2022 IEEE/CVF Conference on **Computer Vision and Pattern Recognition Workshops** (CVPRW 2022)

New Orleans, Louisiana, USA 19-20 June 2022

Pages 1-655

IEEE Catalog Number: CFP2288A-POD ISBN:

978-1-6654-8740-5

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP2288A-POD

 ISBN (Print-On-Demand):
 978-1-6654-8740-5

 ISBN (Online):
 978-1-6654-8739-9

ISSN: 2160-7508

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) CVPRW 2022

Table of Contents

0	lxix
- 0 - 0	lxx
CVPR 2022 Area Chairs	
CVPR 2022 Outstanding Reviewers	
Donors l:	XXV
Media Forensics (WMF)	
eeTheSeams: Localized Detection of Seam Carving Based Image Forgery in Satellite Imagery	L
CORE: COnsistent REpresentation Learning for Face Forgery Detection	<u>}</u>
ISL:Self-Supervised Image Signature Learning for Splicing Detection & Localization	<u>}</u>
ARIA: Adversarially Robust Image Attribution for Content Provenance	}
The Reliability of Forensic Body-Shape Identification	ł
Detecting Real-Time Deep-Fake Videos Using Active Illumination	}

On the Exploitation of Deepfake Model Recognition	61
Is Synthetic Voice Detection Research Going Into the Right Direction? Stefano Borzì (University of Catania), Oliver Giudice (University of Catania), Filippo Stanco (University of Catania), and Dario Allegra (University of Catania, Italy)	71
GCA-Net: Utilizing Gated Context Attention for Improving Image Forgery Localization and Detection	81
On Improving Cross-Dataset Generalization of Deepfake Detectors	91
The Art of Robustness: Devil and Angel in Adversarial Machine Learning (ArtOfRobust)	
Rethinking Adversarial Examples in Wargames	100
Privacy Leakage of Adversarial Training Models in Federated Learning Systems	107
Towards Comprehensive Testing on the Robustness of Cooperative Multi-Agent Reinforcement Learning Jun Guo (Beihang University), Yonghong Chen (Yangzhou Collaborative Innovation Research Institute CO., LTD), Yihang Hao (Yangzhou Collaborative Innovation Research Institute CO., LTD), Zixin Yin (Beihang University), Yin Yu (No. 38 Research Institute of CETC, Hefei 230088, China), and Simin Li (Beihang University)	. 114
Robustness and Adaptation to Hidden Factors of Variation	. 122
PAT: Pseudo-Adversarial Training for Detecting Adversarial Videos	130
Adversarial Robustness Through the Lens of Convolutional Filters	138
Strengthening the Transferability of Adversarial Examples Using Advanced Looking Ahead and Self-CutMix Donggon Jang (KAIST), Sanghyeok Son (KAIST), and Dae-Shik Kim (KAIST)	147
AugLy: Data Augmentations for Adversarial Robustness	. 155

RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection
An Empirical Study of Data-Free Quantization's Tuning Robustness
Exploring Robustness Connection Between Artificial and Natural Adversarial Examples
Generalizing Adversarial Explanations With Grad-CAM
CorrGAN: Input Transformation Technique Against Natural Corruptions
Poisons That Are Learned Faster Are More Effective
Adversarial Machine Learning Attacks Against Video Anomaly Detection Systems
Perception Beyond the Visible Spectrum (PBVS)
Variational Autoencoders for Generating Hyperspectral Imaging Honey Adulteration Data 213 Tessa Phillips (University of Auckland) and Waleed Abdulla (University of Auckland, New Zealand)
TMVNet: Using Transformers for Multi-View Voxel-Based 3D Reconstruction
Unsupervised Anomaly Detection From Time-of-Flight Depth Images 230 Pascal Schneider (Deutsches Forschungszentrum für Künstliche Intelligenz GmbH), Jason Rambach (DFKI), Bruno Mirbach (DFKI), and Didier Stricker (DFKI)
Augmentation of Atmospheric Turbulence Effects on Thermal Adapted Object Detection Models 240 Engin Uzun (ASELSAN), Ahmet Anıl Dursun (Aselsan), and Erdem Akagündüz (METU)

A Two-Stage Shake-Shake Network for Long-Tailed Recognition of SAR Aerial View Objects Gongzhe Li (Beihang University), Linpeng Pan (Beihang University), Linwei Qiu (School of Astronautics, Beihang University), Zhiwen Tan (Beihang University), Fengying Xie (Beihang University), and Haopeng Zhang (Beihang University)	248
Deep Neural Network With Walsh-Hadamard Transform Layer for Ember Detection During a Wildfire Hongyi Pan (University of Illinois at Chicago), Diaa Badawi (University of Illinois at Chicago), Chang Chen (University of Illinois at Chicago), Adam Watts (Pacific Northwest Research Station), Erdem Koyuncu (University of Illinois at Chicago), and Ahmet Enis Cetin (University of Illinois at Chicago)	. 256
From Less to More: Spectral Splitting and Aggregation Network for Hyperspectral Face Super-Resolution	. 266
Multiple Object Detection and Tracking in the Thermal Spectrum	. 276
Semantic Segmentation for Thermal Images: A Comparative Survey	. 285
AquaGAN: Restoration of Underwater Images Chaitra Desai (KLE Technological University), Badduri Sai Sudheer Reddy (KLE Technological University), Ramesh Ashok Tabib (KLE Technological University), Ujwala Patil (KLE Technological University), and Uma Mudenagudi (KLE Technological University)	. 295
Pseudo-Label Generation and Various Data Augmentation for Semi-Supervised Hyperspectral Object Detection	. 304
HSI-Guided Intrinsic Image Decomposition for Outdoor Scenes	. 312

3DRRDB: Super Resolution of Multiple Remote Sensing Images Using 3D Residual in Residual Dense Blocks	322
Maritime Transport / Computer Vision Center, Universitat Autònoma de Barcelona Bellaterra, Spain), Robert Benavente (Computer Vision Center, Universitat Autònoma de Barcelona, Spain), Felipe Lumbreras (Computer Vision Center, Universitat Autònoma de Barcelona, Spain), and Daniel Ponsa (Computer Vision Center, Universitat Autònoma de Barcelona Bellaterra, Spain)	
Cross-Modal Image Synthesis Within Dual-Energy X-Ray Security Imagery	332
CIPPSRNet: A Camera Internal Parameters Perception Network Based Contrastive Learning for Thermal Image Super-Resolution	341
Multi-Modal Aerial View Object Classification Challenge Results – PBVS 2022	349
Lidar Positioning for Indoor Precision Navigation	358
Lost in Compression: The Impact of Lossy Image Compression on Variable Size Object Detection Within Infrared Imagery	368
Depthwise Convolution for Compact Object Detector in Nighttime Images	378

Semi-Supervised Hyperspectral Object Detection Challenge Results – PBVS 2022	. 389
Aneesh Rangnekar (Rochester Institute of Technology), Zachary	
Mulhollan (RIT), Anthony Vodacek (Rochester Institute of Technology),	
Matthew Hoffman (Rochester Institute of Technology), Angel D. Sappa	
(Computer Vision Center, Spain), Erik Blasch (Air Force Research Lab),	
Jun Yu (University of Science and Technology of China), Liwen Zhang	
(University of Science and Technology of China), Shenshen Du	
(University of Science and Technology of China), Hao Chang (University	
of Science and Technology of China), Keda Lu (University of Science	
and Technology of China), Zhong Zhang (Hefei ZhanDa Intelligence	
Technology Co. Ltd.), Fang Gao (Guangxi University), Ye Yu (School of	
Computer and Information, Hefei University of Technology), Feng Shuang	
(Guangxi University), Lei Wang (University of Science and Technology	
of China), Qiang Ling (University of Science and Technology of China),	
Pranjay Shyam (Korea Advanced Institute of Science and technology),	
Kuk-Jin Yoon (KAIST), and Kyung-Soo Kim (KAIST)	
	•••
ActAR: Actor-Driven Pose Embeddings for Video Action Recognition	. 398
Soufiane Lamghari (Polytechnique Montreal), Guillaume-Alexandre	
Bilodeau (Polytechnique Montréal), and Nicolas Saunier (Polytechnique	
Montreal)	
GAF-NAU: Gramian Angular Field Encoded Neighborhood Attention U-Net for Pixel-Wise	
Hyperspectral Image Classification	. 408
Sidike Paheding (Michigan Tech), Abel A. Reyes (Michigan Technological	
University), Anush Kasaragod (Michigan Tech), and Thomas Oommen	
(Michigan Tech)	
Thermal Image Super-Resolution Challenge Results – PBVS 2022	<i>1</i> 17
Rafael E. Rivadeneira (Escuela Superior Politécnica del Litoral),	. 417
·	
Angel D. Sappa (ESPOL POLYTECHNIC UNIVERSITY), Boris X. Vintimilla	
(espol), Jin Kim (Hanwha Systems), Dogun Kim (Hanwha Systems), Zhihao	
Li (Nanjing University), Yingchun Jian (Nanjing University), Bo Yan	
(Ant Group), Leilei Cao (Ant Group), Fengliang Qi (Ant Group), Hongbin	
Wang (Ant Group), Rongyuan Wu (Northwestern Polytechnical University),	
Lingchen Sun (Northwestern Polytechnical University), Yongqiang Zhao	
(Northwestern Polytechnical University), Lin Li (Northwestern	
Polytechnical University), Kai Wang (Xidian University, Sensetime),	
Yicheng Wang (Sensetime), Xuanming Zhang (XDU), Huiyuan Wei (Xidian	
University), Chonghua Lv (Xidian university), Qigong Sun (SenseTime),	
Xiaolin Tian (Xidian University), Zhuang Jia (Xiaomi Inc.), Jiakui Hu	
(Xidian University), Chenyang Wang (Harbin Institute of Technology),	
Zhiwei Zhong (Harbin Institute of Technology), Xianming Liu (Harbin	
Institute of Technology), and Junjun Jiang (Harbin Institute of	
Technology)	
A Multiview Depth-Based Motion Capture Benchmark Dataset for Human Motion Denoising and	
Enhancement Research	
Nate Lannan (Oklahoma State University), Le Zhou (Oklahoma State	
University), and Guoliang Fan (Oklahoma State University)	

New Trends in Image Restoration and Enhancement (NTIRE)

Blind Non-Unitorm Motion Deblurring Using Atrous Spatial Pyramid Deformable Convolution and Deblurring-Reblurring Consistency	436
Nonuniformly Dehaze Network for Visible Remote Sensing Images Zhaojie Chen (Zhejiang University), Qi Li (Zhejiang University), Huajun Feng (Zhejiang Univerisity), Zhihai Xu (Zhejiang University), and Yueting Chen (Zhejiang Univerisity)	446
Transformer for Single Image Super-Resolution	456
NL-FFC: Non-Local Fast Fourier Convolution for Image Super Resolution	466
Zoom-to-Inpaint: Image Inpainting With High-Frequency Details	476
Underwater Light Field Retention: Neural Rendering for Underwater Imaging Tian Ye (Jimei University), Sixiang Chen (Jimei University), Yun Liu (Southwest University), Yi Ye (missing), Erkang Chen (Jimei University), and Yuche Li (China University of Petroleum)	487
Online Meta Adaptation for Variable-Rate Learned Image Compression	497
Dual-Domain Image Synthesis Using Segmentation-Guided GAN	506
Identity Preserving Loss for Learned Image Compression	516
A Closer Look at Blind Super-Resolution: Degradation Models, Baselines, and Performance Upper Bounds	526
Exploiting Distortion Information for Multi-Degraded Image Restoration	536

Multi-Bracket High Dynamic Range Imaging With Event Cameras Nico Messikommer (University of Zurich & ETH Zurich), Stamatios Georgoulis (Huawei), Daniel Gehrig (University of Zurich & ETH Zurich), Stepan Tulyakov (Huawei), Julius Erbach (Huawei), Alfredo Bochicchio (Huawei), Yuanyou Li (Huawei), and Davide Scaramuzza (University of Zurich & ETH Zurich, Switzerland)	546
Multiple Degradation and Reconstruction Network for Single Image Denoising via Knowledge Distillation	557
Dual Heterogeneous Complementary Networks for Single Image Deraining	567
Patch-Wise Contrastive Style Learning for Instagram Filter Removal	577
DRT: A Lightweight Single Image Deraining Recursive Transformer Yuanchu Liang (The Australian National University), Saeed Anwar (The Australian National University), and Yang Liu (The Australian National University & Data61)	588
Towards Real-World Shadow Removal With a Shadow Simulation Method and a Two-Stage Framework	. 598
Jianhao Gao (Wuhan University), Quanlong Zheng (City University of HongKong), and Yandong Guo (OPPO Research Institute)	0,70
Deep Image Interpolation: A Unified Unsupervised Framework for Pansharpening	608
Boundary-Aware Image Inpainting With Multiple Auxiliary Cues	.618
GenISP: Neural ISP for Low-Light Machine Cognition	. 629
Nighttime Image Dehazing Based on Variational Decomposition Model	639

AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise	. 649
Julian Wyatt (Durham University), Adam Leach (Durham University), Sebastian M. Schmon (Improbable), and Chris G. Willcocks (Durham University)	
VFHQ: A High-Quality Dataset and Benchmark for Video Face Super-Resolution Liangbin Xie (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China), Xintao Wang (Tencent), Honglun Zhang (Applied Research Center, Tencent PCG), Chao Dong (SIAT), and Ying Shan (Tencent)	. 656
Unpaired Face Restoration via Learnable Cross-Quality Shift	. 666
Exposure Correction Model To Enhance Image Quality	. 675
Complete and Temporally Consistent Video Outpainting Loïc Dehan (KU Leuven), Wiebe Van Ranst (KU Leuven), Patrick Vandewalle (KU Leuven), and Toon Goedemé (KU Leuven - EAVISE)	. 686
Alpha Matte Generation From Single Input for Portrait Matting Dogucan Yaman (Karlsruhe Institute of Technology), Hazim Kemal Ekenel (Istanbul Technical University, Turkey), and Alexander Waibel (Karlsruhe Institute of Technology (KIT))	. 695
A New Dataset and Transformer for Stereoscopic Video Super-Resolution	. 705
Comparison of CoModGans, LaMa and GLIDE for Art Inpainting Completing M.C Escher's Print Gallery Lucia Cipolina-Kun (University of Bristol), Simone Caenazzo (RiskCare), and Gaston Mazzei (Université Paris-Saclay)	
Multi-Encoder Network for Parameter Reduction of a Kernel-Based Interpolation Architecture Issa Khalifeh (Queen Mary University of London), Marc Gorriz Blanch (BBC), Ebroul Izquierdo (Queen Mary University of London), and Marta Mrak (BBC)	. 724
A Robust Non-Blind Deblurring Method Using Deep Denoiser Prior Yingying Fang (Imperial College London), Hao Zhang (The Chinese University of Hong Kong), Hok Shing Wong (The Chinese University of Hong Kong), and Tieyong Zeng (The Chinese University of Hong Kong)	. 734

MST++: Multi-Stage Spectral-Wise Transformer for Efficient Spectral Reconstruction Yuanhao Cai (Tsinghua Univisity, Tsinghua Shenzhen International Graduate School), Jing Lin (Tsinghua Univisity, Tsinghua Shenzhen International Graduate School), Zudi Lin (Harvard University), Haoqian Wang (Tsinghua Shenzhen International Graduate School, Tsinghua University), Yulun Zhang (ETH Zurich), Hanspeter Pfister (Harvard University), Radu Timofte (ETH Zurich), and Luc Van Gool (ETH Zurich)	744
IMDeception: Grouped Information Distilling Super-Resolution Network	755
Residual Local Feature Network for Efficient Super-Resolution	765
Edge-Enhanced Feature Distillation Network for Efficient Super-Resolution	776
NTIRE 2022 Challenge on Learning the Super-Resolution Space	785
Unpaired Real-World Super-Resolution With Pseudo Controllable Restoration	797
LAN: Lightweight Attention-Based Network for RAW-to-RGB Smartphone Image Processing Daniel Wirzberger Raimundo (ETH Zurich), Andrey Ignatov (ETH Zurich), and Radu Timofte (ETH Zurich)	807
Efficient Image Super-Resolution With Collapsible Linear Blocks Li Wang (Xilinx), Dong Li (Xilinx), Lu Tian (Xilinx, Inc.), and Yi Shan (Xilinx)	816
A Lightweight Network for High Dynamic Range Imaging	823
Blueprint Separable Residual Network for Efficient Image Super-Resolution Zheyuan Li (SIAT), Yingqi Liu (Shenzhen Institute of Advanced Technology), Xiangyu Chen (University of Macau), Haoming Cai (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences), Jinjin Gu (The University of Sydney), Yu Qiao (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences), and Chao Dong (SIAT)	832
DRHDR: A Dual Branch Residual Network for Multi-Bracket High Dynamic Range Imaging Juan Marín-Vega (University of Southern Denmark), Michael Sloth (Esoft), Peter Schneider-Kamp (SDU), and Richard Röttger (University of Southern Denmark)	843

Fast and Memory-Efficient Network Towards Efficient Image Super-Resolution	
NTIRE 2022 Spectral Recovery Challenge and Data Set Boaz Arad (Ben-Gurion University of the Negev), Radu Timofte (ETH Zurich), Rony Yahel (Voyage81), Nimrod Morag (Voyage81), Amir Bernat (Voyage81), Yuanhao Cai (missing), Jing Lin (missing), Zudi Lin (missing), Haoqian Wang (missing), Jing Lin (missing), Hanspeter Pfister (missing), Luc Van Gool (missing), Shuai Liu (missing), Yongqiang Li (missing), Chaoyu Feng (missing), Lei Lei (missing), Jiaojiao Li (missing), Songcheng Du (missing), Lei Lei (missing), Yihong Leng (missing), Rui Song (missing), Mingwei Zhang (missing), Chongxing Song (missing), Shuyi Zhao (missing), Zhiqiang Lang (missing), Wei Wei (missing), Lei Zhang (missing), Renwei Dian (missing), Tianci Shan (missing), Anjing Guo (missing), Chengguo Feng (missing), Jinyang Liu (missing), Mirko Agarla (missing), Simone Bianco (missing), Marco Buzzelli (missing), Luigi Celona (missing), Raimondo Schettini (missing), Jiang He (missing), Yi Xiao (missing), Jiajun Xiao (missing), Qiangqiang Yuan (missing), Jie Li (missing), Liangpei Zhang (missing), Taesung Kwon (missing), Dohoon Ryu (missing), Hyokyoung Bae (missing), Hao-Hsiang Yang (missing), Hua-En Chang (missing), Zhi-Kai Huang (missing), Haiwei Li (missing), Sy-Yen Kuo (missing), Junyu Chen (missing), B Sathya Bama (missing), and S. Mohamed Mansoor Roomi (missing)	
NTIRE 2022 Spectral Demosaicing Challenge and Data Set	
Rendering Nighttime Image via Cascaded Color and Brightness Compensation	

NTIRE 2022 Challenge on Stereo Image Super-Resolution: Methods and Results Longguang Wang (National University of Defense Technology), Yulan Guo (National University of Defense Technology), Yingqian Wang (National University of Defense Technology), Juncheng Li (The Chinese University of Hong Kong), Shuhang Gu (ETH Zurich, Switzerland), Radu Timofte (ETH Zurich), Liangyu Chen (missing), Xiaojie Chu (missing), Wenqing Yu (missing), Kai Jin (missing), Zeqiang Wei (missing), Sha Guo (missing), Angulia Yang (missing), Feiyue Peng (missing), Huaxin Xiao (missing), Bin Dai (missing), Feiyue Peng (missing), Huaxin Xiao (missing), Bhen Yan (missing), Yaviang Liu (missing), Huaxiao Cai (missing), Pu Cao (missing), Yang Nie (missing), Lu Yang (missing), Qing Song (missing), Xiaotao Hu (missing), Jun Xu (missing), Mai Xu (missing), Junpeng Jing (missing), Xin Deng (missing), Qunliang Xing (missing), Minglang Qiao (missing), Zhenyu Guan (missing), Wenlong Guo (missing), Chenxu Peng (missing), Zan Chen (missing), Junyang Chen (missing), Hao Li (missing), Junbin Chen (missing), Weijie Li (missing), Lei Sun (missing), Jafeng Zhang (missing), Aijin Li (missing), Lei Sun (missing), Dafeng Zhang (missing), Shizhuo Liu (missing), Jingtao Zhang (missing), Yanyun Qu (missing), Hao-Hsiang Yang (missing), Zhi-Kai Huang (missing), Wei-Ting Chen (missing), Jianxin Lin (missing), Sy-Yen Kuo (missing), Lianying Yin (missing), Jianxin Lin (missing), Yijun Wang (missing), Lianying Yin (missing), Rongju Zhang (missing), Wei Zhao (missing), Peng Xiao (missing), Rongjian Xu (missing), Zhilu Zhang (missing), Wangmeng Zuo (missing), Hansheng Guo (missing), Shunli Zhang (missing), Joohyeok Kim (missing), Hueicheng Pi (missing), Shunli Zhang (missing), Joohyeok Kim (missing), Hueicheng Pi (missing), Eunpil Park (missing), Jae-Young Sim (missing), Jucai Zhai (missing), Pengcheng Zeng (missing), Jaa-Young Sim	905
(missing), Chihao Ma (missing), Yulin Huang (missing), and Junying Chen (missing) SwiniPASSR: Swin Transformer Based Parallax Attention Network for Stereo Image	
Super-Resolution Kai Jin (Bigo Technology Pte. Ltd.), Zeqiang Wei (Beijing University of Posts and Telecommunications), Angulia Yang (Bigo Technology Pte. Ltd.), Sha Guo (Peking University), Mingzhi Gao (Bigo Technology Pte. Ltd.), Xiuzhuang Zhou (Beijing University of Posts and Telecommunications), and Guodong Guo (IDL, Baidu Research)	919
Self-Calibrated Efficient Transformer for Lightweight Super-Resolution	929
Conformer and Blind Noisy Students for Improved Image Quality Assessment	939

NTIRE 2022 Challenge on Perceptual Image Quality Assessment	950
Jinjin Gu (The University of Sydney), Haoming Cai (Shenzhen Institutes	
of Advanced Technology, Chinese Academy of Sciences), Chao Dong	
(SIAT), Jimmy S. Ren (SenseTime Research; Qing Yuan Research Institute,	
Shanghai Jiao Tong University), Radu Timofte (ETH Zurich), Yuan Gong	
(missing), Shanshan Lao (missing), Shuwei Shi (missing), Jiahao Wang	
(missing), Sidi Yang (missing), Tianhe Wu (missing), Weihao Xia	
(missing), Yujiu Yang (missing), Mingdeng Cao (missing), Cong Heng	
(missing), Lingzhi Fu (missing), Rongyu Zhang (missing), Yusheng Zhang	
(missing), Hao Wang (missing), Hongjian Song (missing), Jing Wang	
(missing), Haotian Fan (missing), Xiaoxia Hou (missing), Ming Sun	
(missing), Mading Li (missing), Kai Zhao (missing), Kun Yuan	
(missing), Zishang Kong (missing), Mingda Wu (missing), Chuanchuan	
Zheng (missing), Marcos V. Conde (missing), Maxime Burchi (missing),	
Longtao Feng (missing), Tao Zhang (missing), Yang Li (missing),	
Jingwen Xu (missing), Haiqiang Wang (missing), Yiting Liao (missing),	
Junlin Li (missing), Kele Xu (missing), Tao Sun (missing), Yunsheng	
Xiong (missing), Abhisek Keshari (missing), Komal Komal (missing),	
Sadbhawana Thakur (missing), Vinit Jakhetiya (missing), Badri N	
Subudhi (missing), Hao-Hsiang Yang (missing), Hua-En Chang (missing),	
Zhi-Kai Huang (missing), Wei-Ting Chen (missing), Sy-Yen Kuo	
(missing), Saikat Dutta (missing), Sourya Dipta Das (missing), Nisarg	
A. Shah (missing), and Anil Kumar Tiwari (missing)	
FS-NCSR: Increasing Diversity of the Super-Resolution Space via Frequency Separation and	
Noise-Conditioned Normalizing Flow	967
Ki-Ung Song (Seoul National University), Dongseok Shim (Seoul National	
University), Kang-wook Kim (Supertone Inc.), Jae-young Lee (Seoul	
National University), and Younggeun Kim (MINDsLab Inc.)	
Image Multi-Inpainting via Progressive Generative Adversarial Networks	977
Jiayin Cai (Kuaishou), Changlin Li (Kuaishou), Xin Tao (Kuaishou), and	
Yu-Wing Tai (Kuaishou Technology / HKUST)	
Do What You Can, With What You Have: Scale-Aware and High Quality Monocular Depth	
Estimation Without Real World Labels	987
Kunal Swami (Samsung Research India Bangalore and Indian Institute of	707
Science), Amrit Muduli (Samsung R & D Institute India - Bangalore),	
Uttam Gurram (Samsung Research Institute Bangalore), and Pankaj Bajpai	
(Samsung R & D Institute India - Bangalore)	
BSRT: Improving Burst Super-Resolution With Swin Transformer and Flow-Guided Deformable	005
Alignment	997
Ziwei Luo (Megvii), Youwei Li (Megvii), Shen Cheng (Megvii), Lei Yu	
(Megvii), Qi Wu (Megvii), Zhihong Wen (MEGVII technology), Haoqiang	
Fan (Megvii Incface++), Jian Sun (Megvii Technology), and Shuaicheng	
Liu (UESTC; Megvii)	

NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results	1008
Eduardo Pérez-Pellitero (Huawei Noah's Ark Lab), Sibi Catley-Chandar	
(Huawei Noah's Ark Lab), Richard Shaw (Huawei London Research Centre),	
Aleš Leonardis (Huawei Noah's Ark Lab), Radu Timofte (ETH Zurich),	
Zexin Zhang (missing), Cen Liu (missing), Yunbo Peng (missing), Yue Lin (missing), Gaocheng Yu (missing), Jin Zhang (missing), Zhe Ma	
(missing), Hongbin Wang (missing), Xiangyu Chen (missing), Xintao Wang	
(missing), Haiwei Wu (missing), Lin Liu (missing), Chao Dong	
(missing), Jiantao Zhou (missing), Qingsen Yan (missing), Song Zhang (missing), Weiye Chen (missing), Yuhang Liu (missing), Zhen Zhang	
(missing), Yanning Zhang (missing), Javen Qinfeng Shi (missing), Dong	
Gong (missing), Dan Zhu (missing), Mengdi Sun (missing), Guannan Chen	
(missing), Yang Hu (missing), Haowei Li (missing), Baozhu Zou	
(missing), Zhen Liu (missing), Wenjie Lin (missing), Ting Jiang	
(missing), Chengzhi Jiang (missing), Xinpeng Li (missing), Mingyan Han	
(missing), Haoqiang Fan (missing), Jian Sun (missing), Shuaicheng Liu	
(missing), Juan Marín-Vega (missing), Michael Sloth (missing), Peter	
Schneider-Kamp (missing), Richard Röttger (missing), Chunyang Li	
(missing), Long Bao (missing), Gang He (missing), Ziyao Xu (missing),	
Li Xu (missing), Gen Zhan (missing), Ming Sun (missing), Xing Wen	
(missing), Junlin Li (missing), Jinjing Li (missing), Jinjing Li	
(missing), Chenghua Li (missing), Chenghua Li (missing), Ruipeng Gang	
(missing), Ruipeng Gang (missing), Fangya Li (missing), Fangya Li	
(missing), Chenming Liu (missing), Chenming Liu (missing), Shuang Feng	
(missing), Fei Lei (missing), Rui Liu (missing), Junxiang Ruan	
(missing), Tianhong Dai (missing), Wei Li (missing), Zhan Lu	
(missing), Hengyan Liu (missing), Peian Huang (missing), Guangyu Ren	
(missing), Yonglin Luo (missing), Chang Liu (missing), Qiang Tu	
(missing), Sai Ma (missing), Yizhen Cao (missing), Steven Tel	
(missing), Barthelemy Heyrman (missing), Dominique Ginhac (missing),	
Chul Lee (missing), Gahyeon Kim (missing), Seonghyun Park (missing),	
An Gia Vien (missing), Truong Thanh Nhat Mai (missing), Howoon Yoon	
(missing), Tu Vo (missing), Alexander Holston (missing), Sheir Zaheer	
(missing), and Chan Y. Park (missing)	
Progressive Training of a Two-Stage Framework for Video Restoration	1023
Meisong Zheng (Alibaba Group), Qunliang Xing (Alibaba Group), Minglang	
Qiao (Alibaba Group), Mai Xu (None), Lai Jiang (None), Huaida Liu	
(Alibaba), and Ying Chen (Alibaba Group)	
Gamma-Enhanced Spatial Attention Network for Efficient High Dynamic Range Imaging	1031
Fangya Li (Communication University of China), Ruipeng Gang (Academy	
of Broadcasting Science, NRTA), Chenghua Li (Institute of Automation	
Chinese Academy of Sciences), Jinjing Li (Communication University of	
China), Sai Ma (Academy of Broadcasting Science, NRTA), Chenming Liu	
(Academy of Broadcasting Science, NRTA), and Yizhen Cao (Communication	
University of China)	

Goutam Bhat (ETH Zurich), Martin Danelljan (ETH Zurich), Radu Timofte (ETH Zurich), Yizhen Cao (missing), Yuntian Cao (missing), Meiya Chen (missing), Xihao Chen (missing), Shen Cheng (missing), Akshay Dudhane (missing), Haoqiang Fan (missing), Ruipeng Gang (missing), Jian Gao (missing), Yan Gu (missing), Jie Huang (missing), Liufeng Huang (missing), Youngsu Jo (missing), Sukju Kang (missing), Salman Khan (missing), Fahad Shahbaz Khan (missing), Yuki Kondo (missing), Chenghua Li (missing), Fangya Li (missing), Jinjing Li (missing), Youwei Li (missing), Zechao Li (missing), Chenming Liu (missing), Shuaicheng Liu (missing), Zikun Liu (missing), Zhuoming Liu (missing), Ziwei Luo (missing), Zhengxiong Luo (missing), Nancy Mehta (missing), Subrahmanyam Murala (missing), Yoonchan Nam (missing), Chihiro Nakatani (missing), Pavel Ostyakov (missing), Jinshan Pan (missing), Ge Song (missing), Jian Sun (missing), Long Sun (missing), Jinhui Tang (missing), Norimichi Ukita (missing), Zhihong Wen (missing), Qi Wu (missing), Xiaohe Wu (missing), Zeyu Xiao (missing), Zhiwei Xiong (missing), Rongjian Xu (missing), Ruikang Xu (missing), Youliang Yan (missing), Jialin Yang (missing), Wentao Yang (missing), Zhongbao Yang (missing), Fuma Yasue (missing), Mingde Yao (missing), Lei Yu (missing), Cong Zhang (missing), Syed Waqas Zamir (missing), Jianxing Zhang (missing), Shuohao Zhang (missing), Zhilu Zhang (missing), Qian Zheng (missing), Gaofeng Zhou (missing), Magauiya Zhussip (missing), Xueyi Zou (missing), and Wangmeng Zuo (missing)

NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results
(missing), Chengjie Wang (missing), Zhizhong Zhang (missing), Yuan Xie (missing), Shen Cheng (missing), Zivei Luo (missing), Lei Yu (missing), Zhihong Wen (missing), Qi Wu (missing), Youvei Li (missing), Haoqiang Fan (missing), Jian Sun (missing), Shuaicheng Liu (missing), Yuanfei Huang (missing), Meiguang Jin (missing), Hua Huang (missing), Jing Liu (missing), Xinjian Zhang (missing), Yan Wang (missing), Lingshun Long (missing), Gen Li (missing), Yuanfan Zhang (missing), Zuowei Cao (missing), Lei Sun (missing), Panaetov Alexander (missing), Yucong Wang (missing), Minjie Cai (missing), Li Wang (missing), Lu Tian (missing), Zheyuan Wang (missing), Hongbing Ma (missing), Jie Liu (missing), Chao Chen (missing), Yidong Cai (missing), Jie Tang (missing), Gangshan Wu (missing), Weiran Wang (missing), Shirui Huang (missing), Honglei Lu (missing), Huan Liu (missing), Keyan Wang (missing), Jun Chen (missing), Shi Chen (missing), Yuchun Miao (missing), Zimo Huang (missing), Lefei Zhang (missing), Mustafa Ayazoğlu (missing), Wei Xiong (missing), Chengyi Xiong (missing), Fei Wang (missing), Hao Li (missing), Ruimian Wen (missing), Zhijing Yang (missing), Wenbin Zou (missing), Weixin Zheng (missing), Tian Ye (missing), Yuncheng Zhang (missing), Xiangzhen Kong (missing), Aditya Arora (missing), Syed Waqas Zamir (missing), Salman Khan (missing), Munawar Hayat (missing), Fahad Shahbaz Khan (missing), Dandan Gao (missing), Dengwen Zhou (missing), Dengwen Zhou (missing), Qian Ning (missing), Jingzhu Tang (missing), Han Huang (missing), Yufei Wang (missing), Zhangheng Peng (missing), Haobo Li (missing),
Wenxue Guan (missing), Shenghua Gong (missing), Xin Li (missing), Jun Liu (missing), Wanjun Wang (missing), Kun Zeng (missing), Hanjiang Lin (missing), Xinyu Chen (missing), and Jinsheng Fang (missing)
A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution
Motion Aware Double Attention Network for Dynamic Scene Deblurring
Efficient Progressive High Dynamic Range Image Restoration via Attention and Alignment Network

Fast-N-Squeeze: Towards Real-Time Spectral Reconstruction From RGB Images	31
Attentions Help CNNs See Better: Attention-Based Hybrid Image Quality Assessment Network 113 Shanshan Lao (Tsinghua University), Yuan Gong (Tsinghua University), Shuwei Shi (Tsinghua University), Sidi Yang (Tsinghua University), Tianhe Wu (Tsinghua University), Jiahao Wang (Tsinghua University), Weihao Xia (University College London), and Yujiu Yang (Tsinghua University)	39
NTIRE 2022 Image Inpainting Challenge: Report	49
Bidirectional Motion Estimation With Cyclic Cost Volume for High Dynamic Range Imaging 118 An Gia Vien (Dongguk University), Seonghyun Park (Dongguk University), Truong Thanh Nhat Mai (Dongguk University), Gahyeon Kim (Dongguk University), and Chul Lee (Dongguk University)	82
MANIQA: Multi-Dimension Attention Network for No-Reference Image Quality Assessment 119 Sidi Yang (Tsinghua University), Tianhe Wu (Tsinghua University), Shuwei Shi (Tsinghua University), Shanshan Lao (Tsinghua University), Yuan Gong (Tsinghua University), Mingdeng Cao (Tsinghua University), Jiahao Wang (Tsinghua University), and Yujiu Yang (Tsinghua University)	90
Image Quality Assessment With Gradient Siamese Network	00
Deep-FlexISP: A Three-Stage Framework for Night Photography Rendering	10

NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video:	100(
	1220
Ren Yang (ETH Zurich), Radu Timofte (ETH Zurich), Meisong Zheng	
(missing), Qunliang Xing (missing), Minglang Qiao (missing), Mai Xu	
(missing), Lai Jiang (missing), Huaida Liu (missing), Ying Chen	
(missing), Youcheng Ben (missing), Xiao Zhou (missing), Chen Fu	
(missing), Pei Cheng (missing), Gang Yu (missing), Junyi Li (missing),	
Renlong Wu (missing), Zhilu Zhang (missing), Wei Shang (missing),	
Zhengyao Lv (missing), Yunjin Chen (missing), Mingcai Zhou (missing), Dongwei Ren (missing), Kai Zhang (missing), Wangmeng Zuo (missing),	
Pavel Ostyakov (missing), Vyal Dmitry (missing), Shakarim Soltanayev	
(missing), Chervontsev Sergey (missing), Zhussip Magauiya (missing),	
Xueyi Zou (missing), Youliang Yan (missing), Pablo Navarrete Michelini	
(missing), Yunhua Lu (missing), Diankai Zhang (missing), Shaoli Liu	
(missing), Si Gao (missing), Biao Wu (missing), Chengjian Zheng	
(missing), Xiaofeng Zhang (missing), Kaidi Lu (missing), Ning Wang	
(missing), Thuong Nguyen Canh (missing), Thong Bach (missing), Qing	
Wang (missing), Xiaopeng Sun (missing), Haoyu Ma (missing), Shijie	
Zhao (missing), Junlin Li (missing), Liangbin Xie (missing), Shuwei	
Shi (missing), Yujiu Yang (missing), Xintao Wang (missing), Jinjin Gu	
(missing), Chao Dong (missing), Xiaodi Shi (missing), Chunmei Nian	
(missing), Dong Jiang (missing), Jucai Lin (missing), Zhihuai Xie	
(missing), Mao Ye (missing), Dengyan Luo (missing), Liuhan Peng	
(missing), Shengjie Chen (missing), Xin Liu (missing), Xin Liu	
(missing), Qian Wang (missing), Boyang Liang (missing), Hang Dong	
(missing), Yuhao Huang (missing), Kai Chen (missing), Xingbei Guo	
(missing), Yujing Sun (missing), Huilei Wu (missing), Pengxu Wei	
(missing), Yulin Huang (missing), Junying Chen (missing), Ik Hyun Lee	
(missing), Sunder Ali Khowaja (missing), and Jiseok Yoon (missing)	
NAFSSR: Stereo Image Super-Resolution Using NAFNet	1238
Xiaojie Chu (Peking University), Liangyu Chen (Megvii Technology), and	
Wenqing Yu (Megvii Technology)	
Asymmetric Information Distillation Network for Lightweight Super Resolution	1245
Zhikai Zong (Shandong University), Lin Zha (Hisense), Jiande Jiang	1210
(Hisense), and Xiaoxiao Liu (Hisense)	
DRCR Net: Dense Residual Channel Re-Calibration Network With Non-Local Purification for	
Spectral Super Resolution	1258
Jiaojiao Li (Xidian University), Songcheng Du (Xidian University),	
Chaoxiong Wu (Xidian University), Yihong Leng (Xidian University), Rui	
Song (Xidian University), and Yunsong Li (Xidian University)	
MSTRIQ: No Reference Image Quality Assessment Based on Swin Transformer With Multi-Stage	
Fusion	1268
Jing Wang (ByteDance), Haotian Fan (ByteDance), Xiaoxia Hou	
(ByteDance), Yitian Xu (ByteDance), Tao Li (bytedance), Xuechao Lu	
(ByteDance), and Lean Fu (ByteDance)	
Adaptive Feature Consolidation Network for Burst Super-Resolution	1278
Nancy Mehta (Indian Institute of Technology Ropar, Punjab, India),	
Akshay Dudhane (Mohamed bin Zayed University of Artificial	
Intelligence), Subrahmanyam Murala (IIT Ropar), Syed Waqas Zamir	
(IIAI) Salman Khan (MBZIIAI/ANII) and Fahad Shahhaz Khan (MBZIIAI)	

