksims Kazijevs (Tennessee State University, USA), Furkan A. Akyelken	
(Tennessee State University, USA), and Manar D. Samad (Tennessee State	
University, USA)	

Analytics 4 - Healthcare Analytics

A Network-Based Modeling Approach to Identify the Common Disease Classes in Patients with Late-Stage Prostate Cancer	12
Multi-Modal Contrastive Learning for Healthcare Data Analytics	20
Dynamic Network Connectivity Analysis for Understanding Attention Deficit Hyperactivity 12 Disorder 12 Harun Pirim (Mississippi State University, USA), Miaolin Fan 13 (Massachusetts General Hospital, USA), and Haifeng Wang (Mississippi State University, USA) 14	28
 Biventricular Involvement In Hypertrophic Cardiomyopathy: Preliminary Analysis Of Cardiac MRIs With Visual Right Ventricular Hypertrophy	34
 Identify Cancer Patients at Risk for Heart Failure using Electronic Health Record and Genetic Data	38

Analytics 5 - Prediction and Classification

Cough Diary Based on Sound Classification, Source Validation and Event Detection	143
Michal Muszynski (IBM Research - Europe), Jeffrey Okyere (IBM Systems,	
USA), Ruchi Mahindru (IBM T. J. Watson Research Center, USA), and	
Thomas Brunschwiler (IBM Research - Europe)	

Reconstructing Missing EHRs using Time-Aware Within-and Cross-Visit Information for Septic Shock Early Prediction	51
Ge Gao (North Carolina State University, USA), Farzaneh Khoshnevisan (Intuit Inc., USA), and Min Chi (North Carolina State University, USA)	
Classifying Drug Ratings using User Reviews with Transformer-Based Language Models	53
Risk-Based Breast Cancer Prognosis using Minimal Patient Characteristics	70

Analytics 6 - Event Prediction

Audio-Based Cough Detection in Clinic Waiting Rooms Yumna Anwar (University of Iowa, USA), Sean M. Mullan (University of Iowa, USA), Octav Chipara (University of Iowa, USA), Alberto M. Segre (University of Iowa, USA), and Philip Polgreen (University of Iowa, USA)	182
 EventScore: An Automated Real-Time Early Warning Score for Clinical Events Ibrahim Hammoud (Stony Brook University, USA), Prateek Prasanna (Stony Brook University, USA), IV Ramakrishnan (Stony Brook University, USA), Adam Singer (Stony Brook University, USA), Mark Henry (Stony Brook University, USA), and Henry Thode (Stony Brook University, USA) 	192
Reduce the Cold Start of COVID-19 In-Hospital Mortality Prediction Models via Transfer Learning Jiacheng Liu (University of Minnesota, USA), Meghna Singh (University of Minnesota, USA), Lisa Kirkland (Abbott Northwestern Hospital, USA), and Jaideep Srivastava (University of Minnesota, USA)	201
Detection of Dementia Signals from Longitudinal Clinical Visits using One-Class Classification	211

Analytics 7 - Visualization & Explainable AI

Core-set Selection using Metrics-Based Explanations (CSUME) for Multiclass ECG	
Sagnik Dakshit (The University of Texas at Dallas, USA), Barbara	
Mukami Maweu (The University of Texas at Dallas, USA), Sristi Dakshit	
(Calcutta Institute of Engineering and Management, India), and	
Balakrishnan Prabhakaran (The University of Texas at Dallas, USA)	

A Collaborative Platform Supporting Distributed Teams in Visualization and Analysis of	224
Florian Vögtle (University of Bremen, Germany), Peter Haddawy (Mahidol University, Thailand; University of Bremen, Germany), Myat Su Yin (Mahidol University, Thailand), Thomas Barkowsky (University of Bremen, Germany), Dominique Bicout (VetAgro Sup, France; Laue–Langevin Institute, France), Mores Prachyabrued (Mahidol Unviersity, Thailand), and Saranath Lawpoolsri (Mahidol University, Thailand)	226
Alcohol Status Standardization from Clinical Real World Data with Transformer Architectures	233
An Interactive Visualization Tool for Medication (Re) fill Adherence: A Case Study of Pharmacy Claims-Derived Adherence Measures in Asthmatics	239
LIVE: A Local Interpretable Model-Agnostic Visualizations and Explanations	245