NTIRE 2022 Challenge on Night Photography Rendering
Institute), Moscow, Russia.), Denis Shepelev (Institute for
Information Transmission Problems of the Russian Academy of Sciences
(Kharkevich Institute)), Nikola Banić (Gideon Brosers), Michael S.
Brown (York University), Radu Timofte (ETH Zurich), Karlo Koščević
(missing), Michael Freeman (missing), Vasily Tesalin (missing), Dmitry
Bocharov (missing), Illya Semenkov (missing), Marko Subašic (missing),
Sven Lončarić (missing), Arseniy Terekhin (missing), Shuai Liu
(missing), Chaoyu Feng (missing), Hao Wang (missing), Ran Zhu
(missing), Yongqiang Li (missing), Lei Lei (missing), Zhihao Li
(missing), Si Yi (missing), Ling-Hao Han (missing), Ruiqi Wu
(missing), Xin Jin (missing), Chunle Guo (missing), Furkan Kinli
(missing), Sami Menteş (missing), Bariş Özcan (missing), Furkan Kıraç
(missing), Simone Zini (missing), Claudio Rota (missing), Marco
Buzzelli (missing), Simone Bianco (missing), Raimondo Schettini
(missing), Wei Li (missing), Yipeng Ma (missing), Tao Wang (missing),
Ruikang Xu (missing), Fenglong Song (missing), Wei-Ting Chen
(missing), Hao-Hsiang Yang (missing), Zhi-Kai Huang (missing), Hua-En
Chang (missing), Sy-Yen Kuo (missing), Zhexin Liang (missing),
Shangchen Zhou (missing), Ruicheng Feng (missing), Chongyi Li
(missing), Xiangyu Chen (missing), Binbin Song (missing), Shile Zhang
(missing), Lin Liu (missing), Zhendong Wang (missing), Dohoon Ryu
(missing), Hyokyoung Bae (missing), Taesung Kwon (missing), Chaitra
Desai (missing), Nikhil Akalwadi (missing), Amogh Joshi (missing),
Chinmayee Mandi (missing), Sampada Malagi (missing), Akash Uppin
(missing), Sai Sudheer Reddy (missing), Ramesh Ashok Tabib (missing),
Ujwala Patil (missing), and Uma Mudenagudi (missing)
GLaMa: Joint Spatial and Frequency Loss for General Image Inpainting
Zeyu Lu (Harbin Institute of Technology), Junjun Jiang (Harbin
Institute of Technology), Junqin Huang (Beihang University), Gang Wu
(Harbin Institute of Technology), and Xianming Liu (Harbin Institute
of Technology)
EarthVision: Large Scale Computer Vision for Remote Sensing Imager
(Earth Vision)
Sat-NeRF: Learning Multi-View Satellite Photogrammetry With Transient Objects and Shadow Modeling Using RPC Cameras
Modeling Using RPC Cameras
Self-Supervised Learning To Guide Scientifically Relevant Categorization of Martian
Terrain Images
Tejas Panambur (University of Massachusetts, Amherst), Deep
Chakraborty (University of Massachusetts Amherst), Melissa Meyer
(Brown University), Ralph Milliken (Brown University), Erik
Learned-Miller (University of Massachusetts, Amherst), and Mario
Parente (Uni. Mass. Amherst, MA)

OpenSentinelMap: A Large-Scale Land Use Dataset Using OpenStreetMap and Sentinel-2 Imagery 1332 Noah Johnson (Vision Systems, Inc.), Wayne Treible (Vision Systems, Inc.), and Daniel Crispell (Vision Systems, Inc.)	
Multi-Layer Modeling of Dense Vegetation From Aerial LiDAR Scans	341
Unsupervised Change Detection Based on Image Reconstruction Loss	351
Understanding the Role of Weather Data for Earth Surface Forecasting Using a ConvLSTM-Based Model	361
Prompt–RSVQA: Prompting Visual Context to a Language Model for Remote Sensing Visual Question Answering	371
Cross-Dataset Learning for Generalizable Land Use Scene Classification	381
Generalized Classification of Satellite Image Time Series With Thermal Positional Encoding 13 Joachim Nyborg (Aarhus University), Charlotte Pelletier (Université de Bretagne du Sud), and Ira Assent (Aarhus University)	391
Single-Shot End-to-End Road Graph Extraction	ł02
Urban Building Classification (UBC) – A Dataset for Individual Building Detection and Classification From Satellite Imagery	12
Self-Supervised Vision Transformers for Land-Cover Segmentation and Classification	21

Transforming Temporal Embeddings to Keypoint Heatmaps for Detection of Tiny Vehicles in Wide Area Motion Imagery (WAMI) Sequences	131
Towards Assessing Agricultural Land Suitability With Causal Machine Learning	141
Hephaestus: A Large Scale Multitask Dataset Towards InSAR Understanding	l52
Fast Building Segmentation From Satellite Imagery and Few Local Labels	l62
SpaceNet 8 – The Detection of Flooded Roads and Buildings	₽71
LatinX in Computer Vision Research (LXCV)	
Guided Deep Metric Learning	480
Generative Flows as a General Purpose Solution for Inverse Problems	189
Self-Supervised Learning for Sonar Image Classification	198
A Deeper Look Into Aleatoric and Epistemic Uncertainty Disentanglement	508

Unpaired Faces to Cartoons: Improving XGAN	1517
Stev H. Ramos (Pontifical Catholic University of Peru), Joel Cabrera	
(Pontifical Catholic University of Peru), Daniel Ibáñez (Pontifical Catholic University of Peru), Alejandro B. Jiménez-Panta (Pontifical	
Catholic University of Peru), César Beltrán-Castaño (Pontifical	
Catholic University of Peru), and Edwin Villanueva (Pontificia Universidad Católica del Perú)	
Joint Ego4D and Egocentric Perception, Interaction & Comp (Ego4D-EPIC)	outing
Weakly-Supervised Action Detection Guided by Audio Narration	1527
Self Supervised Scanpath Prediction Framework for Painting Images	1538
Egocentric Indoor Localization From Coplanar Two-Line Room Layouts	1548
Where Did I Leave My Keys? – Episodic-Memory-Based Question Answering on Egoc	centric Videos
1559 Leonard Bärmann (Karlsruhe Institute of Technology (KIT)) and Alex Waibel (Karlsruhe Institute of Technology (KIT))	
Biometrics (Biometrics)	
Towards a Deeper Understanding of Skeleton-Based Gait Recognition Torben Teepe (Technical University of Munich), Johannes Gilg (Technical University of Munich), Fabian Herzog (Technical University of Munich), Stefan Hörmann (Technical University of Munich), and Gerhard Rigoll (Institute for Human-Machine Communication, TU Munich, Germany)	1568
ElasticFace: Elastic Margin Loss for Deep Face Recognition	1577
Fadi Boutros (Fraunhofer IGD), Naser Damer (Fraunhofer IGD), Florian	
Kirchbuchner (Fraunhofer Institute for Computer Graphics Research IGD), and Arjan Kuijper (Fraunhofer Institute for Computer Graphics	
Research IGD and Mathematical and Applied Visual Computing group, TU Darmstadt)	
Residual Feature Pyramid Network for Enhancement of Vascular Patterns	1587
True Black-Box Explanation in Facial Analysis	1595

Privacy-Friendly Synthetic Data for the Development of Face Morphing Attack Detectors
On the Effect of Atmospheric Turbulence in the Feature Space of Deep Face Recognition
MinNet: Minutia Patch Embedding Network for Automated Latent Fingerprint Recognition 1626 Halil İbrahim Öztürk (HAVELSAN Inc.), Berkay Selbes (HAVELSAN INC.), and Yusuf Artan (HAVELSAN INC.)
Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture (AgriVision)
Unsupervised Domain Adaptation and Super Resolution on Drone Images for Autonomous Dry Herbage Biomass Estimation
3D Point Cloud Instance Segmentation of Lettuce Based on PartNet
Augmentation Invariance and Adaptive Sampling in Semantic Segmentation of Agricultural Aerial Images
Transfer Learning From Synthetic In-Vitro Soybean Pods Dataset for In-Situ Segmentation of On-Branch Soybean Pods
High-Resolution UAV Image Generation for Sorghum Panicle Detection

Pseudo-Label Generation for Agricultural Robotics Applications
Using Pure Pollen Species When Training a CNN To Segment Pollen Mixtures
AAFormer: A Multi-Modal Transformer Network for Aerial Agricultural Images
Optimizing Nitrogen Management With Deep Reinforcement Learning and Crop Simulations 1713 Jing Wu (University of Illinois Urbana-Champaign), Ran Tao (University of Illinois Urbana-Champaign), Pan Zhao (University of Illinois at Urbana-Champaign), Nicolas F. Martin (University of Illinois at Urbana-Champaign), and Naira Hovakimyan (UIUC)
Challenge on Learned Image Compression (CLIC)
Self-Supervised Variable Rate Image Compression Using Visual Attention
Non-Linear Motion Estimation for Video Frame Interpolation Using Space-Time Convolutions 1729 Saikat Dutta (IIT Madras), Arulkumar Subramaniam (Indian Institute of Technology Madras), and Anurag Mittal (Indian Institute of Technology Madras)
Adaptive Bitrate Quantization Scheme Without Codebook for Learned Image Compression 173: Jonas Löhdefink (Institute for Communications Technology), Jonas Sitzmann (Institute for Communications Technology), Andreas Bär (Technische Universität Braunschweig), and Tim Fingscheidt (Technische Universität Braunschweig)
Neural Face Video Compression Using Multiple Views
Slimmable Video Codec
Learned Compression of High Dimensional Image Datasets

User-Guided Variable Rate Learned Image Compression	1752
RDONet: Rate-Distortion Optimized Learned Image Compression With Variable Depth	1758
PO-ELIC: Perception-Oriented Efficient Learned Image Coding	1763
Perceptual In-Loop Filter for Image and Video Compression	1769
Neural Network-Based In-Loop Filter for CLIC 2022	1773
Super-Resolution Based Video Coding Scheme	1777
A Neural-Network Enhanced Video Coding Framework Beyond VVC Junru Li (Bytedance Inc.), Yue Li (Bytedance Inc.), Chaoyi Lin (Bytedance Inc.), Kai Zhang (Bytedance Inc.), and Li Zhang (Bytedance Inc.)	1780
Learned Low Bitrate Video Compression With Space-Time Super-Resolution Jiayu Yang (Peking University), Chunhui Yang (Peking University), Fei Xiong (Peking University Shenzhen Graduate School), Feng Wang (Peking University), and Ronggang Wang (Peking University)	1785
Hybrid Video Coding Scheme Based on VVC and Spatio-Temporal Attention Convolution Neural Network	
SwinIQA: Learned Swin Distance for Compressed Image Quality Assessment Jianzhao Liu (USTC), Xin Li (University of Science and Technology of China), Yanding Peng (University of Science and Technology of China), Tao Yu (University of Science and Technology of China), and Zhibo Chen (University of Science and Technology of China)	1794

Focused Feature Differentiation Network for Image Quality Assessment	⁷ 99
Image Quality Assessment With Transformers and Multi-Metric Fusion Modules	304
A Soft-Ranked Index Fusion Framework With Saliency Weighting for Image Quality Assessment 1809	
Liangwei Yu (Alibaba Inc), Zhao Wang (Alibaba), Yan Ye (Alibaba Inc.), Lingyu Zhu (City University of Hong Kong), and Shiqi Wang (City University of Hong Kong)	
Computer Vision for Microscopy Image Analysis (CVMI)	
BCI: Breast Cancer Immunohistochemical Image Generation Through Pyramid Pix2pix	314
Cell Selection-Based Data Reduction Pipeline for Whole Slide Image Analysis of Acute Myeloid Leukemia	324
Multi Stain Graph Fusion for Multimodal Integration in Pathology	334
Fourier Image Transformer	345
Multi-Class Cell Detection Using Modified Self-Attention	354
Blood Vessel Segmentation From Low-Contrast and Wide-Field Optical Microscopic Images of Cranial Window by Attention-Gate-Based Network	363

Self-Supervised Voxel-Level Representation Rediscovers Subcellular Structures in Volume Electron Microscopy
Hongqing Han (University of Oxford), Mariia Dmitrieva (University of Oxford), Alexander Sauer (University of Oxford), Ka Ho Tam (University
of Oxford), and Jens Rittscher (Oxford)
An Ensemble Learning and Slice Fusion Strategy for Three-Dimensional Nuclei Instance Segmentation
Liming Wu (Purdue University), Alain Chen (Purdue University), Paul
Salama (Indiana University-Purdue University), Kenneth W. Dunn (Indiana University), and Edward J. Delp (Purdue University)
(
Visual Odometry and Computer Vision Applications Based on Location Clues (VOCVALC)
Coupling Vision and Proprioception for Navigation of Legged Robots
Revisiting the Receptive Field of Conv-GRU in DROID-SLAM
Parallel Generative Adversarial Network for Third-Person to First-Person Image Generation 1916 Gaowen Liu (Cisco Research), Hugo Latapie (Cisco), Ozkan Kilic (Cisco), and Adam Lawrence (Cisco)
Exploring Motion Information for Distractor Suppression in Visual Tracking
Neural Architecture Search: Lightweight NAS Challenge (NAS)
Network Amplification With Efficient MACs Allocation
Searching for Energy-Efficient Hybrid Adder-Convolution Neural Networks
Less Is More: Proxy Datasets in NAS Approaches

SpiderNet: Hybrid Differentiable-Evolutionary Architecture Search via Train-Free Metrics	1961
Hot-Started NAS for Task-Specific Embedded Applications	1970
DNAS:A Decoupled Global Neural Architecture Search Method	1978
Women in Computer Vision (WiCV)	
Autoencoders – A Comparative Analysis in the Realm of Anomaly Detection Sarah Schneider (Austrian Institute of Technology / HRI Lab (Tufts University)), Doris Antensteiner (Austrian Institute of Technology), Daniel Soukup (Austrian Institute of Technology), and Matthias Scheutz (Tufts University)	1985
Enriched Robust Multi-View Kernel Subspace Clustering	1992
Generative Probabilistic Novelty Detection With Isometric Adversarial Autoencoders	2002
Deep Density Estimation Based on Multi-Spectral Remote Sensing Data for In-Field Crop Yield Forecasting	2013
RV-GAN: Recurrent GAN for Unconditional Video Generation	2023
Material Swapping for 3D Scenes Using a Learnt Material Similarity Measure	2033
Detecting Objects in Less Response Time for Processing Multimedia Events in Smart Cities	2043

Computer Vision for Physiological Measurement (CVPM)

Pruning rPPG Networks: Toward Small Dense Network With Limited Number of Training Samples ... 2054

Changchen Zhao (Beihang University), Pengcheng Cao (Zhejiang University of Technology), Shoushuai Xu (Shenyang Institute of Automation, Chinese Academy of Sciences), Zhengguo Li (Institute for Infocomm Research, A*STAR), and Yuanjing Feng (Zhejiang University of Technology)

Multimodal Transformer for Nursing Activity Recognition	. 2064
Should I Take a Walk? Estimating Energy Expenditure From Video Data	2074
Remote Pulse Estimation in the Presence of Face Masks	. 2085
(University of Notre Dame), and Adam Czajka (University of Notre Dame)	
Human Stools Classification for Gastrointestinal Health Based on an Improved ResNet18 Model With Dual Attention Mechanism Jing Zhang (University of Electronic Science and Technology of China), Tao Wen (University of Electronic Science and Technology of China), Tao He (University of Electronic Science and Technology of China), Xiangzhou Wang (UESTC), Ruqian Hao (University of Electronic Science and Technology of China), Juanxiu Liu (UESTC), Xiaohui Du (University of Electronic Science and Technology of China), and Lin Liu (UESTC)	. 2095
Predicting Mind-Wandering With Facial Videos in Online Lectures	2103
Strain Detection Based on Breath and Motion Features Obtained by a Force Sensor for Smart Toilet Systems	. 2113
Remote Heart Rate Estimation by Signal Quality Attention Network	. 2121
Contactless Blood Pressure Measurement via Remote Photoplethysmography With Synthetic Data Generation Using Generative Adversarial Network	
Remote Estimation of Continuous Blood Pressure by a Convolutional Neural Network Trained on Spatial Patterns of Facial Pulse Waves	2138

RTrPPG: An Ultra Light 3DCNN for Real-Time Remote Photoplethysmography	2145
Federated Remote Physiological Measurement With Imperfect Data Xin Liu (University of Washington), Mingchuan Zhang (Fudan University), Ziheng Jiang (University of Washington and OctoML), Shwetak Patel (University of Washington), and Daniel McDuff (Microsoft Research)	2154
Optimising rPPG Signal Extraction by Exploiting Facial Surface Orientation	2164
Regression or Classification? Reflection on BP Prediction From PPG Data Using Deep Neural Networks in the Scope of Practical Applications	2171
Efficient Remote Photoplethysmography With Temporal Derivative Modules and Time-Shift Invariant Loss	2181
Perfusion Assessment via Local Remote Photoplethysmography (rPPG)	2191
Gated Recurrent Unit-Based RNN for Remote Photoplethysmography Signal Segmentation 2 Rita Meziati Sabour (ImViA) and Yannick Benezeth (LE2I)	2201
Deep Learning Classifier for Advancing Video Monitoring of Atrial Fibrillation	221 0
Computer Vision for Fashion, Art, and Design (CVFAD)	
UIGR: Unified Interactive Garment Retrieval	2219
Neural Image Recolorization for Creative Domains 2 Boyi Li (Cornell University), Serge Belongie (University of Copenhagen), Ser-nam Lim (Facebook AI), and Abe Davis (Cornell University)	222 5

Dress Code: High-Resolution Multi-Category Virtual Try-On	30
Towards Detailed Characteristic-Preserving Virtual Try-On	35
The Multi-Modal Universe of Fast-Fashion: The Visuelle 2.0 Benchmark	40
Dual-Branch Collaborative Transformer for Virtual Try-On	46
CoRe: Color Regression for Multicolor Fashion Garments	51
Artistic Style Novel View Synthesis Based on a Single Image	57
OutfitTransformer: Outfit Representations for Fashion Recommendation	62
GP22: A Car Styling Dataset for Automotive Designers	67
OutfitGAN: Learning Compatible Items for Generative Fashion Outfits	72
Wearable ImageNet: Synthesizing Tileable Textures via Dataset Distillation	77
DAtRNet: Disentangling Fashion Attribute Embedding for Substitute Item Retrieval	82

PaintInStyle: One-Shot Discovery of Interpretable Directions by Painting	.87
Rank in Style: A Ranking-Based Approach To Find Interpretable Directions	.93
Affective Behavior Analysis In-the-Wild (ABAW)	
NeuralAnnot: Neural Annotator for 3D Human Mesh Training Sets	:98
Accurate 3D Hand Pose Estimation for Whole-Body 3D Human Mesh Estimation	07
The Best of Both Worlds: Combining Model-Based and Nonparametric Approaches for 3D Human Body Estimation	17
ABAW: Valence-Arousal Estimation, Expression Recognition, Action Unit Detection & Multi-Task Learning Challenges	27
Model Level Ensemble for Facial Action Unit Recognition at the 3rd ABAW Challenge	36
Valence and Arousal Estimation Based on Multimodal Temporal-Aware Features for Videos in the Wild	44
Classification of Facial Expression In-the-Wild Based on Ensemble of Multi-Head Cross Attention Networks	52

Video-Based Frame-Level Facial Analysis of Affective Behavior on Mobile Devices Using EfficientNets Andrey V. Savchenko (HSE University)	2358
MixAugment & Mixup: Augmentation Methods for Facial Expression Recognition	2366
Continuous Emotion Recognition Using Visual-Audio-Linguistic Information: A Technical Report for ABAW3	2375
Time-Continuous Audiovisual Fusion With Recurrence vs Attention for In-the-Wild Affect Recognition Vincent Karas (University of Augsburg), Mani Kumar Tellamekala (University of Nottingham), Adria Mallol-Ragolta (University of Augsburg), Michel Valstar (University of Nottingham), and Björn W. Schuller (University of Augsburg)	2381
Estimating Multiple Emotion Descriptors by Separating Description and Inference	2391
Bridging the Gap Between Automated and Human Facial Emotion Perception	2400
Coarse-To-Fine Cascaded Networks With Smooth Predicting for Video Facial Expression Recognition	2411
Long-Term Action Forecasting Using Multi-Headed Attention-Based Variational Recurrent Neural Networks	2418
Transformer-Based Multimodal Information Fusion for Facial Expression Analysis	2427
Multi-Task Learning for Human Affect Prediction With Auditory–Visual Synchronized Representation Euiseok Jeong (Kookmin university), Geesung Oh (Kookmin University), and Sejoon Lim (Kookmin University)	2437
Cross Transferring Activity Recognition to Word Level Sign Language Detection	2445

An Attention-Based Method for Multi-Label Facial Action Unit Detection	53
Video-Based Multimodal Spontaneous Emotion Recognition Using Facial Expressions and Physiological Signals	59
Action Unit Detection by Exploiting Spatial-Temporal and Label-Wise Attention With Transformer	59
Three Stream Graph Attention Network Using Dynamic Patch Selection for the Classification of Micro-Expressions	⁷ 5
A Joint Cross-Attention Model for Audio-Visual Fusion in Dimensional Emotion Recognition 248 R Gnana Praveen (Ecole Technologie Superieure), Wheidima Carneiro de Melo (university of oulu), Nasib Ullah (Indian Statistical Institute), Haseeb Aslam (ETS), Osama Zeeshan (École de technologie supérieure), Théo Denorme (LIVIA), Marco Pedersoli (École de technologie supérieure), Alessandro L. Koerich (University of Québec), Simon Bacon (Concordia University), Patrick Cardinal (École de technologie supérieure), and Eric Granger (ETS Montreal)	35
TikTok for Good: Creating a Diverse Emotion Expression Database)5
Facial Expression Classification Using Fusion of Deep Neural Network in Video)6
An Ensemble Approach for Facial Behavior Analysis In-the-Wild Video	1

Precognition: Seeing Through the Future (Precognition)

Goal-Driven Self-Attentive Recurrent Networks for Trajectory Prediction
Persistent-Transient Duality in Human Behavior Modeling
Importance Is in Your Attention: Agent Importance Prediction for Autonomous Driving
S2F2: Single-Stage Flow Forecasting for Future Multiple Trajectories Prediction
HR-STAN: High-Resolution Spatio-Temporal Attention Network for 3D Human Motion Prediction \dots 2539
Omar Medjaouri (University of Texas at San Antonio) and Kevin Desai (University of Texas at San Antonio)
Information Elevation Network for Online Action Detection and Anticipation
Joint Forecasting of Panoptic Segmentations With Difference Attention
Multi-Camera Multiple 3D Object Tracking on the Move for Autonomous Vehicles
Sea Situational Awareness (SeaSAW) Dataset
Unsupervised Domain Adaptation for Cardiac Segmentation: Towards Structure Mutual Information Maximization

Efficient Deep Learning for Computer Vision (ECV)

Discriminability-Enforcing Loss To Improve Representation Learning
ANT: Adapt Network Across Time for Efficient Video Processing
An Once-for-All Budgeted Pruning Framework for ConvNets Considering Input Resolution 2608 Wenyu Sun (Peking University), Jian Cao (Peking University), Pengtao Xu (Peking University), Xiangcheng Liu (Peking University), Yuan Zhang (Peking University), and Yuan Wang (Nil)
DA3: Dynamic Additive Attention Adaption for Memory-Efficient On-Device Multi-Domain
Learning
Simple and Efficient Architectures for Semantic Segmentation
YOLO-Pose: Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss
Momentum Contrastive Pruning
Integrating Pose and Mask Predictions for Multi-Person in Videos
Searching for Efficient Neural Architectures for On-Device ML on Edge TPUs
Event Transformer. A Sparse-Aware Solution for Efficient Event Data Processing