Systems 1 - Design & Development

 Design of a Virtual Cocaine Consumption Scenario for Craving Study	255
tinyCare: A tinyML-Based Low-Cost Continuous Blood Pressure Estimation on the Extreme Edge. 2 <i>Khaled Ahmed (McMaster University, Canada) and Mohamed Hassan</i> <i>(McMaster University, Canada)</i>	<u>2</u> 64
Efficient and Private ECG Classification on the Edge using a Modified Split Learning Mechanism	276
 Quality Control of Whole Slide Images using the YOLO Concept	282

Radiology Text Analysis System (RadText): Architecture and Evaluation	288
Song Wang (The University of Texas at Austin, USA), Mingquan Lin	
(Weill Cornell Medicine, USA), Ying Ding (The University of Texas at	
Austin, USA), George Shih (Weill Cornell Medicine, USA), Zhiyong Lu	
(National Center for Biotechnology Information, National Library of	
Medicine, National Institutes of Health, USA), and Yifan Peng (Weill	
Cornell Medicine, USA)	

Systems 2 - Wearable & Monitoring

 PAMS - A Personalized Automatic Messaging System for User Engagement with a Digital Diabetes Prevention Program Danissa V. Rodriguez (NYU Grossman School of Medicine, USA), Katharine Lawrence (NYU Grossman School of Medicine, USA), Son Luu (NYU Grossman School of Medicine, USA), Brian Chirn (NYU Grossman School of Medicine, USA), Javier Gonzalez (New York University Langone Health, USA), and Devin Mann (NYU Grossman School of Medicine /NYU Langone Health, USA) 	297
Predicting A User's Demographic Identity from Leaked Samples of Health-Tracking Wearables and Understanding Associated Risks <i>Sudip Vhaduri (Purdue University), Sayanton V. Dibbo (Dartmouth</i> <i>College), and Chih-You Chen (ThreeFlow, USA)</i>	309
The Visual Accelerometer: A High-Fidelity Optic-to-Inertial Transformation Framework for Wearable Health Computing <i>Chenhan Xu (University at Buffalo, USA), Huining Li (University at Buffalo, USA), Zhengxiong Li (University of Colorado Denver, USA), Xingyu Chen (University of Colorado Denver, USA), Aditya Singh Rathore (University at Buffalo, USA), Hanbin Zhang (University at Buffalo, USA), Kun Wang (University of California, Los Angeles, USA), and Wenyao Xu (University at Buffalo, USA)</i>	319
Practicality of Automatic Monitoring Sufficient Fluid Intake for Older People Rainer Lutze (DrIng. Rainer Lutze Consusting, Germany)	330

Human Factors 1 - Human-centered Design

Modeling the Impact of Social Determinants of Health on COVID Behaviors in Older Adults using the All of Us Dataset Phillip Ma (George Washington University, USA), Yijun Shao (George Washington University, USA), Yan Cheng (George Washington University, USA), Youxuan Ling (Boston University), Qing Zeng-Treitler (George Washington University, USA), and Stuart J. Nelson (George Washington University, USA)	337
Different Length, Different Needs: Qualitative Analysis of Threads in Online Health Communities	348
Daniel Diethei (University of Bremen, Germany), Ashley Colley (University of Lapland, Finland), Julian Wienert (IUBH University of Applied Sciences, Germany), and Johannes Schöning (University of St. Gallen, Switzerland)	

Electro-Mechanical Data Fusion for Heart Health Monitoring	357
Kemal Yakut (Rowan University, USA), Muhammad Usman (Rowan University,	
USA), Wei Xue (Rowan University, USA), Francis Mac Haas (Rowan	
University, USA), Robert A. Hirsh (Cooper University Hospital, USA),	
Joseph Boothby (Washington State University, USA), Tyler Petty	
(Washington State University, USA), and Xinghui Zhao (Washington State	
University, USA)	

Human Factors 2 - Self Management

A Qualitative Study of Family Caregivers' Technology Use in Alzheimer's Disease Care Yun Qu (UNC Charlotte, USA), Othelia E. Lee (UNC Charlotte, USA), and Albert Park (UNC Charlotte, USA)	363
A Tale of Two Perspectives: Harvesting System Views and User Views to Understand Patient Portal Engagement <i>Jiawei Zhou (Georgia Institute of Technology), Rosa I. Arriaga</i> <i>(Georgia Institute of Technology), Hongfang Liu (Mayo Clinic), and</i> <i>Ming Huang (Mayo Clinic)</i>	373
Patient Portal Adoption, Use, and Satisfaction Among U.S. Adults in Late-Stage COVID-19 Pandemic Zainab A. Balogun (University of Maryland Baltimore County, USA) and Tera L. Reynolds (University of Maryland Baltimore County, USA)	384
A Systematic Review of Healthcare Information Technology Anomaly Classification Laura Pullum (Oak Ridge National Laboratory, USA), Olufemi Omitaomu (Oak Ridge National Laboratory, USA), Mohammed Olama (Oak Ridge National Laboratory, USA), Addi Malviya Thakur (Oak Ridge National Laboratory, USA), Ozgur Ozmen (Oak Ridge National Laboratory, USA), Hilda Klasky (Oak Ridge National Laboratory, USA), Teja Kuruganti (Oak Ridge National Laboratory, USA), Merry Ward (Department of Veterans Affairs, USA), Jeanie Scott (Department of Veterans Affairs, USA), Angela Laurio (Department of Veterans Affairs, USA), Brian Sauer (Department of Veterans Affairs, USA), Frank Drews (Department of Veterans Affairs, USA), and Jonathan Nebeker (Department of Veterans Affairs, USA)	393
 Human-Centered Design for a Chronic Disease Management System: An Explorative Case for Cystic Fibrosis Maximilian Kurscheidt (Heilbronn University, Germany), Kirsten Schaffer (University College Dublin, Ireland), Patrick Slevin (University College Dublin, Ireland), Maximilian Westers (Heilbronn University, Germany), Yasmin Hollenbenders (Heilbronn University, Germany), and Wendelin Schramm (Heilbronn University, Germany) 	401

Human Factors 3 - AI-based Applications

A Novel IoT-Based Framework for Non-Invasive Human Hygiene Monitoring using Machine Learning Techniques	412
Oculo-Cognitive Addition Test: Quantifying Cognitive Performance During Variable Cognitive Workload Through Eye Movement Features	422
 Designing AINA - Intercultural Human-Centered Design of an AI-Based Application for Supporting the Diagnosis of Female Genital Schistosomiasis	431
 Factors Facilitating the Acceptance of Diagnostic Robots in Healthcare: A Survey	142
The Impact of 3D Stereopsis and Hand-Tool Alignment on Effectiveness of a VR-Based Simulator for Dental Training	149

Industry

Entity Event Knowledge Graph for Powerful Health Informatics	456
Ravi Bajracharya (Franz Inc., USA), Richard Wallace (Franz Inc., USA),	
Jans Aasman (Franz Inc., USA), and Parsa Mirhaji (Montefiore Medical	
Center, USA)	

LANN: an Integrated Online Annotation Tool for Information Extraction
IMI-CDE: an Interactive Interface for Collaborative Mapping of Study Variables to Common
Data Elements
Shiqiang Tao (The University of Texas Health Science Center at
Houston, USA), Wei-chun Chou (The University of Texas Health Science
Center at Houston, USA), Jianfu Li (The University of Texas Health
Science Center at Houston, USA), Jingcheng Du (The University of Texas
Health Science Center at Houston, USA), Pritham Ram (The University of
Texas Health Science Center at Houston, USA), Rashmie Abeysinghe (The
University of Texas Health Science Center at Houston, USA), Hua Xu
(The University of Texas Health Science Center at Houston, USA),
Xiaoqian Jiang (The University of Texas Health Science Center at
Houston, USA), Peter Rose (University of California San Diego, USA),
Lucila Ohno-Machado (University of California San Diego, USA), and
Guo-Oiang Zhang (The University of Texas Health Science Center at
Houston, USA)