A Low Memory Footprint Quantized Neural Network for Depth Completion of Very Sparse Time-of-Flight Depth Maps Xiaowen Jiang (EPFL), Valerio Cambareri (Sony Depthsensing Solutions NV), Gianluca Agresti (Sony Europe B.V.), Cynthia Ifeyinwa Ugwu (University of Padova), Adriano Simonetto (University of Padova), Fabien Cardinaux (Sony European Technology Center), and Pietro Zanuttigh (University of Padova)	2686
Towards Efficient Feature Sharing in MIMO Architectures	2696
TinyOps: ImageNet Scale Deep Learning on Microcontrollers	2701
TorMentor: Deterministic Dynamic-Path, Data Augmentations With Fractals	2706
Active Object Detection With Epistemic Uncertainty and Hierarchical Information Aggregation	2711
SqueezeNeRF: Further Factorized FastNeRF for Memory-Efficient Inference	2716
Hybrid Consistency Training With Prototype Adaptation for Few-Shot Learning	2725
ResNeSt: Split-Attention Networks Hang Zhang (Amazon Inc), Chongruo Wu (UC Davis), Zhongyue Zhang (Amazon), Yi Zhu (Amazon), Haibin Lin (Amazon Web Service), Zhi Zhang (Amazon), Yue Sun (Tongji), Tong He (Amazon), Jonas Mueller (AWS), R. Manmatha (Amazon), Mu Li (Amazon), and Alexander Smola (Amazon)	2735
MAPLE: Microprocessor a Priori for Latency Estimation	2746
Simulated Quantization, Real Power Savings	2756

Cyclical Pruning for Sparse Neural Networks Suraj Srinivas (Harvard University), Andrey Kuzmin (Qualcomm), Markus Nagel (Qualcomm), Mart van Baalen (Qualcomm), Andrii Skliar (Qualcomm AI Research), and Tijmen Blankevoort (Qualcomm)	2761
Linear Combination Approximation of Feature for Channel Pruning	. 2771
When NAS Meets Trees: An Efficient Algorithm for Neural Architecture Search Guocheng Qian (KAUST), Xuanyang Zhang (Megvii Technology), Guohao Li (King Abdullah University of Science and Technology (KAUST)), Chen Zhao (KAUST), Yukang Chen (The Chinese University of Hong Kong), Xiangyu Zhang (Megvii Technology), Bernard Ghanem (KAUST), and Jian Sun (Megvii Technology)	. 2781
Disentangled Loss for Low-Bit Quantization-Aware Training	2787
Conjugate Adder Net (CAddNet) – A Space-Efficient Approximate CNN	2792
PEA: Improving the Performance of ReLU Networks for Free by Using Progressive Ensemble Activations	2797
Ákos Ákos Utasi (Continental AG)	2/9/
Area Under the ROC Curve Maximization for Metric Learning Bojana Gajić (Vintra), Ariel Amato (Vintra, Inc.), Ramon Baldrich (Computer Vision Center), Joost van de Weijer (Computer Vision Center), and Carlo Gatta (Vintra, Inc.)	2806
Semi-Supervised Few-Shot Learning From a Dependency-Discriminant Perspective	2816
Fair, Data-Efficient, and Trusted Computer Vision (FaDE-TCV)	
OPAD: An Optimized Policy-Based Active Learning Framework for Document Content Analysis 2825	
Sumit Shekhar (Adobe Research), Bhanu Prakash Reddy Guda (Adobe Research), Ashutosh Chaubey (Indian Institute of Technology, Roorkee), Ishan Jindal (Indian Institute of Technology, Roorkee), and Avneet Jain (Indian Institute of Technology, Roorkee)	
Class-Wise Thresholding for Robust Out-of-Distribution Detection Matteo Guarrera (University of California, Berkeley), Baihong Jin (UC, Berkeley), Tung-Wei Lin (University of California, Berkeley), Maria A. Zuluaga (EURECOM), Yuxin Chen (UChicago), and Alberto Sangiovanni-Vincentelli (University of California, Berkeley)	2836
Doppelgänger Saliency: Towards More Ethical Person Re-Identification	2846

DeSI: Deepfake Source Identifier for Social Media 2857 Kartik Narayan (Indian Institute of Technology Jodhpur), Harsh Agarwal (Indian Institute of Technology (IIT) Jodhpur), Surbhi Mittal (Indian Institute of Technology, Jodhpur), Kartik Thakral (Indian Institute of Technology Jodhpur), Suman Kundu (Indian Institute of Technology Jodhpur), Mayank Vatsa (IIT Jodhpur), and Richa Singh (IIT Jodhpur)
Visual Domain Bridge: A Source-Free Domain Adaptation for Cross-Domain Few-Shot Learning 2867 <i>Moslem Yazdanpanah (UOK) and Parham Moradi (University of Kurdistan)</i>
Pyramidal Attention for Saliency Detection
Is Neuron Coverage Needed To Make Person Detection More Robust?
Epistemic Uncertainty-Weighted Loss for Visual Bias Mitigation
Color Invariant Skin Segmentation
Segmenting Across Places: The Need for Fair Transfer Learning With Satellite Imagery
An Examination of Bias of Facial Analysis Based BMI Prediction Models
medXGAN: Visual Explanations for Medical Classifiers Through a Generative Latent Space 2935 Amil Dravid (Northwestern University), Florian Schiffers (Northwestern University), Boqing Gong (Google), and Aggelos K. Katsaggelos (Northwestern University)
Deep Learning for Geometric Computing (DLGC)
Context Attention Network for Skeleton Extraction
CAMION: Cascade Multi-Input Multi-Output Network for Skeleton Extraction

Multimodal Shape Completion via Implicit Maximum Likelihood Estimation	i7
GraphWalks: Efficient Shape Agnostic Geodesic Shortest Path Estimation	57
VG-VAE: A Venatus Geometry Point-Cloud Variational Auto-Encoder	7
Shape Enhanced Keypoints Learning With Geometric Prior for 6D Object Pose Tracking	35
Concept Activation Vectors for Generating User-Defined 3D Shapes	12
Vision for All Seasons: Adverse Weather and Lighting Conditions (V4AS)	
)0
(V4AS) An Efficient Domain-Incremental Learning Approach To Drive in All Weather Conditions 300 M. Jehanzeb Mirza (Graz University of Technology), Marc Masana (Graz University of Technology), Horst Possegger (Graz University of	
(V4AS) An Efficient Domain-Incremental Learning Approach To Drive in All Weather Conditions	1

A Categorized Reflection Removal Dataset With Diverse Real-World Scenes
Mobile AI (MobileAI)
PhoneDepth: A Dataset for Monocular Depth Estimation on Mobile Devices
An Efficient Hybrid Model for Low-Light Image Enhancement in Mobile Devices
SMM-Conv: Scalar Matrix Multiplication With Zero Packing for Accelerated Convolution 3066 Amir Ofir (Ariel University) and Gil Ben-Artzi (Ariel University)
Update Compression for Deep Neural Networks on the Edge
RenderSR: A Lightweight Super-Resolution Model for Mobile Gaming Upscaling
AI City Challenge (AICity)
Box-Grained Reranking Matching for Multi-Camera Multi-Target Tracking
DeepACO: A Robust Deep Learning-Based Automatic Checkout System
PersonGONE: Image Inpainting for Automated Checkout Solution

OMG: Observe Multiple Granularities for Natural Language-Based Vehicle Retrieval
Text Query Based Traffic Video Event Retrieval With Global-Local Fusion Embedding
Natural Language-Based Vehicle Retrieval With Explicit Cross-Modal Representation Learning 3141 Bocheng Xu (Terminus Technologies Co., Ltd.), Yihua Xiong (Terminus Technologies Co., Ltd.), Rui Zhang (Terminus Technologies Co., Ltd.), Yanyi Feng (Terminus Technologies Co., Ltd.), and Haifeng Wu (Chongqing University of Posts and Telecommunications)
A Robust Traffic-Aware City-Scale Multi-Camera Vehicle Tracking of Vehicles
Stargazer: A Transformer-Based Driver Action Detection System for Intelligent Transportation
An Effective Temporal Localization Method With Multi-View 3D Action Recognition for Untrimmed Naturalistic Driving Videos
Density-Guided Label Smoothing for Temporal Localization of Driving Actions
VISTA: Vision Transformer Enhanced by U-Net and Image Colorfulness Frame Filtration for Automatic Retail Checkout
Detecting Vehicles on the Edge: Knowledge Distillation To Improve Performance in Heterogeneous Road Traffic

Improving Multi-Target Multi-Camera Tracking by Track Refinement and Completion	.98
A Region-Based Deep Learning Approach to Automated Retail Checkout	<u>2</u> 09
A Multi-Granularity Retrieval System for Natural Language-Based Vehicle Retrieval	<u>!</u> 15
Symmetric Network With Spatial Relationship Modeling for Natural Language-Based Vehicle Retrieval	22 5
A Coarse-To-Fine Boundary Localization Method for Naturalistic Driving Action Recognition 32 Guanchen Ding (Wuhan University), Wenwei Han (Wuhan University), Chenglong Wang (Wuhan University), Mingpeng Cui (Wuhan University), Lin Zhou (Whuhan University), Dianbo Pan (Wuhan University), Jiayi Wang (Wuhan University), Junxi Zhang (WhuHan University), and Zhenzhong Chen (Wuhan University)	!3 3
MV-TAL: Mulit-View Temporal Action Localization in Naturalistic Driving	<u>!</u> 41
Learning Generalized Feature for Temporal Action Detection: Application for Natural Driving Action Recognition Challenge	<u>'</u> 48
Multi-Camera Vehicle Tracking Based on Occlusion-Aware and Inter-Vehicle Information	<u>2</u> 56
Multi-Camera Vehicle Tracking System for AI City Challenge 2022	<u>'</u> 64

Key Point-Based Driver Activity Recognition
Clara University)
An Effective Framework of Multi-Class Product Counting and Recognition for Automated Retail Checkout
PAND: Precise Action Recognition on Naturalistic Driving
Tracked-Vehicle Retrieval by Natural Language Descriptions With Domain Adaptive Knowledge 3299
Huy Dinh-Anh Le (INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY HCMC), Quang Qui-Vinh Nguyen (INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY HCMC), Vuong Ai Nguyen (INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY HCMC), Thong Duy-Minh Nguyen (INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY HCMC), Nhat Minh Chung (International University - Vietnam National University HCM City), Tin-Trung Thái (International University - VNU), and Synh Viet-Uyen Ha (INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY HCMC)
City-Scale Multi-Camera Vehicle Tracking Based on Space-Time-Appearance Features
Temporal Driver Action Localization Using Action Classification Methods
Multi-Camera Multi-Vehicle Tracking With Domain Generalization and Contextual Constraints332 Nhat Minh Chung (International University - Vietnam National University HCM City), Huy Dinh-Anh Le (INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY HCMC), Vuong Ai Nguyen (INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY HCMC), Quang Qui-Vinh Nguyen (INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY HCMC), Thong Duy-Minh Nguyen (INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY HCMC), Tin-Trung Thái (International University - VNU), and Synh Viet-Uyen Ha (INTERNATIONAL UNIVERSITY - VIETNAM NATIONAL UNIVERSITY HCMC)
Federated Learning-Based Driver Activity Recognition for Edge Devices

The 6th AI City Challenge
Federated Learning for Computer Vision (FedVision)
FedIris: Towards More Accurate and Privacy-Preserving Iris Recognition via Federated Template Communication
Adaptive Differential Filters for Fast and Communication-Efficient Federated Learning
Communication-Efficient Federated Data Augmentation on Non-IID Data
Does Federated Dropout Actually Work?
MPAF: Model Poisoning Attacks to Federated Learning Based on Fake Clients
Robustness in Sequential Data (RoSe)
Tragedy Plus Time: Capturing Unintended Human Activities From Weakly-Labeled Videos 3404 Arnav Chakravarthy (Arizona State University), Zhiyuan Fang (Arizona State University), and Yezhou Yang (Arizona State University)
Analysis and Extensions of Adversarial Training for Video Classification 3415 Kaleab A. Kinfu (Johns Hopkins University) and René Vidal (Johns Hopkins University, USA)