Doctoral Consortium

Linking Predictive and Prescriptive Analytics of Elderly and Frail Patient Hospital Services	469
AI for Social Good in Healthcare: Moving Towards a Clear Framework and Evaluating Applications <i>Michal Monselise (Drexel University, USA) and Christopher C. Yang</i> (Drexel University, USA)	470
Identification and Prediction of Low-Birthweight Baby Outcomes and Mom Risk Factors Yang Ren (University of South Carolina, USA), Dezhi Wu (University of South Carolina, USA), and Ana Lopez-De Fede (University of South Carolina, USA)	472
Developing Natural Language Processing to Extract Complementary and Integrative Health Information from Electronic Health Record Data <i>Huixue Zhou (University of Minnesota, USA)</i>	474
Physical Activity Knowledge Representation in Electronic Health Records Zhongran Niu (University of Minnesota, USA)	476
NLP System for Mining Social Determinant of Health from Clinical Notes and its Fairness Evaluations	478
Comprehension of Contextual Semantics Across Clinical Healthcare Domains Kurt Miller (University of Minnesota, USA)	479

D-Dimer Elevation Matters to Predict COVID-19 Severity: A Machine Learning Approach	. 481
Predict Pregnancy Outcomes in the COVID-19 Pandemic using Electronic Health Records and Machine Learning Approach <i>Tianchu Lyu (University of South Carolina, USA) and Chen Liang</i> <i>(University of South Carolina, USA)</i>	483
Using a Social, Role-Playing, Simulation-Game to Build Resilience in Adolescents Abhishek Aggarwal (University of South Carolina, USA), Xiaoming Li (University of South Carolina, USA), and Shan Qiao (University of South Carolina, USA)	484
Health Information Delivery using Audio Arif Ahmed (The University of Arizona, USA) and Gondy Leroy (The University of Arizona, USA)	. 485

Poster and Demo

A Mobile Application for Alzheimer's Caregivers	186
A Novel Joint Longitudinal Model for Predicting Post-ICU Anemia	189
 Annotations of Virus Data for Knowledge Enrichment	192
Automated Cobb Angle Measurement in Adolescent Idiopathic Scoliosis: Validation of a Previously-Published Deep Learning Method	195
Automated Detection of Type of Scoliosis Surgery from Operative Notes using Natural Language Processing	197
Bayesian Change Point Detection for Mixed Data with Missing Values	1 99
Decompensation Prediction for Hospitalized COVID-19 Patients	502

DeLaBE: A Deep Learning Architecture for Bio-Images Enhancing
 Does Comorbidity Matrix Provide Similar Amount of Predictive Information: Comparisons from Charlson and Elixhauser using Deep Learning
Usability of Electronic Health Records from Nurses' Perspectives: A Systematic Review
Enabling Biomedical Semantic Knowledge Resource's Paths with the K-Ware Platform 513 Bruno Thiao Layel (Université de Bordeaux, France), Vianney Jouhet (CHU de Bordeaux, France), Guillaume Blin (Université de Bordeaux, France), and Gayo Diallo (Université de Bordeaux, France)
 Evaluation of Document-Level Identification of Pulmonary Nodules in Radiology Reports using FLAIR Natural Language Processing Framework
 Evaluation of mCODE Coverage in EHR: a Scoping Review of Cancer Natural Language Processing
 HaLowNet - A WiFi HaLow Network-Based Information System for the Provision of Multi-Sided Applications for Medical Emergency Scenarios

Improving Covid-19 Vaccine Literacy Among Undergraduate Students in Burkina Faso	22
Internet of Healthcare Things (IoHT): Towards a Digital Chain of Custody	24
Machine Learning for Predicting Cancer Severity	27
MedTator: A Serverless Web-Based Tool for Corpus Annotation	30
Mining Transportation Issues from Patient Portal Messages	32
Mitigating Membership Inference in Deep Learning Applications with High Dimensional Genomic Data	34
Chonghao Zhang (University of California San Diego, USA) and Luca Bonomi (Vanderbilt University, USA)	
 MTAP - A Distributed Framework for NLP Pipelines	37
winnesotu, USA)	
Multi-Perspective Characterization of Anaphylactic Risk for COVID-19 Vaccination - A Visual Analytic Approach	39

Machine Learning Models to Predict Length of Stay in Hospitals Raunak Jain (Indian Inst. of Technology, India), Mrityunjai Singh (Indian Inst. of Technology, India), A. Ravishankar Rao (Fairleigh Dickinson University, USA), and Rahu Garg (Indian Inst. of Technology, India)	545
A Deep Learning Based Predictive Model for Healthcare Analytics Nguyen Duy Thong Tran (University of Manitoba, Canada), Carson K. Leung (University of Manitoba, Canada), Evan W.R. Madill (University of Manitoba, Canada), and Phan Thai Binh (RMIT University Vietnam, Vietnam)	547
Racial Disparities in Alzheimer's Disease and Alzheimer's Disease-Related Dementias from the Disease Progression Perspective	550
SurgeRate - An Approach to the Evaluation of the Performance of Veterinary Surgeons Nicolas J. Lehmann (Freie Universität Berlin, Germany), Muhammed-Ugur Karagülle (Freie Universität Berlin, Germany), Lea R. Muth (Freie Universität Berlin, Germany), Stefan Schmid (Freie Universität Berlin, Germany), Agnès Voisard (Freie Universität Berlin & Fraunhofer FOKUS, Germany), Laura Rohwedder (Freie Universität Berlin, Germany), and Peter Böttcher (Freie Universität Berlin, Germany)	553
Visualizing the Interpretation of a Criterion-Driven System that Automatically Evaluates the Quality of Health News: An Exploratory Study of Two Approaches Xiaoyu Liu (University of Wisconsin Milwaukee, USA) and Susan McRoy (University of Wisconsin Milwaukee, USA)	556
Tutorial 1	
Computational Drug Target Prediction: Benchmark and Experiments Nansu Zong (Mayo Clinic, USA) and Victoria Ngo (University of California, Davis, USA)	559
Tutorial 2	
Prescriptive Healthcare Analytics: A Tutorial on Discrete Optimization and Simulation Daniel Gartner (Cardiff University, United Kingdom), Elizabeth Williams (Cardiff University, United Kingdom), and Paul Harper (Cardiff University, United Kingdom)	561
Tutorial 3	
Data Science for Healthcare via an E-Learning Statistics Platform Philipp Burckhardt (Carnegie Mellon University USA), Saba Al-Sayouri	564

Philipp Burckhardt (Carnegie Mellon University, USA), Saba Al-Sayouri (Carnegie Mellon University, USA), and Rema Padman (Carnegie Mellon University, USA)

Workshop 1 - The 1st International Workshop on Health Informatics Education (HI-Edu 2022)

Risks and Benefits of AI-Generated Text Summarization for Expert Level Content in Graduate Health Informatics Regina Merine (Indiana University Purdue University Indianapolis, USA) and Saptarshi Purkayastha (Indiana University Purdue University Indianapolis, USA)	567
From Undergraduate to Doctoral Health Informatics Training: A Data Focus Janusz Wojtusiak (George Mason University, USA) and Hua Min (George Mason University, USA)	575
Think Outside of Box - Ten Commandments in Providing Optimal Health Informatics Education Jay Patel (Temple University, USA), Bari Dzomba (Temple University, USA), and Huanmei Wu (Temple University, USA)	585
 Evaluation of Participants' Reaction and Learning in a Taught Analytics and Modelling Academy Program in U.K.'s National Health Service	591

Workshop 2 - The 5th International Workshop on Health Natural Language Processing (HealthNLP 2022)