CENet: Consolidation-and-Exploration Network for Continuous Domain Adaptation	25
Pose-Based Contrastive Learning for Domain Agnostic Activity Representations	32
Continual Active Adaptation to Evolving Distributional Shifts	13
Computer Vision in Sports (CVSports)	
Ice Hockey Player Identification via Transformers and Weakly Supervised Learning	50
Efficient Tracking of Team Sport Players With Few Game-Specific Annotations	50
3D Ball Localization From a Single Calibrated Image	⁷ 1
Semi-Supervised Training To Improve Player and Ball Detection in Soccer	30
SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in Soccer Videos	} 0
Pass Receiver Prediction in Soccer Using Video and Players' Trajectories)2
MonoTrack: Shuttle Trajectory Reconstruction From Monocular Badminton Video	ι2

Sports Field Registration via Keypoints-Aware Label Condition Yen-Jui Chu (National Tsing Hua University), Jheng-Wei Su (National Tsing Hua University), Kai-Wen Hsiao (National Tsing Hua University), Chi-Yu Lien (National Tsing Hua University), Shu-Ho Fan (National Tsing Hua University), Min-Chun Hu (National Tsing Hua University), Ruen-Rone Lee (Industrial Technology Research Institute (ITRI), Taiwan), Chih-Yuan Yao (National Taiwan University of Science and Technology), and Hung-Kuo Chu (National Tsing Hua University)	3522
Recognition of Freely Selected Keypoints on Human Limbs	3530
Pose Tutor: An Explainable System for Pose Correction in the Wild	3539
End-to-End High-Risk Tackle Detection System for Rugby	3549
Watch and Act: Dual Interacting Agents for Automatic Generation of Possession Statistics in Soccer	3559
SoccerTrack: A Dataset and Tracking Algorithm for Soccer With Fish-Eye and Drone Videos Atom Scott (University of Tsukuba), Ikuma Uchida (University of Tsukuba), Masaki Onishi (National Institute of Advanced Industrial Science and Technology), Yoshinari Kameda (University of Tsukuba), Kazuhiro Fukui (University of Tsukuba), and Keisuke Fujii (Nagoya University / RIKEN)	3568
Interaction Classification With Key Actor Detection in Multi-Person Sports Videos	3579
FenceNet: Fine-Grained Footwork Recognition in Fencing	3588
Embedded Vision (EVW)	
SymDNN: Simple & Effective Adversarial Robustness for Embedded Systems Swarnava Dey (Indian Institute of Technology Kharagpur), Pallab Dasgupta, and Partha P Chakrabarti (Indian Institute of Technology Kharagpur)	3598

Real-Time Hyper-Dimensional Reconfiguration at the Edge Using Hardware Accelerators)9
Does Interference Exist When Training a Once-for-All Network?	18
On-Sensor Binarized Fully Convolutional Neural Network for Localisation and Coarse Segmentation	28
Efficient Multi-Purpose Cross-Attention Based Image Alignment Block for Edge Devices	38
ImageSig: A Signature Transform for Ultra-Lightweight Image Recognition	48
MAPLE-Edge: A Runtime Latency Predictor for Edge Devices	59
Multi-Dimensional Vision Transformer Compression via Dependency Guided Gaussian Process Search	4 0
Zejiang Hou (Princeton University) and Sun-Yuan Kung (Princeton University)	30
Continual Learning in Computer Vision (CLVision)	
CSG0: Continual Urban Scene Generation With Zero Forgetting	78
Variable Few Shot Class Incremental and Open World Learning	37
Modeling Missing Annotations for Incremental Learning in Object Detection) 9

Continual Hippocampus Segmentation With Transformers	3710
Entropy-Based Stability-Plasticity for Lifelong Learning	3720
Incremental Meta-Learning via Episodic Replay Distillation for Few-Shot Image Recognition Kai Wang (Computer Vision Center), Xialei Liu (Nankai University), Andrew D. Bagdanov (University of Florence, Italy), Luis Herranz (Computer Vision Center), Shangling Jui (Huawei Kirin Solution), and Joost van de Weijer (Computer Vision Center)	3728
Unsupervised Continual Learning for Gradually Varying Domains	3739
Multi-Head Distillation for Continual Unsupervised Domain Adaptation in Semantic	2750
Segmentation Antoine Saporta (Sorbonne University), Arthur Douillard (Heuritech / Sorbonne University), Tuan-Hung Vu (Valeo.ai), Patrick Pérez (Valeo.ai), and Matthieu Cord (Sorbonne University)	3750
Spacing Loss for Discovering Novel Categories	3760
Visual Goal-Directed Meta-Imitation Learning	3766
Continual Learning With Transformers for Image Classification	3773
Attenuating Catastrophic Forgetting by Joint Contrastive and Incremental Learning	3781
Ex-Model: Continual Learning From a Stream of Trained Models Antonio Carta (Università di Pisa), Andrea Cossu (University of Pisa), Vincenzo Lomonaco (University of Pisa), and Davide Bacciu (University of Pisa)	3789
Medusa: Universal Feature Learning via Attentional Multitasking	3799

Alleviating Representational Shift for Continual Fine-Tuning	809
Towards Exemplar-Free Continual Learning in Vision Transformers: An Account of Attention, Functional and Weight Regularization	819
Online Unsupervised Domain Adaptation for Person Re-Identification	829
Transferring Unconditional to Conditional GANs With Hyper-Modulation 3 Héctor Laria (Computer Vision Center), Yaxing Wang (Computer Vision Center), Joost van de Weijer (Computer Vision Center), and Bogdan Raducanu (Computer Vision Center)	839
Out-of-Distribution Detection in Unsupervised Continual Learning	849
Continual Learning Based on OOD Detection and Task Masking	855
Continually Learning Self-Supervised Representations With Projected Functional Regularization	866
CNLL: A Semi-Supervised Approach for Continual Noisy Label Learning	877
Multi-Task Learning for Video Surveillance With Limited Data	888
Learning With Limited Labelled Data for Image and Video Understanding (L3D-IVU)	
Few-Shot Class Incremental Learning Leveraging Self-Supervised Features	899

Contrastive Regularization for Semi-Supervised Learning	3910
CDAD: A Common Daily Action Dataset With Collected Hard Negative Samples	3920
Zero-Shot Learning Using Multimodal Descriptions	3930
TDT: Teaching Detectors To Track Without Fully Annotated Videos	3939
Consistency-Based Active Learning for Object Detection	3950
Towards Open-Set Object Detection and Discovery Jiyang Zheng (The Australian National University), Weihao Li (Data61, CSIRO), Jie Hong (Australian National University), Lars Petersson (Data61/CSIRO), and Nick Barnes (ANU)	3960
Unsupervised Salient Object Detection With Spectral Cluster Voting	3970
Can Domain Adaptation Make Object Recognition Work for Everyone? Viraj Prabhu (Georgia Tech), Ramprasaath R. Selvaraju (Salesforce Research), Judy Hoffman (Georgia Tech), and Nikhil Naik (MIT)	3980
Semantic Pose Verification for Outdoor Visual Localization With Self-Supervised Contrastive Learning	3988
AuxMix: Semi-Supervised Learning With Unconstrained Unlabeled Data Amin Banitalebi-Dehkordi (Huawei Technologies Canada Co., Ltd.), Pratik Gujjar (Huawei Technologies Canada Co., Ltd.), and Yong Zhang (Huawei Technologies Canada Co., Ltd.)	3998
Self-Supervised Learning of Pose-Informed Latents	4006
Uniform Priors for Data-Efficient Learning Samarth Sinha (Facebook), Karsten Roth (University of Tuebingen), Anirudh Goyal (University of Montreal), Marzyeh Ghassemi (University of Toronto, Vector Institute), Zeynep Akata (University of Tübingen), Hugo Larochelle (Google), and Animesh Garg (University of Toronto, Vector Institute, Nvidia)	4016

Open-Set Domain Adaptation Under Few Source-Domain Labeled Samples	8
CFA: Constraint-Based Finetuning Approach for Generalized Few-Shot Object Detection	8
Faster, Lighter, Robuster: A Weakly-Supervised Crowd Analysis Enhancement Network and a Generic Feature Extraction Framework	9
Transformaly – Two (Feature Spaces) Are Better Than One	9
Self-Supervised Video Representation Learning With Cascade Positive Retrieval	9
Black-Box Test-Time Shape REFINEment for Single View 3D Reconstruction	9
SaR: Self-Adaptive Refinement on Pseudo Labels for Multiclass-Imbalanced Semi-Supervised Learning	0
ViTOL: Vision Transformer for Weakly Supervised Object Localization	0
What Should Be Equivariant in Self-Supervised Learning	0
Cluster-To-Adapt: Few Shot Domain Adaptation for Semantic Segmentation Across Disjoint Labels	0
SCVRL: Shuffled Contrastive Video Representation Learning	1

Few-Shot Supervised Prototype Alignment for Pedestrian Detection on Fisheye Images	4141
Bootstrapped Representation Learning for Skeleton-Based Action Recognition	4153
Attention Consistency on Visual Corruptions for Single-Source Domain Generalization	4164
Denoising Pretraining for Semantic Segmentation Emmanuel Asiedu Brempong (Google), Simon Kornblith (Google Brain), Ting Chen (Google), Niki Parmar (Google), Matthias Minderer (Google Research), and Mohammad Norouzi (Google Research, Brain Team)	4174
Few-Shot Image Classification Along Sparse Graphs	4186
CoDo: Contrastive Learning With Downstream Background Invariance for Detection	4195
Compositional Mixture Representations for Vision and Text	4201
Revisiting Vicinal Risk Minimization for Partially Supervised Multi-Label Classification Under Data Scarcity	4211
Vicinal Counting Networks	4220
Auxiliary Learning for Self-Supervised Video Representation via Similarity-Based Knowledge Distillation	4230
Efficient Conditional Pre-Training for Transfer Learning	4240

Bridging the Gap Between Computational Photography and Visual Recognition (UG2)

Domain Adaptable Normalization for Semi-Supervised Action Recognition in the Dark
Z-Domain Entropy Adaptable Flex for Semi-Supervised Action Recognition in the Dark
TARDet: Two-Stage Anchor-Free Rotating Object Detector in Aerial Images
Deep Scale-Space Mining Network for Single Image Deraining
Locating Urban Trees Near Electric Wires Using Google Street View Photos: A New Dataset and a Semi-Supervised Learning Approach in the Wild
Contrastive Learning-Based Robust Object Detection Under Smoky Conditions
Detecting, Tracking and Counting Motorcycle Rider Traffic Violations on Unconstrained Roads
Human-Centered Intelligent Services: Safe and Trustworthy (HCIS)
Person Re-Identification Method Based on Color Attack and Joint Defence

Improving Robustness to Texture Bias via Shape-Focused Augmentation	. 4322
Holistic Approach To Measure Sample-Level Adversarial Vulnerability and Its Utility in Building Trustworthy Systems	. 4331
HMIway-Env: A Framework for Simulating Behaviors and Preferences To Support Human-AI Teaming in Driving Deepak Gopinath (Northwestern University), Jonathan DeCastro (Toyota Research Institute), Guy Rosman (Toyota Research Institute), Emily Sumner (Toyota Research Institute), Allison Morgan (Toyota Research Institute), Shabnam Hakimi (Toyota Research Institute), and Simon Stent (Toyota Research Institute)	4341
PyTorch-OOD: A Library for Out-of-Distribution Detection Based on PyTorch	. 4350
Efficient Two-Stage Model Retraining for Machine Unlearning	. 4360
Reconstruct From Top View: A 3D Lane Detection Approach Based on Geometry Structure Prior Chenguang Li (Carnegie Mellon University), Jia Shi (SenseTime Group Limited), Ya Wang (University of Tuebingen), and Guangliang Cheng (Sensetime Group Limited)	.4369
Multi-Level Domain Adaptation for Lane Detection	. 4379
PseudoProp: Robust Pseudo-Label Generation for Semi-Supervised Object Detection in Autonomous Driving Systems	4389
Performance Prediction for Semantic Segmentation by a Self-Supervised Image Reconstruction	

Raising Context Awareness in Motion Forecasting
PointMotionNet: Point-Wise Motion Learning for Large-Scale LiDAR Point Clouds Sequences 4418 Jun Wang (The University of Maryland, College Park), Xiaolong Li (VT), Alan Sullivan (MERL), Lynn Abbott (Virginia Tech), and Siheng Chen (Shanghai Jiao Tong University)
Towards Robust Semantic Segmentation of Accident Scenes via Multi-Source Mixed Sampling and Meta-Learning
RoadSaW: A Large-Scale Dataset for Camera-Based Road Surface and Wetness Estimation
K-Lane: Lidar Lane Dataset and Benchmark for Urban Roads and Highways
H-Net: Unsupervised Attention-Based Stereo Depth Estimation Leveraging Epipolar Geometry 4459 Baoru Huang (Imperial College London), Jian-Qing Zheng (University of Oxford), Stamatia Giannarou (Imperial College London), and Daniel S. Elson (Hamlyn Centre for Robotic Surgery)
Trust Your IMU: Consequences of Ignoring the IMU Drift
Multi-Modal 3D Human Pose Estimation With 2D Weak Supervision in Autonomous Driving 4472 Jingxiao Zheng (Waymo, LLC), Xinwei Shi (Waymo, LLC), Alexander Gorban (Waymo, LLC), Junhua Mao (Waymo), Yang Song (Waymo), Charles R. Qi (Waymo), Ting Liu (Google Research), Visesh Chari (Waymo), Andre Cornman (Waymo), Yin Zhou (Waymo), Congcong Li (Waymo), and Dragomir Anguelov (Waymo)
Anomaly Detection in Autonomous Driving: A Survey
TripletTrack: 3D Object Tracking Using Triplet Embeddings and LSTM
Scene Representation in Bird's-Eye View From Surrounding Cameras With Transformers

CarlaScenes: A Synthetic Dataset for Odometry in Autonomous Driving Andreas Kloukiniotis (University of Patras), Andreas Papandreou (University of Patras), Christos Anagnostopoulos (I.S.I Industrial Systems Institute of Patras), Aris Lalos (Industrial Systems Institute, Athena Research Center), Petros Kapsalas (Panasonic Automotive), Duong-Van Nguyen (Panasonic Automotive), and Konstantinos Moustakas (ECE/UPATRAS)	. 4519
Proposal-Free Lidar Panoptic Segmentation With Pillar-Level Affinity	. 4528
MUTR3D: A Multi-Camera Tracking Framework via 3D-to-2D Queries	. 4536
Multimodal Learning and Applications (MULA)	
Probabilistic Compositional Embeddings for Multimodal Image Retrieval Andrei Neculai (Eberhard Karls University of Tübingen), Yanbei Chen (University of Tübingen), and Zeynep Akata (University of Tübingen)	. 4546
Coarse-To-Fine Reasoning for Visual Question Answering	. 4557
Transformer Decoders With MultiModal Regularization for Cross-Modal Food Retrieval	. 4566
Improving Multimodal Speech Recognition by Data Augmentation and Speech Representations . Dan Oneață (University Politehnica of Bucharest) and Horia Cucu (University Politehnica of Bucharest)	4578
Semantically Grounded Visual Embeddings for Zero-Shot Learning	4588
Reasoning With Multi-Structure Commonsense Knowledge in Visual Dialog	. 4599
Modulating Bottom-Up and Top-Down Visual Processing via Language-Conditional Filters Ilker Kesen (Koç University), Ozan Arkan Can (Amazon), Erkut Erdem (Hacettepe University), Aykut Erdem (Koc University), and Deniz Yüret (Koç University)	4609

Coupling Vision and Proprioception for Navigation of Legged Robots	620
Emphasizing Complementary Samples for Non-Literal Cross-Modal Retrieval	1631
Doubling Down: Sparse Grounding With an Additional, Almost-Matching Caption for Detection-Oriented Multimodal Pretraining	1641
M2FNet: Multi-Modal Fusion Network for Emotion Recognition in Conversation	.651
The Unreasonable Effectiveness of CLIP Features for Image Captioning: An Experimental Analysis	1661
Guiding Attention Using Partial-Order Relationships for Image Captioning	670
Learning To Ask Informative Sub-Questions for Visual Question Answering	1680
Cascaded Siamese Self-Supervised Audio to Video GAN	1690
Multi-View Multi-Label Canonical Correlation Analysis for Cross-Modal Matching and Retrieval	1700
Vision Datasets Understanding (VDU)	
Delving Into High-Quality Synthetic Face Occlusion Segmentation Datasets	1710

A Challenging Benchmark of Anime Style Recognition	4720
Rethinking Illumination for Person Re-Identification: A Unified View	4730
What's in a Caption? Dataset-Specific Linguistic Diversity and Its Effect on Visual	
Description Models and Metrics	4739
Dataset Distillation by Matching Training Trajectories	4749
Can the Mathematical Correctness of Object Configurations Affect the Accuracy of Their Perception?	4759
Han Jiang (Worcester Polytechnic Institute), Zeqian Li (Worcester Polytechnic Institute), and Jacob Whitehill (Worcester Polytechnic Institute)	4737
Few-Shot Image Classification Benchmarks Are Too Far From Reality: Build Back Better With Semantic Task Sampling	4766
BigDetection: A Large-Scale Benchmark for Improved Object Detector Pre-Training	4776
Towards Explaining Image-Based Distribution Shifts	4787
deepPIC: Deep Perceptual Image Clustering for Identifying Bias in Vision Datasets	4792
On the Choice of Data for Efficient Training and Validation of End-to-End Driving Models Marvin Klingner (Technische Universität Braunschweig), Konstantin Müller (Technische Universität Braunschweig), Mona Mirzaie (Technical University of Braunschweig), Jasmin Breitenstein (Technische Universität Braunschweig), Jan-Aike Termöhlen (Technische Universität Braunschweig), and Tim Fingscheidt (Technische Universität Braunschweig)	4802

Can We Trust Bounding Box Annotations for Object Detection? Jeffri Murrugarra-Llerena (Federal University of Rio Grande do Sul), Lucas N. Kirsten (UFRGS), and Claudio R. Jung (Federal University of Rio Grande do Sul)	4812
Why Object Detectors Fail: Investigating the Influence of the Dataset	4822
Dark Corner on Skin Lesion Image Dataset: Does It Matter?	4830
Mitigating Paucity of Data in Sinusoid Characterization Using Generative Synthetic Noise Sam Sattarzadeh (Goldspot Discoveries Corporation), Shervin Manzuri Shalmani (Goldspot Discoveries Corporation), and Shervin Azad (Goldspot Discoveries Corporation)	4839
The Effect of Improving Annotation Quality on Object Detection Datasets: A Preliminary Study	4849
The Topology and Language of Relationships in the Visual Genome Dataset	4859
Analysis of Temporal Tensor Datasets on Product Grassmann Manifold	4868
A3D: Studying Pretrained Representations With Programmable Datasets	4877
Investigating Neural Architectures by Synthetic Dataset Design	4886
Self-Supervision Versus Synthetic Datasets: Which Is the Lesser Evil in the Context of Video Denoising? Valéry Dewil (Centre Borelli), Arnaud Barral (ENS Paris Saclay), Gabriele Facciolo (ENS Paris-Saclay), and Pablo Arias (ENS Paris-Saclay)	4896
Video Action Detection: Analysing Limitations and Challenges Rajat Modi (University of Central Florida), Aayush Jung Rana (University of Central Florida), Akash Kumar (University of Central Florida), Praveen Tirupattur (University of Central Florida), Shruti Vyas (University of Central Florida), Yogesh Rawat (University of Central Florida), and Mubarak Shah (University of Central Florida)	N/A

Open-Domain Retrieval Under Multi-Modal Settings (ODRUM)

Good, Better, Best: Textual Distractors Generation for Multiple-Choice Visual Question Answering via Reinforcement Learning	4917
Cross-Modal Target Retrieval for Tracking by Natural Language	1927
Deep Normalized Cross-Modal Hashing With Bi-Direction Relation Reasoning	1937
Embedding Arithmetic of Multimodal Queries for Image Retrieval	1946
Conditioned and Composed Image Retrieval Combining and Partially Fine-Tuning CLIP-Based Features	1955
Object Prior Embedded Network for Query-Agnostic Image Retrieval	1965
Deep Image Retrieval Is Not Robust To Label Noise	1971
Gaze Estimation and Prediction in the Wild (GAZE)	
Learning-by-Novel-View-Synthesis for Full-Face Appearance-Based 3D Gaze Estimation Jiawei Qin (The University of Tokyo), Takuru Shimoyama (The University of Tokyo), and Yusuke Sugano (The University of Tokyo)	4977
Self-Attention With Convolution and Deconvolution for Efficient Eye Gaze Estimation From a Full Face Image	4988
Unsupervised Multi-View Gaze Representation Learning	4997

ScanpathNet: A Recurrent Mixture Density Network for Scanpath Prediction	. 5006
One-Stage Object Referring With Gaze Estimation Jianhang Chen (Purdue University), Xu Zhang (Amazon.com Inc.), Yue Wu (Amazon.com Inc.), Shalini Ghosh (Amazon Alexa AI), Pradeep Natarajan (Amazon.com Inc.), Shih-Fu Chang (Columbia University), and Jan Allebach (Purdue University)	. 5017
Characterizing Target-Absent Human Attention Yupei Chen (The Smith-Kettlewell Eye Research Institute), Zhibo Yang (Stony Brook University), Souradeep Chakraborty (Stony Brook University), Sounak Mondal (Stony Brook University), Seoyoung Ahn (Stony Brook University), Dimitris Samaras (Stony Brook University), Minh Hoai (Stony Brook University), and Gregory Zelinsky (Stony Brook University)	. 5027
A Modular Multimodal Architecture for Gaze Target Prediction: Application to Privacy-Sensitive Settings	. 5037
Image Matching: Local Features and Beyond (IMW)	
Unstructured Object Matching Using Co-Salient Region Segmentation	. 5047
Nerfels: Renderable Neural Codes for Improved Camera Pose Estimation Gil Avraham (Monash University), Julian Straub (Facebook Reality Labs), Tianwei Shen (Facebook), Tsun-Yi Yang (Facebook), Hugo Germain (Ecole des Ponts ParisTech), Chris Sweeney (Facebook Reality Labs), Vasileios Balntas (Facebook Reality Labs), David Novotny (Facebook AI Research), Daniel DeTone (Facebook), and Richard Newcombe (Facebook)	. 5057
Feature Query Networks: Neural Surface Description for Camera Pose Refinement Hugo Germain (Ecole des Ponts ParisTech), Daniel DeTone (Facebook), Geoffrey Pascoe (Facebook), Tanner Schmidt (Facebook Reality Labs), David Novotny (Facebook AI Research), Richard Newcombe (Facebook), Chris Sweeney (Facebook Reality Labs), Richard Szeliski (The University of Washington), and Vasileios Balntas (Facebook Reality Labs)	. 5067
Learning Co-Segmentation by Segment Swapping for Retrieval and Discovery Xi Shen (École des Ponts ParisTech), Alexei A. Efros (UC Berkeley), Armand Joulin (Facebook AI Research), and Mathieu Aubry (École des ponts ParisTech)	, 5078
DA-AE: Disparity-Alleviation Auto-Encoder Towards Categorization of Heritage Images for Aggrandized 3D Reconstruction. Dikshit Hegde (KLE Technological University), Tejas Anvekar (KLE Technological University), Ramesh Ashok Tabib (KLE Technological University), and Uma Mudengudi (KLE Technological University)	. 5089

Detecting and Suppressing Marine Snow for Underwater Visual SLAM Lars Martin Hodne (Norwegian University of Science and Technology), Eirik Leikvoll (Norwegian University of Science and Technology), Mauhing Yip (Norwegian University of Science and Technology), Andreas Langeland Teigen (Norwegian University of Science and Technology), Annette Stahl (Norwegian University of Science and Technology), and Rudolf Mester (Norwegian University of Science and Technology)	5097
A Case for Using Rotation Invariant Features in State of the Art Feature Matchers	5106
Sketch-Oriented Deep Learning (SketchDL)	
The Role of Shape for Domain Generalization on Sparsely-Textured Images	5116
SSR-GNNs: Stroke-Based Sketch Representation With Graph Neural Networks	5127
Constellations: A Novel Dataset for Studying Iterative Inference in Humans and AI	5138
Leveraging Unlabeled Data for Sketch-Based Understanding	5149
Signature Detection, Restoration, and Verification: A Novel Chinese Document Signature Forgery Detection Benchmark	5159
Omnidirectional Computer Vision in Research and Industry (On	nniCV)
Rethinking Supervised Depth Estimation for 360° Panoramic Imagery	5169
SPIN: Simplifying Polar Invariance for Neural Networks Application to Vision-Based Irradiance Forecasting	5178

3D Room Layout Recovery Generalizing Across Manhattan and Non-Manhattan Worlds
Pose Estimation for Two-View Panoramas Based on Keypoint Matching: A Comparative Study and Critical Analysis
HiMODE: A Hybrid Monocular Omnidirectional Depth Estimation Model
A New Non-Central Model for Fisheye Calibration
Photometric Visual Gyroscope for Full-View Spherical Camera

Author Index