Developing Pretrained Language Models for Turkish Biomedical Domain Hazal Türkmen (Ege University, Turkey), Oğuz Dikenelli (Ege University, Turkey), Cenk Eraslan (Ege University, Turkey), Mehmet Cem Çallı (Ege University, Turkey), and Suha Sureyya Ozbek (Ege University, Turkey)	597
Relevance of Automated Generated Short Summaries of Scientific Abstract: use Case Scenario	
in Healthcare	599
Gregor Stiglic (University of Maribor; University of Edinburgh),	
Kasandra Musovic (University of Maribor), Lucija Gosak (University of	
Maribor), Nino Fijacko (University of Maribor), and Primoz Kocbek	
(University of Maribor; University of Ljubljana)	
Improving Sentence Classification in Abstracts of Randomized Controlled Trial using Prompt	
Learning	606
Yan Hu (University of Texas Health Science Center at Houston, USA),	
Yong Chen (University of Pennsylvania, USA), and Hua Xu (University of	
Texas Health Science Center at Houston, USA)	

Chemical-Protein Relation Extraction with Pretrained Prompt Tuning	3
 Annotating Music Therapy, Chiropractic and Aquatic Exercise using Electronic Health Record 610 Huixue Zhou (University of Minnesota, USA), Greg Silverman (University of Minnesota, USA), Zhongran Niu (University of Minnesota, USA), Jenzi Silverman (University of Minnesota, USA), Roni Evans (University of Minnesota, USA), Robin Austin (University of Minnesota, USA), and Rui Zhang (University of Minnesota, USA))
Integrating Medical Code Descriptions and Building Text Classification Models for Diagnostic Decision Support	2
Canine Parvovirus Diagnosis Classification Utilizing Veterinary Free-Text Notes	ł
Terminology Expansion via Co-Occurrence Analysis of Large Clinical Real-World Datasets	5
A Preliminary Study of Extracting Pulmonary Nodules and Nodule Characteristics from Radiology Reports using Natural Language Processing	3

Workshop 3 - The 2nd International Workshop on eXplainable Artificial Intelligence in Healthcare (XAI-Healthcare)

Characteristics of Symptom Tracking App Data and its Potential Use for XAI	
Towards Trustworthy Artificial Intelligence in Healthcare	
Efficient Matching of Single Cells and Cell Types	
 Use of Event-Time Embeddings via RNN to Discern Novel Event Sequences in EHRs	
 Sanity Check for Shapley Values-Based Explanations of Deep Neural Networks Predictions 644 Rosalia Tatano (Addfor Industriale s.r.l., Italy), Antonio Mastropietro (Addfor Industriale s.r.l., Italy; Politecnico di Torino, Italy), Enrico Busto (Addfor Industriale s.r.l., Italy), and Francesco Vaccarino (Politecnico di Torino, Italy) 	
Workshop 4 - The 2nd Machine Learning in Healthcare Data for Precision Medicine (MLHD)	
An xAI Thick Data Assisted Caption Generation for Labeling Severity of Ulcerative Colitis Video Colonoscopy	
Value-Based Healthcare Translational Data Analytics using the Problem Oriented Medical Record Graph Representation	

Sabah Mohammed (Lakehead University, Canada), Jinan Fiaidhi (Lakehead University, Canada), and Darien Sawyer (Lakehead University, Canada) Improving Prediction and Risk Factor Analysis of Low Birthweight Baby Outcomes in a U.S.

Hospital System	659
F	
Yang Ren (University of South Carolina, USA), D	Dezhi Wu (University of

Yang Ren (University of South Carolina, USA), Dezhi Wu (University o
South Carolina, USA), Yan Tong (University of South Carolina, USA),
Ana Lòpez-De Fede (University of South Carolina, USA), and Sarah
Gareau (University of South Carolina, USA)

Using D-Dimer as a Biomarker to Predict COVID-19 Disease Severity from Clinical Data of	
Hospitalized Patients: A Machine Learning Approach	664
Yuqi Wu (University of South Carolina, USA), Yang Ren (University of	
South Carolina, USA), Dezhi Wu (University of South Carolina, USA),	
Sudha Xirasagar (University of South Carolina, USA), and Joseph	
Johnson (University of South Carolina, USA)	
Acute Kidney Injury Prediction with Gradient Boosting Decision Trees Enriched with	
Temporal Features	669
Stela Golovco (University of Verona, Italy), Matteo Mantovani	
(University of Verona, Italy), Carlo Combi (University of Verona,	
Italy), and John H. Holmes (University of Pennsylvania, USA)	

Author Index	77	'
--------------	----	---